WF=NWF? On Models which are not Fundamentally Different

Petr Kuznetsov
TU Berlin/DT-Labs

(Joint work with Eli Gafni, UCLA)

Distributed modeling jumble

Similarities and reductions

- Safe bits ≅ atomic read-write registers [Lam85]
- Atomic read-write ≅ atomic snapshots [Afek et al, 93]
- Message-passing ≅ Shared-memory [ABD95]
- Atomic read-write ≅ Immediate snapshots [BG93]
- Atomic read-write ≅ Iterated Immediate
 Snapshots (NB) [BG93]
- t-resilience ≅ wait-freedom [BG93,Gafni09]

Model equivalence

Models M and M' are fundamentally equivalent if for every task T there exists a task T'(T,M')

T is solvable in M

T'(T,M) is solvable in M'

(Solvability in M can be reduced to solvability in M')

Distributed tasks (I,O,Δ)

- I set of input vectors
- O set of output vectors
- Task specification $\Delta: I \rightarrow 2^O$

k-set agreement

- Processes start with inputs in V (|V|>k)
- The set of outputs is a subset of inputs of size at most k
- k=1: consensus

Conjecture

 All (natural) models are fundamentally equivalent to the wait-free model (WF)

L-resilience: output if a set in L is live

K-concurrency: output if at most k processes concur

The wait-free model: 2 processes

Wait-free consensus is impossible!

The wait-free model: 3 processes

The wait-free model: 3 processes

The wait-free model: 3 processes

Why wait-freedom?

- Simple structure: contains all possible interleavings
 - ✓ WF computing: a process makes progress, regardless of others

- WF solvability has a precise topological characterization [Herlihy-Shavit,99]
 - ✓ A continuous map from a subdivision to the outputs
 - ✓ Undecidable for >2 processes [HR97,GK99]

L-resilience

L is a set of process subsets

The power of L is characterized by its hitting set size hs(L)!

L-resilience: defining T'(T,L)

A process in T'(T,L) is a tuple (i,S)

```
✓i = 1,...,hs(L)
✓S in L
```

- (I,S) outputs a value for each process in S: an output of T or "?"
 - ✓ All outputs are consistent with T

- If (i,S) decides, then
 - ✓ there is (j,S') such that S is subset of S'
 - ✓ or hs(L')≤i-1, L' the set of "undecided" sets in L

Relating T and T'(T,L): simulating many by few

 hs(L) processes in T'(T,L) simulate an L-resilient execution:

 If (eventually) the number of simulators is j and the number of simulated processes is m, then at least m-j+1 simulated processes make progress [Gaf09]

Simulating L-resilience

- L={p,qr,rs}
- √ hs(L)=2
- \checkmark at most two simulators, (1,S) and (2,S)
- ✓ one faulty simulator cannot block all sets in L: at least one set in L is live

{q,r} and {r,s} cannot be live

but {p} can!

K-concurrency

- Output if at most k processes run concurrently
 - ✓ Equivalent to WF with k-set agreement objects
 - √ k=1: consensus, every task is solvable

- Relating WF and k-concurrency:
 - ✓ Simulate few by many
 - √ k-state machines [Guerraoui, Gafni '10]

Filling the gap

- L-resilience ≅ WF
- K-concurrency ≅ WF

What about generic *adversaries* [Delporte et al., 2009]?

On natural models

- Natural: restricted waitfree
 - ✓ Adversaries
 - ✓ Deterministic objects

- "Unnatural"
 - √ "Sub-agreement" objects

THANK YOU!