WF=NWF?
On Models which are not
Fundamentally Different

Petr Kuznetsov
TU Berlin/DT-Labs

(Joint work with Eli Gafni, UCLA)

Sub-

Distributed modeling jumble

Snapshot
memory? obiects?
-
memory? 5 —O- O
o RS (o
Message ko ! R
Ooo \

3

Clouds, data
centers...?

Similarities and reductions

Safe bits = atomic read-write registers [Lam85]
Atomic read-write = atomic snapshots [Afek et al, 93]
Message-passing = Shared-memory [ABDI5]
Atomic read-write 2 Immediate snapshots [BG93]

Atomic read-write = Iterated Immediate
Snapshots (NB) [BG93]

t-resilience = wait-freedom [BG93,Gafni09]

Model equivalence

Models M and M’ are fundamentally equivalent if
for every task T there exists a task T'(T,M’)

TissolvableinM (&> T(T,M) is solvable in M’

(Solvability in M can be reduced to solvability in M’)

Distributed tasks (I,0,A)

= | —set of input vectors
= O —set of output vectors
= Task specification A: 1-2°

k-set agreement

= Processes start with inputsin V (|V|>k)
= The set of outputs is a subset of inputs of size at most k

= k=1: consensus

Conjecture

« All (natural) models are fundamentally equivalent
to the wait-free model (WF)

L-resilience: output if a setin Lis live

K-concurrency: output if at most k processes concur

The wait-free model: 2 processes

while not done
write(view)

view := collect-memory()

p Q
@ ce-oe0e0e o0 0e000-@ 00000000)

P reads before Q reads after P reads after Q reads before

Q writes P writes Q writes P writes

Wait-free consensus is impossible!

The wait-free model: 3 processes

The wait-free model: 3 processes

The wait-free model: 3 processes

\0 Wait-free 2-set agreement
() .\\

/
/‘/ is impossible!

Ik
! 'gﬁ(% '&\\}'{%‘

VA Q\\§§
V//{/’A“"\'}'Ak&‘.

i e g

Why wait-freedom?

= Simple structure: contains all possible interleavings

v'"WF computing: a process makes progress, regardless of others

= WEF solvability has a precise topological characterization
[Herlihy-Shavit,99]
v'A continuous map from a subdivision to the outputs
v'Undecidable for >2 processes [HR97,GK99]

11

L-resilience

L is a set of process subsets

L={p,qr,rs} Hitting set of L

ofo(co

S

The power of L is characterized by its
hitting set size hs(L)!

12

L-resilience: defining T'(T,L)

= A processin T(T,L) is a tuple (i,S)
vi=1,..,hs(L)
vSinlL
= (1,S) outputs a value for each process in S: an
output of T or “?”

v'All outputs are consistent with T

= |f (i,S) decides, then
v'there is (j,S’) such that S is subset of S’
v'or hs(L’)<i-1, L’ — the set of “undecided” sets in L

13

Relating T and T'(T,L): simulating many by few

» hs(L) processes in T'(T,L) simulate an L-resilient
execution:

v (1,S),...,(hs(L),S)

« If (eventually) the number of simulators is j and
the number of simulated processes is m, then at

least m-j+1 simulated processes make progress
[Gaf09]

14

Simulating L-resilience

L={p,qr,rs}
v’ hs(L)=2
v’at most two simulators, (1,S) and (2,5)

v'one faulty simulator cannot block all sets
in L: at least one setin Lis live

{q,r} and {r,s} cannot be live

olo(e[o

P g I S

but {p} can!

15

K-concurrency

= QOutput if at most k processes run concurrently
v Equivalent to WF with k-set agreement objects

v'k=1: consensus, every task is solvable

= Relating WF and k-concurrency:
v'Simulate few by many
v'k-state machines [Guerraoui, Gafni ‘10]

16

Filling the gap

= L-resilience = WF
= K-concurrency £ WF

What about generic adversaries [Delporte et al.,
2009]?

A= {p,qr,rs}

ele(e[e

17

On natural models

= Natural: restricted wait-
free

v'Adversaries
v'Deterministic objects

|II

» “Unnatura
v “Sub-agreement” objects

18

It’s WF!

19

THANK YOU!

20

