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Thinking “distributed” is hard

§ Not natural
§ Multitude of abstractions and models 
§ (Almost) no categorization/complexity 

classes

A theory of distributed computational 
complexity?
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Blind Men and the Elephant
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This talk 

§ Propose a hierarchy for distributed tasks 
based on synchrony assumptions

§ Characterize the levels 1 and N: the classes 
of universal and the easiest non-trivial
tasks

§ Speculations on the complete 
characterization 
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Asynchronous RW memory system

§ A set of processes 
communicate by reading and 
writing into shared memory

§ Processes can fail by 
crashing

§ No timing assumptions, i.e., 
no bounds on relative 
process speeds

p

q r

read/write
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The synchrony gap

Many fundamental problems are not solvable 
in asynchronous systems 
üConsensus [FLP85, LA87]
ü Set agreement [HS93, SZ93, BG93]

But they are solvable in synchronous systems, 
where bounds on processing are known a 
priori
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Modeling synchrony 

§ Explicit bounds on communication and 
relative processing speed [DDS86]
üToo coarse-grained

§ Failure detectors [CHT96]
üAn oracle providing hints on failure pattern: on 

where and when failures occurred
üFormally: FD D is a map from failure pattern to 

a set of failure detector histories
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Failure detectors [CHT96]

§ Distributed oracles providing hints on 
where and when failures occurred

§ Formally: FD is a map from failure patterns
to sets of failure detector histories
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Failure detectors: examples
§ Perfect P [CT96]

Outputs a list of suspected processes
ü No process is suspected before it fails
ü Eventually, all faulty processes are always 

suspected

§ Eventual leader O [CHT96]
Outputs a process identifier
ü Eventually, the same correct process is always 

output
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Model

p

FD

q r

FD FD

Read-write shared-memory system with 
failure detectors [CHT96]

read/write

§ Failure detectors 
depend only on 
the failure 
pattern
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Comparing failure detectors
D is weaker than D’ if there exists an algorithm 

that emulates D using D’

p
D’ D

q r

D’

D D

D’

O is weaker than P:
Output the smallest non-suspected process
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The weakest failure detector

D is the weakest failure detector to solve 
problem M if and only if:
üD is sufficient: can be used to solve M 
üD is necessary: weaker than any  failure 
detector D’ that can be used to solve M
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An idea

Classify distributed abstractions based 
on the minimal synchrony assumptions 
to solve them (WFD)
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An idea

Classify distributed tasks based on the 
minimal synchrony assumptions to solve 
them (WFD)
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Distributed tasks (I,O,? )

§ I – set of input vectors
§ O – set of output vectors
§ Task specification ? : I? 2O –relation 

between I and O



16

k-set agreement

§ Each process in {P0,…PN} decides on a value in 
{0,…,N}

§ Not more than k distinct values are decided
§ If i is decided, then Pi participated

üEquivalent to k parallel consensuses, at least one 
returns [GRRT06]
ük=1: Consensus [FLP85]
ük<N+1 not solvable in asynchronous systems  

[HS93,BG93,SZ93]
ük=N+1 trivially solvable



17

A synchrony-based hierarchy of 
(N+1)-process tasks

(N+1)-set agreement, (2N+1)-renaming

N-set agreement

Consensus

2-set agreement 

...

Trivial tasks [HS94,BG97] no 
synchrony assumptions

universal tasks 
[Her91,CHT96,DFG05] - O

0

1 

N-1

N

?

The easiest unsolvable 
task [Zie08] - anti-O

(N-1)-set agreement 2 ?



18

Outline

§ Level N: the WFD for consensus

§ Level 1: the easiest nontrivial task

§ Levels  2 - N-1: the easiest k-resilient
impossible task?



19

Level N: WFD for consensus [CHT96]

§ Eventual leader FD (O ) is sufficient for 
solving consensus [DDS87,Lam90,CT96]

§ Showing the necessity of O:
üLet D be any FD sufficient to solve consensus
üLet A be the corresponding algorithm

üPresent a reduction algorithm that extracts O , 
given D and A 
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Reduction algorithm
Two parallel threads:

§ Query D, exchange the returned values and 
temporal relations among them: build ever 
growing sample of the FD output (DAG)

§ Use the DAG to simulate runs of A and 
extract the output of O
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Building the DAGs

§ Each process 
üQueries D and updates the DAG
üWrite DAG in the shared 

memory, read other DAGs and 
merge

§ Properties of DAGs
üEach vertex has an extension in 

which each correct process 
appears infinitely often
üCorrect process eventually 

agree on the growing subDAGs
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Simulation
§ Each path in the DAG implies a simulated 

run – build a simulation tree
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Valences
§ A simulated finite run is v-valent if it has 

an extension with v decided
üUnivalent – one decision is reachable 
üBivalent – two decisions are reachable

§ Case 1: the initial state stays univalent
üIf i is always decided, then always output Pi as 

the leader
§ Case 2: the initial state is bivalent
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Bivalent initial state
Then the simulation tree has a critical run

that hides the decision in a local state of a 
process

A la FLP:
§ simulate a fair run starting from the root
§ there is a bivalent run R and a process Pi

such that any descendant R extended with 
a step of Pi is univalent
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A hook

§ P0 must be correct!
§ Output P0 as the leader

P1 writes

P1 writes

P0 reads

0-valent

1-valent
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Eventually

§ Univalent initial state: the correct process 
proposing the decision is forever output 

§ Bivalent initial state: the correct process 
hiding the decision in the first hook is 
forever output

O is emulated!
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Outline

§ Level N: the WFD for consensus
§ Level 1: the easiest nontrivial task
§ Levels  2 - N-1: the easiest k-resilient

impossible task?
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Level 1: The weakest FD “ever”

§ The failure detector that is:
üNontrivial: sufficient to solve some unsolvable 

task: (N+1)-process N-set agreement
üNecessary: weaker than any nontrivial failure 

detector

(Populates the class of the easiest unsolvable 
tasks)
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The candidate: anti-Omega [Zie08]

§ Outputs a single process, eventually:
üSome correct process is never output

§ Equivalent to N-vector of O ’s: at least one 
correct (elects a correct leader)

§ Solves N-set agreement
üRun N parallel consensus instances, each using  

one position in N-vector O , decide on the value 
returned by the first decided instance
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Two observations:
Let A solve a non-trivial task using a failure 

detector D and let G be any DAG based on 
D

§ There exists an asynchronous algorithm A’
that simulates runs of A using G instead of 
D
üEach finite run of A’ simulates a run of A

§ For all DAGs, A’ has at least one non-
deciding run
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A’: asynchronous simulation of A

Let G be any DAG build as in CHT (with 
failure pattern F)

To simulate the next step of Pi
§ Wait for the first vertex [Pi,d] of the 

DAG G that succeeds all causally 
preceding (in G) steps of A
üPerform the step of A using d
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A’: asynchronous simulation of A
The simulated run R’ could have happened

when A is run with failure pattern F

§ R’ can be unfair: some correct (in F) 
process may appear only finitely often

§ But safe: cannot produce incorrect 
decisions
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For each G, not all runs of A’ are 
deciding

§ Otherwise, A’ (using G) solves a non-trivial  task –
a contradiction

§ Let DAG G be constructed for some failure 
pattern F

§ There exists a run of A’ using G that never 
decides: some faulty process (but correct in F) 
takes only finitely many simulated steps
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Locating the non-deciding run

Each process runs two threads:
§ Construct an ever-growing DAG G
§ Locally simulate multiple runs of A 

using A’ and G:
üDo DFS on the “first” non-deciding run of 

A
üOutput the last process to be simulated
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Two cases
§ Some correct process gets stuck on 

waiting for a vertex of Pi to appear in G
üEvery correct process eventually gets stuck 

too
üPi is faulty: anti-O is extracted!

§ No correct process ever gets stuck
üCorrect processes go along the same never-

deciding simulated run R’
üAn issue: DFS does not prevent arbitrary 

“branching away” from R’
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p

p

p

p

pp

q

q

q q

q

q

§ The non-deciding 
run: q,q,q,…

§ But steps of p 
are always 
simulated! 
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Solution: fairness increase
§ For each prefix: simulate all extensions 

containing steps of subsets S1,S2,… of 
increasing sizes
üFirst all solo extensions, then all 2-process 

extensions, etc.
üEach next iteration simulates all runs simulated 

before

§ Eventually, the first never deciding run R 
can only branch to deciding extensions with 
steps in inf(R)
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Eventually
All correct processes either:
§ Forever wait for some faulty process Pi
üOutput Pi

§ Forever simulates steps of processes in S, 
some correct process not in S
üOutput processes in S
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Outline

§ Level N: the WFD for consensus
§ Level 1: the easiest nontrivial task
§ Levels  2 to N-1: some speculations
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Generalization to k-set agreement?

CHT:
§ (Partially) re-constructs FLP
§ Running k CHTs in parallel (for each 

consensus instance)?
üRunning  k FLPs to prove the impossibility of k-

set agreement?
§ Does not populate level N+1-k
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Generalization to k-set agreement?

§ Plain impossibility of k-set agreement for 
k<N is not enough

§ Cannot wait forever until one process takes 
a step
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WFD for k-set agreement:          
upper bound

§ Anti-Omega-k: outputs a set of N+1-k, 
eventually some correct process is never 
output

§ Equivalent to k-vector-Omega
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Relating wait-freedom and k-
resiliency: BG-simulation

§ For each (N+1)-process protocol P
k+1 simulators  produce a k-resilient run of P

§ (N+1)-process k-resilient k-set agreement 
is impossible [BG93]
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A k-resilient non-deciding run
§ Let A be any algorithm that that solves k-

set agreement using D
§ Let G be any DAG

§ There exists at least one never-deciding k-
resilient run of A’ (using G)

§ Suppose not. Then k+1 processes solve k-
set agreement (using BG simulation of A’)
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A possible reduction
§ Eventually agree on the same ever-growing 

“fairest” non-deciding simulated run
R

§ Output the set S of N+1-k processes taking 
the most number of steps in R
üSome correct process not in S!

§ Achieving convergence
§ Dealing with faulty processes (=N+1-k)
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Conclusions

N-set agreement,…

(N-1)-set agreement

Universal: consensus, strong renaming,…

2-set agreement 

.

..

§ Conjecture: a 
hierarchy of tasks  
based on WFDs

§ Bottom and top levels 
are characterized

§ Filling the gap: new 
insights needed (N+1)-set agreement,…
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Thank you!


