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Abstract

In order to scale to large multiprocessors or clusters, trans-
actional memories must reduce reliance on synchronisa-
tion. Therefore, we consider two favorable formal prop-
erties, namely Snapshot Isolation (SI, by which read-only
transactions commit without synchronisation), and Gen-
uine Partial Replication (GPR, by which a processor syn-
chronises for a transaction only if it maintains a copy of
some data item accessed by that transaction). We show
that, unless the read-set of every transaction is known in
advance, the combination of SI+GPR is impossible. To
circumvent this impossibility result, we propose to weaken
SI such that snapshots are allowed to be non-monotonic.

1 Introduction

Software Transactional Memory (STM) is a recent
paradigm for concurrent programming by providing the
well-known concepts of atomicity, consistency, and isola-
tion properties to the programmer.

Initial work on STM considered mostly small-scale
cache-coherent multi-core machines. We are now inter-
ested in scaling STMs to distributed memories, such as
processors without hardware shared memory or small clus-
ters. Over the past few years, several STMs [1, 2, 3, 4, 5]
have been proposed trying to address this issue.

One unique characteristic of STMs, compared to
database transactions, is that the cost of synchronisation
dominates processing time; this imbalance can only worsen
with larger processor architectures. Therefore, scalability
requires to minimise the synchronisation requirements.

Running transactions in distributed-memory processor
architectures requires replicating the shared data. How-
ever, the classical State-Machine Replication (SMR) ap-
proach forces a purely sequential execution.1

These issues justify our interests in the two following
formal properties. (i) In Generalized Snapshot Isolation
[6] (SI) a transaction runs against a consistent snapshot
of the data (not necessarily the most recent version). SI
has the advantage that a read-only transaction does not
synchronise, as it can commit unilaterally. Furthermore,
aborts are reduced, as an update aborts only if it conflicts
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with a concurrent, already-committed transaction. (ii) In
Genuine Partial Replication (GPR), a given data item is
replicated only on some subset of processors, and a pro-
cessor synchronises for a transaction only if it maintains
a replica of some data item accessed by that transaction.
This allows independent transactions to commit in paral-
lel.

In this paper, we report on two early results of this re-
search. One is an impossibility result: the combination of
SI with GPR is impossible.2 The other is a proposal for
circumventing the impossibility: to weaken the SI require-
ment for snapshot monotonicity, i.e., to allow the snapshot
of two concurrent read-only transactions to contain differ-
ent updates.

2 Genuine Replication and SI

Under snapshot isolation, a transaction T always sees a
consistent state of the system, and if T is a read-only
transaction, it always commits.

Genuine replication states that to execute a transac-
tion T over a set of objects O, only processes that hold
a copy of an object o ∈ O may take steps [7]. There-
fore, genuineness increases the scalability by parallelizing
non-conflicting transactions as much as possible. 3

We have proved an impossibility result that states no
message-passing transactional system can achieve both
snapshot isolation and genuine partial replication if data
items accessed by each transaction are not known in ad-
vance.

Intuitively, this impossibility result stems from the fact
that it is impossible to take consistent and monotonic
snapshots without violating genuineness.

The most well-known algorithm to take a snapshot in
a replication system is to use atomic broadcast, and total
order all transactions. Since all transactions are totally
ordered, each transaction can take a snapshot by reading
the latest committed versions. Our result implies that we
cannot modify the above system to obtain a genuine par-
tial replication system. In particular, because data items
are not known in advance, we cannot replace the broadcast
primitive by atomic multicast.

2 Unless the read-sets of transactions are known in advance. This
may be a reasonable expectation in a database with stored proce-
dures, but the STM programming model is much more dynamic.

3 In shared-memory systems, this property transposes in disjoint-
access parallelism [8].
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Figure 1: Non-monotonic Snapshots

3 Weak Snapshot Isolation

To circumvent the impossibility result while still preserv-
ing scalability (genuiness), and liveness (wait-freedom for
read-only transactions), we first propose a novel decom-
position of SI into the following properties:
• Consistent Snapshot: this property states that each

transaction should read a consistent state of the mem-
ory.

• Write Conflict Freedom: this property means that
two concurrent transactions do not write on the same
object.

• Snapshot Monotonicity: this property states that
transactions should observe non-conflicting concur-
rent transactions in the same order.

To understand the snapshot monotonicity, consider
there are two different processes that hold two different
objects namely a and b (figure 1). Transactions T1 and
T2 write on objects a and b respectively, while read-only
transactions T3 and T4 try to read both a and b. In spite of
the fact that both of the snapshots taken by T3 and T4 are
consistent snapshots, they are non-monotonic snapshots.
Thus, the execution in figure 1 violates the SI rules, and
cannot be accepted by a replication system that ensures
SI.

We observed that while ensuring snapshot monotonicity
between different transactions of a same process is crucial
(local snapshot monotonicity), ensuring snapshot mono-
tonicity among transactions of different processes (global
snapshot monotonicity) is not essential, hence we can relax
this property in order to increase the scalability.

Therefore, we propose a novel consistency criteria called
weak snapshot isolation (WSI). WSI ensures local snap-
shot monotonicity along with ensuring consistent snap-
shot and write conflict freedom. Roughly speaking, WSI
provides correctness guarantees very similar to SI. In par-
ticular, queries always see a consistent snapshot, and two
conflicting updates cannot commit both. The subtle dif-
ference with SI lies in the fact that WSI excludes global
snapshot monotonicity, and allows concurrent transactions
from different processes observe non-conflicting updates in
different orders as it is shown in figure 1.

4 Conclusion and Future Works

In this paper, we presented our ongoing research on mak-
ing STMs scalable by using genuine partial replications
along with SI. We presented the impossibility results about
genuine partial replication under SI in any transactional

system. To circumvent the impossibility result, we first
proposed a novel decomposition of SI into three proper-
ties namely consistent snapshot, write conflict freedom,
and snapshot monotonicity. We then introduced weak
snapshot isolation that instead of ensuring snapshot mono-
tonicity only ensures local snapshot monotonicity.

In our ongoing studies, we plan to build a complete
genuine replicated STM under WSI, and compare it with
other state of the art replicated solutions. We are also
investigating the possible similarities between WSI and
other consistency criteria introduced so far in the litera-
ture.

Moreover, we are trying to prove a conjecture that states
no message-passing transactional system can achieve both
snapshot isolation and genuine partial replication if a read-
only transactions can commit while contacting a majority
of replicas.
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