Time-Free Leader Election in Mobile Ad Hoc Networks

Luis Rodrigues Petr Kouznetsov Rachid Guerraoui

Distributed Programming Laboratory
FPFI

Problem

Static network:

- Eventually there is a leader
- □ There is never more than one leader at a time

Problem

Mobile ad hoc network:

For every component whose topology does not change sufficiently long, there is a time after which the component has exactly one leader

Requirements:

- "Local" computation only (no flooding)
- □ No source of global information

Related work

- Loop-free routing for unstable topologies [Gafni and Bertsekas, 1981]
 - ✓ destination-oriented DAG based on totally ordered heights
 - ✓ no flooding, only local computations
 - ✓ no partitioning: destination is always a member
 - ✓ proofs
- Mobile ad hoc routing scheme (TORA) [Park and Corson, 1997]
 - ✓ handles partitioning and merging
 - ✓ use of global time source
- □ Leader election in a mobile network [Malpani, Welch, Vaidya,2000]
 - ✓ Leader-oriented DAG in every component
 - ✓ use of global time source
 - ✓ correctness proof for a single topology change only

Proposed time-free solution

- Leader-oriented DAG in every component
 - √ When a partition occurs, a new leader is elected
 - ✓ When two components merge, a contest between two leaders takes place
 - \square A height of a node i: hi=(li,ri,di,i)
 - √ li the current leader (the smallest id in a component)
 - √ri the current leader candidate
 - √ di the distance to the current leader (candidate)

Example of operation

Contributions & open questions

- Time-free: suitable for asynchronous systems
- Almost no performance degradation comparing to [MWV00]
- Correctness proof for the case of a single topology change

- Concurrent topology changes: is a solution possible?
 - ✓ If it is: can we prove the correctness?
 - ✓ If it is not: minimal amount of synchrony sufficient to solve the problem?

