
On Failure Detectors and Type Boosters

Rachid Guerraoui and Petr Kouznetsov

Distributed Programming Lab

Swiss Federal Institute of Technology
in Lausanne (EPFL)



DISC 2003 2/22

Motivation

Registers are weak [FLP85, LAA87].

(1) Stronger types: queue, T&S, C&S, etc.

cons(S) - consensus number of a set of types S [Her91,
Jay97].
E.g., cons(T&S) = 2, cons(C&S) = ∞.

(2) Failure detectors [CT96].
Ω is the weakest failure detector for consensus [CHT96,
LH94].



DISC 2003 3/22

What if we combine the trends?

R&W

p0 pn

T&S

D1 Di Dn

pi

Failuredetector

Powerful objects



DISC 2003 4/22

The question

• n + 1 processes

• Read-write memory

• Shared objects of types in S : cons(S) = n

What is the weakest failure detector D
to wait-free solve consensus?



DISC 2003 5/22

Background

[Nei95]: Ωk outputs a set of at most k processes so that,
eventually, all correct processes detect the same set that
includes at least one correct process.

• Ω1 ≡ Ω, Ωk+1 ≺ Ωk

• Ωn is sufficient to solve (n + 1)-process consensus using S
and registers.

Is Ωn necessary?



DISC 2003 6/22

Contribution

Theorem. Ωn is necessary to implement wait-free

(n + 1)-process consensus with registers and objects of

one-shot deterministic types in S such that cons(S) ≤ n.

Corollary. Ωn is necessary to implement (n + 1)-process

wait-free consensus using registers and (n− 1)-resilient

objects of any types.



DISC 2003 7/22

A hint of the proofs

1. System model

2. Boosting consensus power

3. Boosting resilience



DISC 2003 8/22

System model

• n + 1 asynchronous processes: p0, . . . , pn

• MWMR registers

• Wait-free linearizable objects of one-shot deterministic
types in S, cons(S) ≤ n.

• A failure detector D



DISC 2003 9/22

Failure detectors and reducibility

• A failure detector D is defined as a map of each failure

pattern F to a set of failure detector histories D(F ) [CHT96]

• D is weaker than D′ if there exists TD′→D (a reduction

algorithm) that emulates D out of D′



DISC 2003 10/22

Team Consensus

• Processes are partitioned (a priori) into non-empty teams

Π1 and Π2.

• Agreement is ensured only if each team proposes at most
one value.

Consensus ⇔ Team Consensus



DISC 2003 11/22

Proof strategy

Assume that a failure detector D implements
(n + 1)-process consensus using S and registers.
(Let A be the corresponding algorithm.)

The goal: to show that Ωn is weaker than D, i.e., to
construct a reduction algorithm TD→Ωn that emulates the
output of Ωn.



DISC 2003 12/22

Simulation tree construction (as in [CHT96])

Every process pi maintains (using registers):

(1) an ever-growing sample of the current failure detector
history in the form of DAG Gi

(2) an ever-growing simulation tree Υi: each path in Gi

induces a simulated run of A

∃Υ : ∀pi, Υi(t) →t→+∞ Υ



DISC 2003 13/22

Tagged simulation tree (as in [CHT96])

[pi, d]

[pj, d
′]

sk

sj

si

{0, 1}

DAG Gi Simulation treeΥi

{0}
{1}

sk

[pk, d
′′]

=⇒



DISC 2003 14/22

Finite critical subtrees of Υ

si

s′i sjsisi

{0}

{1}

{1}{0} e0

(c) rake

ei em

(b) hook(a) fork

⊥ ⊥ ⊥

{0} {1}



DISC 2003 15/22

Deciding sets

Each critical subtree ε defines a set of at most n processes,
a deciding set of ε.

Claim: The deciding set of ε includes at least one correct
process. Suppose not.

(a),(b): [CHT96, LH94];

(c): S and registers solve (n + 1)-process team consensus
=⇒ cons(S) > n — a contradiction.



DISC 2003 16/22

The reduction algorithm TD→Ωn

Every process pi periodically:

1. Updates Gi and Υi

2. Locates the first critical subtree ε in Υi

3. Outputs the deciding set of ε

Ωn is emulated!



DISC 2003 17/22

Corollary: boosting resilience with Ωn

• a set K of (n− 1)-resilient linearizable objects

• registers and K solve (n − 1)-resilient (n + 1)-process
consensus

Then Ωn is the weakest failure detector to implement
wait-free (n + 1)-process consensus using K and registers.



DISC 2003 18/22

Wait-freedom vs. t-resilience [CHJT94]

For any t < k and any set of types S, t-resilient k-process
consensus can be implemented out of S and registers

if and only if

wait-free (t + 1)-process consensus can be implemented out
of S and registers.



DISC 2003 19/22

Corollary proof: sufficient part

• (n−1)-resilient objects in K and registers implement wait-
free n-process consensus [CHJT94].

• wait-free t-process consensus objects and Ωn implement
wait-free (n + 1)-process consensus [Nei95].



DISC 2003 20/22

Corollary proof: necessary part

• K can be implemented out of wait-free n-process consensus
objects [Her91, CHJT94]

• n-process consensus is a one-shot deterministic type,
cons(n-process consensus) = n [Her91].

• Ωn is necessary to implement wait-free
(n+1)-process consensus out of {n-process consensus,register}.



DISC 2003 21/22

Open questions

• No deterministic one-shot assumption [BGA94].

• Boosting S (cons(S) = n) to the higher levels (than n+1)
of the consensus hierarchy.

(Ref: Technical report IC-EPFL ID:200348)



DISC 2003 22/22

Questions?



References
[BGA94] Elizabeth Borowsky, Eli Gafni, and Yehuda Afek. Consensus power makes (some) sense! In Proceedings of the

13th ACM Symposium on Principles of Distributed Computing (PODC), pages 363–372, August 1994.
[CHJT94] Tushar Chandra, Vassos Hadzilacos, Prasad Jayanti, and Sam Toueg. Wait-freedom vs. t-resiliency and the

robustness of wait-free hierarchies. In Proceedings of the 13th ACM Symposium on Principles of Distributed
Computing (PODC), pages 334–343. ACM Press, 1994.

[CHT96] Tushar D. Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for solving consensus.
Journal of the ACM (JACM), 43(4):685–722, July 1996.

[CT96] Tushar D. Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the
ACM (JACM), 43(2):225–267, March 1996.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), 32(3):374–382, April 1985.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems (TOPLAS),
13(1):124–149, January 1991.

[Jay97] Prasad Jayanti. Robust wait-free hierarchies. Journal of the ACM (JACM), 44(4):592–614, 1997.
[LAA87] Michael C. Loui and Hosame H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous

processes. Advances in Computing Research, pages 163–183, 1987.
[LH94] Wai-Kau Lo and Vassos Hadzilacos. Using failure detectors to solve consensus in asynchronous shared-memory

systems. In Proceedings of the 8th International Workshop on Distributed Algorithms (WDAG), volume 857 of LNCS,
pages 280–295. Springer Verlag, 1994.



[Nei95] Gil Neiger. Failure detectors and the wait-free hierarchy. In Proceedings of the 14th ACM Symposium on Principles
of Distributed Computing (PODC), pages 100–109, August 1995.


