
A Transaction-Friendy Binary Search Tree

Tyler CRAIN Vincent GRAMOLI Michel RAYNAL

{tyler.crain|raynal}@irisa.fr
{vincent.gramoli}@epfl.ch

TM Theory Workshop 2011

ASAP team, IRISA, Rennes, France & Distributed Programming Laboratory,
EPFL, Lausanne, Switzerland



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Existing Data Structures
Preserving structural invariants

• Balanced Binary Trees
- Rotations keep the tree balanced

• Skiplist
- Node levels follow some fixed distribution

• Hashtable
- Bucket size must not exceed some threshold

2 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Using data structures with TM
Simple!

• Copy-paste into transactions (more or less)
+ Easy to program/use
+ The TM system ensures safety
- Are there disadvantages?

3 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Concurrent Data Structures
Balanced Binary Tree

• Specially designed for concurrency
• Hand-over-hand locking

• O(log n)

4 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Data Structures in TM (So far)
Balanced Binary Tree

• (Mostly) Unmodified from their original versions
• Not designed for concurrency or transactions

- Could lead to unnecessary conflicts and aborts.

• Ω(r log n)

5 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Ω(r log n)
What is r?

• The number of restarts
- Depends on the contention of the workload
- Depends on the conflicts between transactions
⇒ r depends on n

6 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Aborts and wasted work

• Still O(log n) operations?

Update 0% 10% 20% 30% 40% 50%
AVL tree 29 415 711 1008 1981 2081

Sun red-black tree 31 573 965 1108 1484 1545

Table: Maximum #reads/op in 212 sized trees

• Can we relax some invariants in order to reduce conflicts?

7 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Example
• 3 operations
• 1→ insert , 2→ delete, 3→ contains

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

1

2

3

8 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Where they can conflict
• Along their entire path

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

1

2

3

9 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Goal
• Minimize conflicts

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

1

2

3

10 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Rotations
Correctness & Conflicts

• Rotations are not required for correctness
• There will be concurrent insertions/deletions

• Concurrent insertions/deletions might have conflicting
rotations

- They might cancel each other out
- A later insert/deletion might invalidate these rotations

• Idea: relax the balance requirement in order to allow more
concurrency

11 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Rotations cont.
Solution

• Separate rotations from insert/delete operations
• Perform rotations in their own thread
• Each rotation is a single transaction

12 / 38

Bougé L., Gabarro J., Messeguer X., Schabanel N., Height-relaxed AVL
rebalancing: A unified, fine-grained approach to concurrent dictionaries. Tech
Report RR1998-18, INRIA, 1998



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Deletions
Reducing conflicts further

• A delete operation can still modify the tree structure
• A successor must be found to replace the node being

deleted

13 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Deletions cont.
Solution

• Logical deletions
• Each node has a deleted boolean flag
• Initialized as false
• Set to true on deletion

• Allows concurrent operations to traverse the node being
deleted without conflicting

14 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Removals

• Logically deleted nodes must be removed from the tree
• Done in a separate thread
• Only nodes with 1 or 0 children are removed

15 / 38

Bronson N., Casper J., Chafi H., Olukotun K., A Practical Concurrent Binary
Search Tree, PPoPP ’10



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Contains

• Each diagram is a single transaction

Traverse Traverse

16 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Insert
• Each diagram is a single transaction

Traverse

Rotate

...

Rotate

Insert

Performed in separate thread

Traverse

Insert

+

Rotate

Propogate

+

+

+

Rotate

17 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Delete
• Each diagram is a single transaction

Traverse

+

Rotate

Propogate

+

+

Traverse

Find Successor

Remove/Swap

Rotate

Rotate

...

Mark

+

Remove

Performed in separate thread

18 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Now we have
Abstract transaction conflicts

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

1

2

3

19 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Impact on read size

Update 0% 10% 20% 30% 40% 50%
AVL tree 29 415 711 1008 1981 2081

Sun red-black tree 31 573 965 1108 1484 1545
Tx-friendly tree 29 75 123 120 144 180

Table: Maximum #reads/op in 212 sized trees

20 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Conclusion
Benefits of a Transaction Friendly Data Structure

• Improved Performance
• No difference to the programmer using the tree as a library
• Uses normal transactional reads/writes

• Compatible with many TMs
- Tested on TinySTM and E-STM
• Independent of TM specifications
- Tested using CTL/ETL, different contention managers

21 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Reusability
Move operation

22 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Future Work
Other structures

• Transaction friendly skip list
• Transaction friendly hash table
• Transaction friendly . . .

23 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

• There’s more?

24 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

TM Optimizations
Optional

• Certain TMs give mechanisms for improved performance
at the cost of safety

- Early-release
- E-STM
- View transactions
- Unit reads

25 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Unit Reads

• Returns the latest value written by a committed transaction
• Does not add the location to the read set or perform

validation

26 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

• How can unit reads be used to improve performance of the
algorithm?

27 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Current Situation
• Rotations can still conflict with concurrent

insert/delete/contains operations

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

Rotation 1

Rotation 2

1

2

3

28 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Solution

• Use unit reads during the tree traversal
• Advantages:

- Faster traversals (unit reads are cheaper)
- Avoid during traversal
- Smaller read set

29 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Result
Abstract + Structural Transactions

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

Rotation 1

Rotation 2

1

2

4

30 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

• What about safety?
• Algorithm becomes a bit more complicated to ensure

safety

31 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

New rotations

32 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

New removals

p

j

i i

p

j

(a) Before removal

NULL

(b) After removal

33 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Traversals

• Mostly unit reads
• Transactional reads performed at bottom to ensure safety
• Each node has a removed flag

• Used to ensure traversal does not finish on a node that no
longer in the tree

34 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Impact on read size

Update 0% 10% 20% 30% 40% 50%
AVL tree 29 415 711 1008 1981 2081

Sun red-black tree 31 573 965 1108 1484 1545
Tx-friendly tree 29 75 123 120 144 180
Unit read tree 2 5 6 13 15 18

Table: Maximum #reads/op in 212 sized trees

35 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

• Performance Results: Some graphs from benchmarks

36 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Microbench

 0

 5

 10

 15

1 8 16 24 32 40 48

5%
 u

pd
at

e

Normal

RBtree
TFtree

NRtree
AVLtree

 0

 5

 10

 15

1 8 16 24 32 40 48

Bias

 0
 2
 4
 6
 8

 10

1 8 16 24 32 40 48

10
%

 u
pd

at
e

 0
 2
 4
 6
 8

 10

1 8 16 24 32 40 48

 0
 2
 4
 6
 8

1 8 16 24 32 40 48

15
%

 u
pd

at
e

Th
ro

ug
hp

ut
 (o

ps
/m

ic
ro

se
c)

 0
 2
 4
 6
 8

1 8 16 24 32 40 48

 0
 2
 4
 6
 8

1 8 16 24 32 40 48

20
%

 u
pd

at
e

Number of threads

 0
 2
 4
 6
 8

1 8 16 24 32 40 48
Number of threads

37 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Vacation (STAMP)

 0
 1
 2
 3
 4
 5
 6
 7

1 8 16 24 32 40 48
 0
 10
 20
 30
 40
 50
 60
 70

1x
 tr

an
sa

ct
io

ns

Vacation high contention

RBtree speedup
TFtree speedup
NRtree speedup

RBtree duration
TFtree duration
NRtree duration

 0
 1
 2
 3
 4
 5
 6
 7

1 8 16 24 32 40 48
 0

 10

 20

 30

 40

 50
Vacation low contention

 0
 1
 2
 3
 4
 5
 6

1 8 16 24 32 40 48
 0

 200

 400

 600

 800

 1000

8x
 tr

an
sa

ct
io

ns
Sp

ee
du

p

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 8 16 24 32 40 48
 0

 100

 200

 300

 400

 500

D
ur

at
io

n 
(s

ec
)

 0
 1
 2
 3
 4
 5
 6

1 8 16 24 32 40 48
 0
 500
 1000
 1500
 2000
 2500

16
x 

tra
ns

ac
tio

ns

Number of threads

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1 8 16 24 32 40 48
 0

 500

 1000

 1500

Number of threads

38 / 38


	Data Structures
	Binary Trees
	Binary Search Tree for TM
	Conclusion
	Optional Optimizations
	Results

