
The weakest failure detectors to
solve certain fundamental problems

in distributed computing

Carole Delporte-Gallet Hugues Fauconnier

Vassos Hadzilacos Rachid Guerraoui

Petr Kouznetsov Sam Toueg

2

Contribution

The weakest failure detectors for:

Implementing an atomic register

Solving consensus

Solving quittable consensus (QC)

Solving non-blocking atomic commit (NBAC)

in distributed message-passing systems,

for all environments !

3

Some related work

Implementing registers with a majority of
correct processes [ABD95]

The weakest failure detector for consensus
with a majority of correct processes [CHT96]

Implementing registers and solving
consensus in other environments [DFG02]

NBAC with failure detectors
[FRT99,Gue02,GK02]

4

Roadmap
1. Model: asynchronous system with failure

detectors
2. Implementing a register
3. Solving consensus
4. Solving QC
5. Solving NBAC

5

Asynchronous message-passing system

Communication by message-passing through
reliable channels

Processes can fail only by crashing
Correct processes never crash

In such a system:
Register can be implemented if and only if a majority of
processes are correct [ABD95]

(Weak) consensus is not solvable if at least one process
can crash [FLP85]

6

Environments

An environment E specifies when and where
failures might occur

Examples:

Majority of processes are correct

At most one process crash

7

Failure detectors [CT96, CHT96]

Each process has a failure detector module that
provides some (maybe incomplete and inaccurate)
information about failures

Failure signal failure detector FS: at each process, FS
outputs green or red.

If red is output, then a failure previously occurred.

If a failure occurs, then eventually red is output at all
correct processes.

8

The weakest failure detector
D is the weakest failure detector to solve problem P in an

environment E if and only if:

D is sufficient for P in E: D can be used to solve P in E

D is necessary for P in E: D can be extracted from any
failure detector D’ that can be used to solve P in E

p
D’ D

q r

D’

D D

D’

9

Roadmap
1. Model: asynchronous system with failure

detectors
2. Implementing a register
3. Solving consensus
4. Solving QC
5. Solving NBAC

10

Problem: implementing a register

An atomic register is an object accessed
through reads and writes
The write(v) stores v at the register and
returns ok
The read returns the last value written at the
register

11

Quorum failure detector Σ

At each process, Σ outputs a set of processes

Any two sets (output at any times and at any
processes) intersect.

Eventually every set contains only correct
processes.

12

Σ is sufficient to implement registers

Adapt the “correct majority-based” algorithm
of [ABD95] to implement (1 reader, 1 writer)
atomic register using Σ:
Substitute

« process p waits until a majority of
processes reply »

with
« process p waits until all processes in Σ
reply »

13

Σ is necessary to implement registers

Let A be any implementation of registers that
uses some failure detector D.

Must show that we can extract Σ from D.

Each write operation involves a set of
“participants”: the processes that help the
operation take effect (w.r.t. A and D)

Fact: the set of participants includes at least one
correct process

14

Extraction algorithm

Every process p periodically:

writes in its register the participant sets of its
previous writes

reads participant sets of other processes

outputs
the participant set of its previous write, and

for every known participant set S, one live process in S

All output sets intersect and eventually contain only
correct processes

15

Registers: the weakest failure detector

Σ is the weakest failure detector to
implement atomic registers, in any
environment

16

Roadmap
1. Model: asynchronous system with failure

detectors
2. Implementing a register
3. Solving consensus
4. Solving QC
5. Solving NBAC

17

Leader failure detector Ω [CHT96]

Outputs the id of a process. Eventually, the id
of the same correct process is output at all
correct processes.

18

Consensus registers + Ω
Ω can be used to solve consensus with
registers, in any environment [LH94]

Consensus => Registers: any consensus
algorithm can be used to implement registers,
in any environment [Lam86,Sch90]

Consensus => Ω: Ω can be extracted from
any failure detector D that solves consensus,
in any environment [CHT96]

19

Consensus: the weakest failure detector

Consensus registers + Ω (in any
environment)

Σ is the weakest FD to implement
registers (in any environment)

Thus,

(Ω, Σ) is the weakest failure detector to
solve consensus, in any environment

20

Roadmap
1. Model: asynchronous system with failure

detectors
2. Implementing a register
3. Solving consensus
4. Solving QC
5. Solving NBAC

21

Quittable consensus (QC)
QC is like consensus except that

if a failure occurs, then processes can agree

on the special value Q (« Quit »), or
on one of the proposed values (as in
consensus)

22

Failure detector Ψ

For some initial period of time Ψ outputs some
predefined value Τ
Eventually,
Ψ behaves like (Ω,Σ), or
(only if a failure occurs) Ψ behaves like FS
(outputs red)

NB: If a failure occurs, Ψ can choose to behave
like (Ω,Σ) or like FS (the choice is the same at
all processes)

23

Ψ is sufficient to solve QC

Propose(v) // v in {0,1}

wait until Ψ ≠ Τ

if Ψ = red then return Q // If Ψ behaves like FS

d := ConsPropose(v) // If Ψ behaves like (Ω,Σ)

// run a consensus algorithm

return d

24

Ψ is necessary to solve QC

Let A be a QC algorithm that uses a
failure detector D.

Must show that we can extract Ψ from
A and D

25

Simulating runs of A

Every process periodically samples D and exchanges
its FD samples with other processes

=> using these FD samples, the process locally
simulates runs of A [CHT96]

p
D Simulate A

q r

D D

Simulate A Simulate A

26

Extracting Ψ
If there are “enough” simulated runs of A in which non-

Q values are decided, then it is possible to extract
(Ω,Σ).

Otherwise, it is possible to extract FS.

Processes use the QC algorithm A to agree on which
failure detector to extract.

0
Q

Q

1

FS

(Ω,Σ)
QC

27

QC: the weakest failure detector

Ψ is the weakest failure detector to solve
QC, in any environment

28

Roadmap
1. Model: asynchronous system with failure

detectors
2. Implementing a register
3. Solving consensus
4. Solving QC
5. Solving NBAC

29

NBAC

A set of processes need to agree on whether to
commit or to abort a transaction.

Initially, each process votes Yes (“I want to
commit”) or No (“We must abort”)

Eventually, processes must reach a common
decision (Commit or Abort):
Commit is decided => all processes voted Yes
Abort is decided => some process voted No or
a failure previously occurred

30

NBAC QC + FS

QC+FS => NBAC:
given (a) any algorithm for QC and (b) FS, we
can solve NBAC

NBAC => QC:
Any algorithm for NBAC can be used to solve
QC

NBAC => FS:
Any algorithm for NBAC can be used to
extract FS

31

NBAC: the weakest failure detector

NBAC QC + FS (in any environment)

Ψ is the weakest FD to solve QC (in any
environment)

Thus,

(Ψ,FS) is the weakest failure detector to
solve NBAC, in any environment

32

The original results
C. Delporte-Gallet, H. Fauconnier and R. Guerraoui

Shared memory vs. message-passing
Technical report IC/2003/77, EPFL, 2003

R. Guerraoui, V. Hadzilacos, P. Kouznetsov and S. Toueg

The weakest failure detectors for quittable
consensus and non-blocking atomic commit
Technical repport, LPD, EPFL, 2004

33

Thank you!

34

Quittable consensus (QC)

propose(v) (v in {0,1}) returns a value in {0,1,Q}

(Q stands for « quit »)

Agreement: no two processes return different values

Termination: every correct process eventually
returns a value

Validity: only a value v in {0,1,Q} can be returned

If v in {0,1}, then some process previously
proposed v

If v=Q, then a failure previously occurred

35

Emulating Σ: the reduction algorithm

Periodically (round k):

Pi(k) := set of participants of write k by process i

Ei := {Pi(j)} j≤k

write(Ei) to register Ri

Ei := Ei U Pi(k)

send (k,?) to all

wait until, for every j, received (k,ack) from every X
read in register Rj

current output of Σ := set of all processes sent
(ack,k) U Pi(k-1)

36

Emulating Σ: the proof intuition
For any round k, process i stores all Pi(k’) (k’<k) in Ri
and includes Pi(k-1) to its emulated set Σi
=>
Any process j that reads Ri afterwards will include

at least one process from Pi(k-1) to its emulated set
Σj
=>
Every two emulated sets intersect

Eventually, only correct processes send acks
=>
Eventually, the emulation set includes only correct

processes

37

NBAC

Propose(v) (v in {Yes,No}) returns a value in
{Commit,Abort}

Agreement: no two processes return different values

Termination: every correct process eventually
returns a value

Validity: a value in {Commit,Abort} is returned
If Commit is returned, then every process voted Yes

If Abort is returned, then some process voted no or a
failure previously occurred

38

NBAC using QC and FS
send v to all
wait until received all votes or FS outputs red

\\ wait until all votes received or
\\ a failure occurs

if all votes are received and are Yes then
proposal := 1 \\ propose to commit

else
proposal := 0 \\ propose to abort

if QC.Propose(proposal) returns 1 then
return Commit

else
return Abort

