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What is computing?

moving CPU

readiwrite device —
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Amdahl’s Law

« p — fraction of the work that can be done in parallel

(no synchronization), 1-p for synchronization

« n- the number of processors
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For n=9, p=9/10, S=5! S<9, regardless of n!

Minimizing synchronization costs is crucial!
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But...

Concurrent programming is hard
v'A new algorithm worth a PhD (or a paper at least)
Sequential programming is “easy”

v'e.g., for data structures (queues, trees, skip lists,
hash tables,...)

What about a “wrapper” that allows for
running sequential operations concurrently?

v'Let the wrapper care about conflicts
How? Locks, transactional memory...
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Our contribution

- What it means to share a sequential program
v'Locally serializable (LS) linearizability

= What it means for sharing to be efficient

v'Relative concurrency of different synchronization
techniques (e.g., locks vs. TMs)

= What are the benefits of being relaxed and optimistic

v Type-specific (relaxed) consistency and transactional
(optimistic) concurrency control supersede both
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Correctly sharing sequential code?

Given a sequential implementation P of a data
structure type T, provide a concurrent one that:

« Locally appears sequential — the user simply
runs the sequential code of P

v'Local serializability

« Globally makes sense — the high-level operations
give consistent global order wrt T

v'Linearizability [Hw90]
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Example: Integer Set

Type: Integer Set:
« boolean insert(x)
« boolean remove(x)
« boolean contains(x)

Implemented sequentially as a sorted linked
list:
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Linearizable histories

insert(1) true  insert(3) true
P, @ @
contains(1) true
P, ¢
remove(1) true
P ¢

The history is equivalent to a legal sequential history
on a set (real-time order preserved)
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10:
11:
12:

13:
14:
15:
16:
17:
18:
19:

Linked-list for Integer Set:
sequential implementation

Locate(s):

prev «— Head

curr «— prev.next

while (curr.val < sV curr = Tail) do
prev «— curr
curr <— curr.next

end while

return (prev, curr)

Contains(s):
(prev, curr) <« Locate(s)
if curr.val = s then
result «— true
else
result — false
return result

20:
21:
22:

24:
25:

26:

30:
31:
32:

33:

Insert(s):
(prev, curr) < Locate(s)
if curr.val # s then
X < new-node(s)
Xg.next — curr
prev.next — X

return ok

. Remove(s):
28:
29:

(prev, curr) < Locate(s)

if curr.val = s then
curr.marked < true
// Mark node for removal
prev.next < curr.next

return ok
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As IS?

Insert(3)

The update is lost!
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Insert(5)

Not LS-linearizable: locally serializable,

but not linearizable...
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insert(2) ok insert(3) ok

P4 ® ?
Contains(3) false
o ¢
insert(5) ok
o ¢

 protect data items (critical sections),
 provide roll-backs (transactions)
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Locking schemes for a linked-list

e

0

} Coarse-grained locking

2-phase locking
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> ——>© Hand-over-hand locking:

relaxed for specific data
structures
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Optimistic wrapper for a linked-list

startTxn

13: Contains(s): startTxn

14:  (prev, curr) « Locate(s)

15:  if curr.val = s then 27: Remove(s):

16 result «— true 28:  (prev, curr) <— Locate(s)

17 else 29:  if curr.val = s then

18: result — false 30: curr.marked < true

19: retl.u'n result 31: // Mark node for removal

' - o 32: prev.next < curr.next
tryCommit
£;7 33:  return ok
tryCommit Z;;7

startTxn

20: Insert(s): Plenty of STMs exist:

21:  (prev, curr) — Locate(s)

22.  if curr.val # s then ¢ Opaque

23 X < new-node(s) _ o

24: X..next — curr ¢ StnCtIy Senahzable

25: prev.next — X, .

[ J
26: return ok EIaStIC

tryCommit 7 °
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What about efficiency?

“Amount of concurrency”: the sets of accepted
schedules (orderings of sequential steps)

v'Each (correct) implementation accepts a subset of
schedules

v The more schedules are accepted the better

Which technique provides most concurrency?
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Relaxation vs. Optimism

PL: deadlock-free (fine-grained) lock-based
M. strongly consistent (serializable) TMs
R: relaxed (data-type-aware) TMs

oo
N\ ®J
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M ﬁ(LL,set) PL

. 2 C5

insert(2)'--- '“---7insert(5)
ca'n,ta'zins(S)[ o o o o ]

R(h) R(X:1) R(Xs) R(X4) R(X5)

insert(2) H

R(R) W(X;)

insert(5) H

R(h) R(X,) W(X,)
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Accepted by locks
Gy 1 s [a b(r)

P4 contains( ')[ ° ° ° ° —
R(h) R(X;) R(Xs) R(X4) R(X5)

P2 insert(2) H

R(h) W(Xy)

Ps imnsert(d) Eo—o—%

R(h) R(X,) W(X,)

= Accepted by hand-over-hand
v'p, and p, are consistent with different serializations
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But not serializable!

T, [ ° ° ° ® ®
R(h) R(X1) R(X3) R(X4) R(X5)

T, ‘ \

R(h) W(X,)

= T,->T, (T, read X, before T, updated it)
= T,->T, (T, sees the effect of T,)
= T,->T, (T, sees the effect T,)
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PL f(LL,set) M

insert(1) fe—e—] No writes: accepted
{1’2’3} R(h)  R(X1) byM

insert(2) [ o o ]

Both ops are about to msert(l) —e——e
write: rejected by M (at (3 R(h)  R(X1)
least one txn aborts)

But must be accepted by
PL too! R(h) - R(X)

insert(2) [ o o
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M <(LL,set) R PL ~(LL,set) R

« R accepts every observable correct schedule of
(LL,set)

« R accepts the linearizable but not serializable
schedules of non-conflicting updates (1)

« R accepts the potentially conflicting-update
schedule (2)

('()-‘nz‘.a‘zf-ns(f))[ o o o o ] insert(1) [ o o ]
R(h) R(X,) R(X;) R(Xy) R(X5) {1 5 .3} R(h) R(Xy)

insert(2) o - 1

R(h) W(X,) ZﬂSET’t(Z) N ® ® ® ]

imsert(D) H R(h)  R(X1) R(X2)

R(h) R(X,) W (X))

(1) (2)



Results and implications

What is a correct concurrent wrapper?
v'LS-linearizability
How to measure relative efficiency of
concurrent wrappers?
v'Accepted schedule sets

Benefits of relaxation and optimism formally
captured

A language to reason about the “best”
synchronization technique, the “most suitable”
data structure
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Open questions

= Extend the results to more general classes of
types, data structures

« Workload analysis: which schedules are
relevant?

= What concurrency tells us? The cost of
concurrency?

Details: http://arxiv.org/abs/1203.4751
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Distributed # Parallel

= The main challenge is efficient and robust
synchronization

= “you know you have a distributed system
when the crash of a computer you've never
heard of stops you from getting any work
done” (Lamport)
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Merci beaucoup!
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