Δ -Reliable Broadcast: **A Probabilistic Measure of Broadcast Reliability**

Patrick Th. Eugster

Rachid Guerraoui Petr Kouznetsov

Sun Microsystems Switzerland

Distributed Programming Lab, EPFL Switzerland

Outline

- 1. The problem: scalable "reliable" broadcast
- 2. Reliable Broadcast specification [HT94].
- 3. Δ -Reliable Broadcast.
- 4. Reliability distribution function.
- 5. Examples: reliability analysis of Bimodal Multicast [BHO⁺99] and IP Multicast [DC90].

Broadcast protocols

- Best-effort: Multicast Usenet (MUSE), IP Multicast, Reliable Multicast Transfer Protocol (RMTP), etc.
- Probabilistic: Bimodal Multicast, lpbcast, etc.

What is the problem?

Traditional specification: Reliable Broadcast[HT94]

- Integrity. For any message m, every process delivers m at most once, and only if m was previously broadcast by sender(m).
- Validity. If a correct process p broadcasts a message m, then p eventually delivers m.
- Agreement. If a correct process delivers a message m, then every correct process eventually delivers m.

Informal specification: Atomicity [BHO⁺99]

A broadcast protocol provides a bimodal delivery guarantee if there is

- a high probability that a broadcast message will reach almost all processes,
- a low probability that a broadcast message will reach just a very small set of processes, and
- a vanishingly small probability that a broadcast message will reach some intermediate number of processes.

Bridging the gap: Δ -Reliable Broadcast

Let $\Delta = (\psi, \rho) \in [0, 1] \times [0, 1]$. A broadcast protocol is Δ -Reliable iff the following properties are simultaneously satisfied with probability ψ :

- **Integrity.** For any message m, every process delivers m at most once, and only if m was previously broadcast by sender(m).
- **Validity.** If a correct process p broadcasts a message m then p eventually delivers m.
- Δ -Agreement. If a correct process delivers a message m, then eventually at least a fraction ρ of correct processes deliver m.

$\Delta\text{-Reliable Broadcast: }\rho$ and ψ

 $\Delta = (\psi, \rho)$ is a "reliability measure" of a given protocol.

Reliability degree ρ : the fraction of correct processes that eventually deliver a broadcast message.

Reliability probability ψ : - the probability that "enough" (correct) processes deliver a broadcast message and no fake or duplicate messages are delivered.

Reliability distribution function

Let \mathbb{E} be an *environment space* and B be a broadcast protocol.

A function ψ_B : $[0,1] \times \mathbb{E} \mapsto [0,1]$ is the *reliability distribution function* of Biff

 $\forall \rho \in [0,1] \ \forall \mathcal{E} \in \mathbb{E}:$ B is Δ -Reliable with $\Delta = (\psi_B(\rho, \mathcal{E}), \rho).$

 B_1 is more reliable than B_2 in E.

Reliability distribution function: examples

• Dreamcast (Reliable Broadcast [HT94]) in a given $\mathcal{E} \in \mathbb{E}$:

$$\forall \rho \in [0,1] : \psi(\rho,\mathcal{E}) = 1.$$

• *Spellcast* (does nothing):

$$\forall \rho \in]0,1], \forall \mathcal{E} \in \mathbb{E} : \psi(\rho,\mathcal{E}) = 0.$$

Atomicity

Atomicity predicate of Bimodal Multicast: given a protocol $B, \sigma \in [0, 0.5]$ and an environment $\mathcal{E} \in \mathbb{E}$, a broadcast message reaches more than a fraction σ , but less than a fraction $1 - \sigma$ of correct processes with probability:

$$P(\sigma \le \rho < 1 - \sigma) = \psi_B(\sigma, \mathcal{E}) - \psi_B(1 - \sigma, \mathcal{E})$$

Bimodal Multicast [BHO⁺99]

Environment:

 $\begin{array}{l} n \mbox{ processes} \\ \mbox{Fanout } \beta \\ \mbox{Message loss probability } \varepsilon \\ \mbox{Process crash probability } \tau \\ \mbox{Number of gossip rounds } T \end{array}$

deliver_and_gossip(m, round) {* Auxiliary function *} if received_already(m) then return bmdeliver(m) if round=T then return choose $S \subset \Pi$, such that $|S| = n\beta$ for each p in S send to p gossip(m,round+1)

On bmcast(m): $deliver_and_gossip(m,0)$

On receive gossip(m,round): $deliver_and_gossip(m,round)$

IP Multicast (PIM-SM) [DC90, FHHK00]

Environment:

k-ary spanning tree of depth d k^d processes Message loss probability ε_l Process crash probability τ Router crash probability γ Broadcast source

 k^d broadcast destinations

Reliability distribution functions

Average reliability degrees

Outline

- 1. The problem: scalable "reliable" broadcast
- 2. Reliable Broadcast specification [HT94].
- 3. Δ -Reliable Broadcast.
- 4. Reliability distribution function.
- 5. Examples: reliability analysis of Bimodal Multicast [BHO⁺99] and IP Multicast [DC90].

References

- [BHO⁺99] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and Yaron Minsky. Bimodal multicast. ACM Transactions on Computer Systems, 17(2):41–88, 1999.
- [DC90] S. Deering and D. Cheriton. Multicast Routing in Datagram Internetworks and Extendexd LANs. *ACM Transactions on Computer Systems*, 8(2):85–110, May 1990.

[FHHK00] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas. Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification (Revised). Internet Engineering Task Force (IETF), November 2000.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcast and related problems. Technical report, Cornell University, Computer Science, May 1994.