Semantics for Transactional
Languages

Michael L. Scott
B RO

Workshop on the Theory of Transactional Memory
Rome, Italy
September 2011

MLS 1/15




A Fleeting Opportunity

e HTM is coming
» Azul, Sun Rock, AMD ASF

» |IBM has announced for Blue Gene/Q
)» ?

e STM for backward compatibility, fallback on HW
overflow

e Language support essential

e Narrow window in time to “get the semantics
right”

MLS WTTM 2011 2 115




Outline

® Assertions
» atomicity is central
» speculation is an implementation issue (only)
» small transactions are what matter
» privatization is essential
— necessary for correctness
- solves the problem of legacy synchronization

® Open Questions
» non-transactional reads and writes
» big transactions, integration with system transactions
» relationship to “deterministic parallel programming”

MLS WTTM 2011 3 /15




Memory Models

¢ Transactional sequential consistency (TSC)
» 1deal but expensive: global total order on accesses

— consistent w/ program order <p

- w/ each transaction contiguous

e Strict serializability (SS)

» txns globally totally ordered wrt one another

» also ordered wrt preceding & following accesses of same
thread (though those accesses aren’t necessarily globally
ordered wrt one another)

e Read r is permitted to see the value of write w if
» rand w access the same location |
» W<prvVvWw<gsl, and there is no intervening write of |
between w and r

MLS WTTM 2011 4 115




Transactional Data Race
Freedom (TDRF)

e An execution E has an (SS) data race if 4 <t that

induces a <ss that orders all conflicting
accesses and explains E’s reads

» A program has a data race if it has an execution that has
a data race

® In analogy to nontransactional models,

» if implementation guarantees that
- transactions are SS
- non-transactional accesses in thread t happen
e after the commit of the previous transaction in t
e pbefore the commit of the next transaction in t

» and if program P is TDRF
» then all of P’s executions will be TSC

MLS WTTM 2011 o5 /15




MLS

Strong Isolation Is a Non-Issue

e Hard to explain to the programmer
» what is a memory access?

e Heavy performance penalty in STM

e Only matters in racy programs
» constrains the behavior of buggy code

» less than you want (TSC); more than you need to build
what you want (TSC given TDRF)

» may be useful for debugging, but a good race
detector is better

WTTM 2011

6 /15




Opacity Is a Semantic Non-Issue

e Aborted transactions do not appear in
(language-level) histories

e Opacity is simply one end of the implementation
spectrum: validate at every read

e Sandboxing is the other end: validate before
every “dangerous” operation (and periodically)

e Some very promising implementations in the
middle: delayed/out-of-band validation
» ask me later!

MLS WTTM 2011 7 /115




Privatization Is Essential

e Definition: transaction T with history prefix P
privatizes datum D if

» 3 extensions of P in which a first access to D after P
occurs in different threads

» V extensions of P+T, the first access to D after P+T
occurs in the same one thread

e Crucial for performance with STM

e Solves the problem of legacy synchronization
» locking is privatization —
acquire and release are small atomic blocks

e (Publication is a non-issue: implementation
chalenges arise only in racy programs)

MLS WTTM 2011

8 /15




MLS

Transactions # Critical Sections

L.acquire() atomic { ... }

L.release() atomic { ... }

WTTM 2011 9 115




MLS

Open Questions

WTTM 2011

10/15




Non-transactional Accesses

e Want reads for, e.g., ordered speculation, high-

performance hybrid TM

» clearly important at the HTM ISA level
» not clear whether needed/wanted at language API level

e Want writes out of aborted txns for debugging
» again, clearly important at the HTM ISA level
— and probably more useful if immediate
» probably important at the language level too
- not as clear that these need to be immediate

e [mmediate writes, and writes in aborted txns, a
challenge for the memory model

e Other compelling uses? (esp. in small txns)

WTTM 2011 11 /15




Atomicity and Determinism

e Recall Li's talk this afternoon

» languages/idioms that guarantee all abstract executions
will be “equivalent” in some well-defined sense

¢ Independent split-merge an obvious foundation
for language-level determinism

e Atomic commutative [+associative] ops the
obvious extension

e |[s there anything else?

MLS WTTM 2011 12/15




MLS

And of Course...

e Abort, orElse? (conjecture: no)

e Bigger transactions? Integration with system
transactions? (again, conjecture: no)

WTTM 2011

13/15




The Bottom Line: Keep It Simple!

e Atomicity is central
e Speculation is an implementation issue (only)
e Small transactions are what matter

® Privatization is essential (and solves the
problem of legacy synchronization)

MLS WTTM 2011 14/15




UNIVERSITY of
ROCHESTER
www.cs.rochester.edu/research/synchronization/

Thanks to Luke Dalessandro, Li Lu

MLS WTTM 2011 15 /15




