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Existing Data Structures
Preserving structural invariants

• Balanced Binary Trees
- Rotations keep the tree balanced

• Skiplist
- Node levels follow some fixed distribution

• Hashtable
- Bucket size must not exceed some threshold
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Using data structures with TM
Simple!

• Copy-paste into transactions (more or less)
+ Easy to program/use
+ The TM system ensures safety
- Are there disadvantages?
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Concurrent Data Structures
Balanced Binary Tree

• Specially designed for concurrency
• Hand-over-hand locking

• O(log n)
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Data Structures in TM (So far)
Balanced Binary Tree

• (Mostly) Unmodified from their original versions
• Not designed for concurrency or transactions

- Could lead to unnecessary conflicts and aborts.

• Ω(r log n)
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Ω(r log n)
What is r?

• The number of restarts
- Depends on the contention of the workload
- Depends on the conflicts between transactions
⇒ r depends on n

6 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

Aborts and wasted work

• Still O(log n) operations?

Update 0% 10% 20% 30% 40% 50%
AVL tree 29 415 711 1008 1981 2081

Sun red-black tree 31 573 965 1108 1484 1545

Table: Maximum #reads/op in 212 sized trees

• Can we relax some invariants in order to reduce conflicts?
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Example
• 3 operations
• 1→ insert , 2→ delete, 3→ contains
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Where they can conflict
• Along their entire path
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Goal
• Minimize conflicts
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Rotations
Correctness & Conflicts

• Rotations are not required for correctness
• There will be concurrent insertions/deletions

• Concurrent insertions/deletions might have conflicting
rotations

- They might cancel each other out
- A later insert/deletion might invalidate these rotations

• Idea: relax the balance requirement in order to allow more
concurrency
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Rotations cont.
Solution

• Separate rotations from insert/delete operations
• Perform rotations in their own thread
• Each rotation is a single transaction
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Deletions
Reducing conflicts further

• A delete operation can still modify the tree structure
• A successor must be found to replace the node being

deleted
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Deletions cont.
Solution

• Logical deletions
• Each node has a deleted boolean flag
• Initialized as false
• Set to true on deletion

• Allows concurrent operations to traverse the node being
deleted without conflicting
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Removals

• Logically deleted nodes must be removed from the tree
• Done in a separate thread
• Only nodes with 1 or 0 children are removed
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Contains

• Each diagram is a single transaction

Traverse Traverse
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Insert
• Each diagram is a single transaction
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Delete
• Each diagram is a single transaction
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Now we have
Abstract transaction conflicts
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Impact on read size

Update 0% 10% 20% 30% 40% 50%
AVL tree 29 415 711 1008 1981 2081

Sun red-black tree 31 573 965 1108 1484 1545
Tx-friendly tree 29 75 123 120 144 180

Table: Maximum #reads/op in 212 sized trees
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Conclusion
Benefits of a Transaction Friendly Data Structure

• Improved Performance
• No difference to the programmer using the tree as a library
• Uses normal transactional reads/writes

• Compatible with many TMs
- Tested on TinySTM and E-STM
• Independent of TM specifications
- Tested using CTL/ETL, different contention managers
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Reusability
Move operation
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Future Work
Other structures

• Transaction friendly skip list
• Transaction friendly hash table
• Transaction friendly . . .
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• There’s more?
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TM Optimizations
Optional

• Certain TMs give mechanisms for improved performance
at the cost of safety

- Early-release
- E-STM
- View transactions
- Unit reads
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Unit Reads

• Returns the latest value written by a committed transaction
• Does not add the location to the read set or perform

validation

26 / 38



Data Structures Binary Trees Binary Search Tree for TM Conclusion Optional Optimizations Results

• How can unit reads be used to improve performance of the
algorithm?
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Current Situation
• Rotations can still conflict with concurrent

insert/delete/contains operations
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Solution

• Use unit reads during the tree traversal
• Advantages:

- Faster traversals (unit reads are cheaper)
- Avoid during traversal
- Smaller read set
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Result
Abstract + Structural Transactions
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• What about safety?
• Algorithm becomes a bit more complicated to ensure

safety
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New rotations
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New removals
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Traversals

• Mostly unit reads
• Transactional reads performed at bottom to ensure safety
• Each node has a removed flag

• Used to ensure traversal does not finish on a node that no
longer in the tree
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Impact on read size

Update 0% 10% 20% 30% 40% 50%
AVL tree 29 415 711 1008 1981 2081

Sun red-black tree 31 573 965 1108 1484 1545
Tx-friendly tree 29 75 123 120 144 180
Unit read tree 2 5 6 13 15 18

Table: Maximum #reads/op in 212 sized trees
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• Performance Results: Some graphs from benchmarks
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Microbench
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Vacation (STAMP)
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