
BIRS workshop on Lower Bounds in Distributed Computing

Failure Detectors and
Distributed Complexity Theory

Petr Kuznetsov

TU Berlin/Deutsche Telekom Laboratories
Jan 27th, 2009

2

Thinking “distributed” is hard

§ Not natural
§ Multitude of abstractions and models
§ (Almost) no categorization/complexity

classes

A theory of distributed computational
complexity?

3

Blind Men and the Elephant

4

This talk

§ Propose a hierarchy for distributed tasks
based on synchrony assumptions

§ Characterize the levels 1 and N: the classes
of universal and the easiest non-trivial
tasks

§ Speculations on the complete
characterization

5

Asynchronous RW memory system

§ A set of processes
communicate by reading and
writing into shared memory

§ Processes can fail by
crashing

§ No timing assumptions, i.e.,
no bounds on relative
process speeds

p

q r

read/write

6

The synchrony gap

Many fundamental problems are not solvable
in asynchronous systems
üConsensus [FLP85, LA87]
ü Set agreement [HS93, SZ93, BG93]

But they are solvable in synchronous systems,
where bounds on processing are known a
priori

7

Modeling synchrony

§ Explicit bounds on communication and
relative processing speed [DDS86]
üToo coarse-grained

§ Failure detectors [CHT96]
üAn oracle providing hints on failure pattern: on

where and when failures occurred
üFormally: FD D is a map from failure pattern to

a set of failure detector histories

8

Failure detectors [CHT96]

§ Distributed oracles providing hints on
where and when failures occurred

§ Formally: FD is a map from failure patterns
to sets of failure detector histories

9

Failure detectors: examples
§ Perfect P [CT96]

Outputs a list of suspected processes
ü No process is suspected before it fails
ü Eventually, all faulty processes are always

suspected

§ Eventual leader O [CHT96]
Outputs a process identifier
ü Eventually, the same correct process is always

output

10

Model

p

FD

q r

FD FD

Read-write shared-memory system with
failure detectors [CHT96]

read/write

§ Failure detectors
depend only on
the failure
pattern

11

Comparing failure detectors
D is weaker than D’ if there exists an algorithm

that emulates D using D’

p
D’ D

q r

D’

D D

D’

O is weaker than P:
Output the smallest non-suspected process

12

The weakest failure detector

D is the weakest failure detector to solve
problem M if and only if:
üD is sufficient: can be used to solve M
üD is necessary: weaker than any failure
detector D’ that can be used to solve M

13

An idea

Classify distributed abstractions based
on the minimal synchrony assumptions
to solve them (WFD)

14

An idea

Classify distributed tasks based on the
minimal synchrony assumptions to solve
them (WFD)

15

Distributed tasks (I,O,?)

§ I – set of input vectors
§ O – set of output vectors
§ Task specification ? : I? 2O –relation

between I and O

16

k-set agreement

§ Each process in {P0,…PN} decides on a value in
{0,…,N}

§ Not more than k distinct values are decided
§ If i is decided, then Pi participated

üEquivalent to k parallel consensuses, at least one
returns [GRRT06]
ük=1: Consensus [FLP85]
ük<N+1 not solvable in asynchronous systems

[HS93,BG93,SZ93]
ük=N+1 trivially solvable

17

A synchrony-based hierarchy of
(N+1)-process tasks

(N+1)-set agreement, (2N+1)-renaming

N-set agreement

Consensus

2-set agreement

...

Trivial tasks [HS94,BG97] no
synchrony assumptions

universal tasks
[Her91,CHT96,DFG05] - O

0

1

N-1

N

?

The easiest unsolvable
task [Zie08] - anti-O

(N-1)-set agreement 2 ?

18

Outline

§ Level N: the WFD for consensus

§ Level 1: the easiest nontrivial task

§ Levels 2 - N-1: the easiest k-resilient
impossible task?

19

Level N: WFD for consensus [CHT96]

§ Eventual leader FD (O) is sufficient for
solving consensus [DDS87,Lam90,CT96]

§ Showing the necessity of O:
üLet D be any FD sufficient to solve consensus
üLet A be the corresponding algorithm

üPresent a reduction algorithm that extracts O ,
given D and A

20

Reduction algorithm
Two parallel threads:

§ Query D, exchange the returned values and
temporal relations among them: build ever
growing sample of the FD output (DAG)

§ Use the DAG to simulate runs of A and
extract the output of O

21

Building the DAGs

§ Each process
üQueries D and updates the DAG
üWrite DAG in the shared

memory, read other DAGs and
merge

§ Properties of DAGs
üEach vertex has an extension in

which each correct process
appears infinitely often
üCorrect process eventually

agree on the growing subDAGs

22

Simulation
§ Each path in the DAG implies a simulated

run – build a simulation tree

23

Valences
§ A simulated finite run is v-valent if it has

an extension with v decided
üUnivalent – one decision is reachable
üBivalent – two decisions are reachable

§ Case 1: the initial state stays univalent
üIf i is always decided, then always output Pi as

the leader
§ Case 2: the initial state is bivalent

24

Bivalent initial state
Then the simulation tree has a critical run

that hides the decision in a local state of a
process

A la FLP:
§ simulate a fair run starting from the root
§ there is a bivalent run R and a process Pi

such that any descendant R extended with
a step of Pi is univalent

25

A hook

§ P0 must be correct!
§ Output P0 as the leader

P1 writes

P1 writes

P0 reads

0-valent

1-valent

26

Eventually

§ Univalent initial state: the correct process
proposing the decision is forever output

§ Bivalent initial state: the correct process
hiding the decision in the first hook is
forever output

O is emulated!

27

Outline

§ Level N: the WFD for consensus
§ Level 1: the easiest nontrivial task
§ Levels 2 - N-1: the easiest k-resilient

impossible task?

28

Level 1: The weakest FD “ever”

§ The failure detector that is:
üNontrivial: sufficient to solve some unsolvable

task: (N+1)-process N-set agreement
üNecessary: weaker than any nontrivial failure

detector

(Populates the class of the easiest unsolvable
tasks)

29

The candidate: anti-Omega [Zie08]

§ Outputs a single process, eventually:
üSome correct process is never output

§ Equivalent to N-vector of O ’s: at least one
correct (elects a correct leader)

§ Solves N-set agreement
üRun N parallel consensus instances, each using

one position in N-vector O , decide on the value
returned by the first decided instance

30

Two observations:
Let A solve a non-trivial task using a failure

detector D and let G be any DAG based on
D

§ There exists an asynchronous algorithm A’
that simulates runs of A using G instead of
D
üEach finite run of A’ simulates a run of A

§ For all DAGs, A’ has at least one non-
deciding run

31

A’: asynchronous simulation of A

Let G be any DAG build as in CHT (with
failure pattern F)

To simulate the next step of Pi
§ Wait for the first vertex [Pi,d] of the

DAG G that succeeds all causally
preceding (in G) steps of A
üPerform the step of A using d

32

A’: asynchronous simulation of A
The simulated run R’ could have happened

when A is run with failure pattern F

§ R’ can be unfair: some correct (in F)
process may appear only finitely often

§ But safe: cannot produce incorrect
decisions

33

For each G, not all runs of A’ are
deciding

§ Otherwise, A’ (using G) solves a non-trivial task –
a contradiction

§ Let DAG G be constructed for some failure
pattern F

§ There exists a run of A’ using G that never
decides: some faulty process (but correct in F)
takes only finitely many simulated steps

34

Locating the non-deciding run

Each process runs two threads:
§ Construct an ever-growing DAG G
§ Locally simulate multiple runs of A

using A’ and G:
üDo DFS on the “first” non-deciding run of

A
üOutput the last process to be simulated

35

Two cases
§ Some correct process gets stuck on

waiting for a vertex of Pi to appear in G
üEvery correct process eventually gets stuck

too
üPi is faulty: anti-O is extracted!

§ No correct process ever gets stuck
üCorrect processes go along the same never-

deciding simulated run R’
üAn issue: DFS does not prevent arbitrary

“branching away” from R’

36

p

p

p

p

pp

q

q

q q

q

q

§ The non-deciding
run: q,q,q,…

§ But steps of p
are always
simulated!

37

Solution: fairness increase
§ For each prefix: simulate all extensions

containing steps of subsets S1,S2,… of
increasing sizes
üFirst all solo extensions, then all 2-process

extensions, etc.
üEach next iteration simulates all runs simulated

before

§ Eventually, the first never deciding run R
can only branch to deciding extensions with
steps in inf(R)

38

Eventually
All correct processes either:
§ Forever wait for some faulty process Pi
üOutput Pi

§ Forever simulates steps of processes in S,
some correct process not in S
üOutput processes in S

39

Outline

§ Level N: the WFD for consensus
§ Level 1: the easiest nontrivial task
§ Levels 2 to N-1: some speculations

40

Generalization to k-set agreement?

CHT:
§ (Partially) re-constructs FLP
§ Running k CHTs in parallel (for each

consensus instance)?
üRunning k FLPs to prove the impossibility of k-

set agreement?
§ Does not populate level N+1-k

41

Generalization to k-set agreement?

§ Plain impossibility of k-set agreement for
k<N is not enough

§ Cannot wait forever until one process takes
a step

42

WFD for k-set agreement:
upper bound

§ Anti-Omega-k: outputs a set of N+1-k,
eventually some correct process is never
output

§ Equivalent to k-vector-Omega

43

Relating wait-freedom and k-
resiliency: BG-simulation

§ For each (N+1)-process protocol P
k+1 simulators produce a k-resilient run of P

§ (N+1)-process k-resilient k-set agreement
is impossible [BG93]

44

A k-resilient non-deciding run
§ Let A be any algorithm that that solves k-

set agreement using D
§ Let G be any DAG

§ There exists at least one never-deciding k-
resilient run of A’ (using G)

§ Suppose not. Then k+1 processes solve k-
set agreement (using BG simulation of A’)

45

A possible reduction
§ Eventually agree on the same ever-growing

“fairest” non-deciding simulated run
R

§ Output the set S of N+1-k processes taking
the most number of steps in R
üSome correct process not in S!

§ Achieving convergence
§ Dealing with faulty processes (=N+1-k)

46

Conclusions

N-set agreement,…

(N-1)-set agreement

Universal: consensus, strong renaming,…

2-set agreement

.

..

§ Conjecture: a
hierarchy of tasks
based on WFDs

§ Bottom and top levels
are characterized

§ Filling the gap: new
insights needed (N+1)-set agreement,…

47

Thank you!

