The weakest failure detectors to
solve certain fundamental problems

In distributed computing

Carole Delporte-Gallet Hugues Fauconnier

Vassos Hadzilacos Rachid Guerraoui

Petr Kouznetsov Sam Toueg



Contribution

The weakest failure detectors for:

d Implementing an atomic register

3 Solving consensus

1 Solving guittable consensus (QC)

3 Solving non-blocking atomic commit (NBAC)

In distributed message-passing systems,
for all environments !



Some related work

3 Implementing registers with a majority of
correct processes [ABD95]

3 The weakest failure detector for consensus
with a majority of correct processes [CHT96]

d Implementing registers and solving
consensus in other environments [DFG02]

3 NBAC with failure detectors
[FRT99,Gue02,GK02]



R wN

Roadmap

. Model: asynchronous system with failure

detectors

Implementing a register
Solving consensus
Solving QC

Solving NBAC



Asynchronous message-passing system

d Communication by message-passing through
reliable channels

d Processes can fail only by crashing
Correct processes never crash

3 In such a system:

v Register can be implemented if and only if a majority of
processes are correct [ABD99]

v' (Weak) consensus is not solvable if at least one process
can crash [FLP85]



Environments

An environment E specifies when and where
failures might occur

Examples:
1 Majority of processes are correct
1 At most one process crash



Failure detectors [CT96, CHT96]

Each process has a failure detector module that
provides some (maybe incomplete and inaccurate)
information about failures

Failure signal failure detector FS: at each process, FS
outputs green or red.

7 If red is output, then a failure previously occurred.

7 If a failure occurs, then eventually red is output at all
correct processes.



The weakest failure detector

D is the weakest failure detector to solve problem P in an
environment E if and only if:
v'D is sufficient for P in E: D can be used to solve P in E

v'D is necessary for P in E: D can be extracted from any
failure detector D’ that can be used to solve P in E

__________




ok wWN

Roadmap

. Model: asynchronous system with failure

detectors

Implementing a register
Solving consensus
Solving QC

Solving NBAC



Problem: implementing a register

3 An atomic register is an object accessed
through reads and writes

a1 The write(v) stores v at the register and
returns ok

A The read returns the last value written at the
register

10



Quorum failure detector X

At each process, 2 outputs a set of processes

3 Any two sets (output at any times and at any
processes) intersect.

1 Eventually every set contains only correct
processes.

17



2. is sufficient to implement registers

1 Adapt the “correct majority-based” algorithm
of [ABD95] to implement (1 reader, 1 writer)
atomic register using 2.

Substitute

« process p waits until a majority of
processes reply »

with
« process p walts until all processes in 2
reply »

12



2. IS necessary to implement registers

Let A be any implementation of registers that
uses some failure detector D.

Must show that we can extract 2 from D.

13 Each write operation involves a set of
“participants”: the processes that help the
operation take effect (w.r.t. A and D)

Fact: the set of participants includes at least one
correct process

13



Extraction algorithm

Every process p periodically:

0 writes in its register the participant sets of its
previous writes

3 reads participant sets of other processes

O outputs
v'the participant set of its previous write, and
v'for every known participant set S, one /ive process in S

All output sets intersect and eventually contain only
correct processes

14



Registers: the weakest failure detector

2. IS the weakest failure detector to
implement atomic registers, in any
environment

15



aORrwd

Roadmap

. Model: asynchronous system with failure

detectors

Implementing a register
Solving consensus
Solving QC

Solving NBAC

16



Leader failure detector Q2 [CHT906]

Outputs the id of a process. Eventually, the id
of the same correct process is output at all
correct processes.

17



Consensus < registers + Q)

1 () can be used to solve consensus with
registers, in any environment [LH94]

1 Consensus => Registers: any consensus
algorithm can be used to implement registers,
iIn any environment [Lam86,5ch90]

1 Consensus => Q: Q2 can be extracted from
any failure detector D that solves consensus,
in any environment [CHT96]

18



Consensus: the weakest failure detector

7 Consensus < registers + Q (in any
environment)

32 Is the weakest FD to implement
registers (in any environment)

Thus,

(Q2, 2) is the weakest failure detector to
solve consensus, in any environment

79



N

Roadmap

. Model: asynchronous system with failure

detectors

Implementing a register
Solving consensus
Solving QC

Solving NBAC

20



Quittable consensus (QC)

QC is like consensus except that
If a fallure occurs, then processes can agree

7 on the special value Q (« Quit »), or

7 on one of the proposed values (as in
consensus)

21



Failure detector W

3 For some initial period of time W outputs some
predefined value T

1 Eventually,
v'Y behaves like (Q,2), or

v'(only if a failure occurs) W behaves like FS
(outputs red)

NB: If a failure occurs, W can choose to behave
like (€),2) or like FS (the choice is the same at
all processes)

22



Y is sufficient to solve QC

Propose(v) /v in{0,1}
waituntil W =T
If ¥ =red thenreturn Q  //If ¥ behaves like FS

d := ConsPropose(v) /I If ¥ behaves like (Q,X)
// run a consensus algorithm
return d

23



WY is necessary to solve QC

Let A be a QC algorithm that uses a
failure detector D.

Must show that we can extract W from
Aand D

24



Simulating runs of A

Every process periodically samples D and exchanges
its FD samples with other processes

=> using these FD samples, the process locally
simulates runs of A [CHT96]

———————————————————————————————

_______________________________

VAV

. Simulate A A’ \ Simulate A

_______________________________________________________________




Extracting W

If there are "enough” simulated runs of A in which non-
Q values are decided, then it is possible to extract
(Q,2).

Otherwise, it is possible to extract FS.

Processes use the QC algorithm A to agree on which
failure detector to extract.

26



QC: the weakest failure detector

W is the weakest failure detector to solve
QC, in any environment

27



O

Roadmap

. Model: asynchronous system with failure

detectors

Implementing a register
Solving consensus
Solving QC

Solving NBAC

28



NBAC

A set of processes need to agree on whether to
commit or to abort a transaction.

Initially, each process votes Yes (“| want to
commit”) or No (“We must abort”)

Eventually, processes must reach a common
decision (Commit or Abort):

0 Commit is decided => all processes voted Yes

3 Abort is decided => some process voted No or
a failure previously occurred

29



NBAC & QC + FS

7 QC+FS => NBAC:
given (a) any algorithm for QC and (b) FS, we
can solve NBAC

a7 NBAC => QC.:
Any algorithm for NBAC can be used to solve
QC

aNBAC =>FS:
Any algorithm for NBAC can be used to
extract FS

30



NBAC: the weakest failure detector

AINBAC & QC + FS (in any environment)

AW¥ is the weakest FD to solve QC (in any
environment)

Thus,

(WY,FS) is the weakest failure detector to
solve NBAC, in any environment

37



The original results

a C. Delporte-Gallet, H. Fauconnier and R. Guerraour

Shared memory vs. message-passing
Technical report IC/2003/77, EPFL, 2003

a R. Guerraoui, V. Hadzilacos, P. Kouznetsov and S. Toueg

The weakest failure detectors for quittable
consensus and non-blocking atomic commit
Technical repport, LPD, EPFL, 2004

32



Thank you!



Quittable consensus (QC)

propose(v) (vin {0,1}) returns a value in {0,1,Q}
(Q stands for « quit »)

0 Agreement: no two processes return different values

a3 Termination: every correct process eventually
returns a value

A Validity: only a value v in {0,1,Q} can be returned

v If vin {0,1}, then some process previously
proposed v

vIf v=Q, then a failure previously occurred

34



Emulating 2: the reduction algorithm

Periodically (round k):
Pi(k) := set of participants of write k by process i
Ei :={Pi(j)} j<k
write(Eli) to register Ri
Ei := Ei U Pi(k)
send (k,?) to all

wait until, for every j, received (k,ack) from every X
read in register R]

current output of 2 := set of all processes sent
(ack,k) U Pi(k-1)

35



Emulating 2.: the proof intuition

3 For any round k, process i stores all Pi(k’) (k'<k) in Ri
and includes Pi(k-1) to its emulated set 2

=>

Any process j that reads Ri afterwards will include
at least one process from Pi(k-1) to its emulated set
2)

=>

Every two emulated sets intersect

d Eventually, only correct processes send acks
=>

Eventually, the emulation set includes only correct
processes

36



NBAC

Propose(v) (v in {Yes,No}) returns a value in
{Commit,Abort}

d Agreement: no two processes return different values

d Termination: every correct process eventually
returns a value
ad Validity: a value in {Commit,Abort} is returned

v'If Commit is returned, then every process voted Yes

v'If Abort is returned, then some process voted no or a
failure previously occurred

37



NBAC using QC and FS

send v to all
wait until received all votes or FS outputs red

\\ wait_ until all votes received or
\\ a failure occurs

if all votes are received and are Yes then
proposal := 1 \\ propose to commit
else
proposal := 0 \\ propose to abort
if QC.Propose(proposal) returns 1 then
return Commit
else
return Abort

38



