On the Benefits of Being
Optimistic and Relaxed

Petr Kuznetsov
INFRES, Télecom ParisTech

Joint work with Srivatsan Ravi (TU Berlin) and
Vincent Gramoli (U Sydney)

What is computing?

moving CPU

readiwrite device —

1(o0|1|1]0 0|1

memory tape

1000000

100000

10000

1000

100

10

0.1

« Clock Speed (MH2)

= Transistors [(000)

! !

13393 2003 2007

Amdahl’s Law

« p — fraction of the work that can be done in parallel

(no synchronization), 1-p for synchronization

« n- the number of processors

1

o
pln

For n=9, p=9/10, S=5! S<9, regardless of n!

Minimizing synchronization costs is crucial!

9

But...

Concurrent programming is hard
v'A new algorithm worth a PhD (or a paper at least)
Sequential programming is “easy”

v'e.g., for data structures (queues, trees, skip lists,
hash tables,...)

What about a “wrapper” that allows for
running sequential operations concurrently?

v'Let the wrapper care about conflicts
How? Locks, transactional memory...

10

Our contribution

- What it means to share a sequential program
v'Locally serializable (LS) linearizability

= What it means for sharing to be efficient

v'Relative concurrency of different synchronization
techniques (e.g., locks vs. TMs)

= What are the benefits of being relaxed and optimistic

v Type-specific (relaxed) consistency and transactional
(optimistic) concurrency control supersede both

11

Correctly sharing sequential code?

Given a sequential implementation P of a data
structure type T, provide a concurrent one that:

« Locally appears sequential — the user simply
runs the sequential code of P

v'Local serializability

« Globally makes sense — the high-level operations
give consistent global order wrt T

v'Linearizability [Hw90]

12

Example: Integer Set

Type: Integer Set:
« boolean insert(x)
« boolean remove(x)
« boolean contains(x)

Implemented sequentially as a sorted linked
list:

DS FIE S I SN CANE DR SO

13

Linearizable histories

insert(1) true insert(3) true
P, @ @
contains(1) true
P, ¢
remove(1) true
P ¢

The history is equivalent to a legal sequential history
on a set (real-time order preserved)

14

O W N O ot

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:

Linked-list for Integer Set:
sequential implementation

Locate(s):

prev «— Head

curr «— prev.next

while (curr.val < sV curr = Tail) do
prev «— curr
curr <— curr.next

end while

return (prev, curr)

Contains(s):
(prev, curr) <« Locate(s)
if curr.val = s then
result «— true
else
result — false
return result

20:
21:
22:

24:
25:

26:

30:
31:
32:

33:

Insert(s):
(prev, curr) < Locate(s)
if curr.val # s then
X < new-node(s)
Xg.next — curr
prev.next — X

return ok

. Remove(s):
28:
29:

(prev, curr) < Locate(s)

if curr.val = s then
curr.marked < true
// Mark node for removal
prev.next < curr.next

return ok

15

As IS?

Insert(3)

The update is lost!

/3

(Wl 2 {<

N\

Insert(5)

Not LS-linearizable: locally serializable,

but not linearizable...

16

insert(2) ok insert(3) ok

P4 ® ?
Contains(3) false
o ¢
insert(5) ok
o ¢

 protect data items (critical sections),
 provide roll-backs (transactions)

17

Locking schemes for a linked-list

e

0

} Coarse-grained locking

2-phase locking

b e [l

%_

)8

> ——>© Hand-over-hand locking:

relaxed for specific data
structures
18

Optimistic wrapper for a linked-list

startTxn

13: Contains(s): startTxn

14: (prev, curr) « Locate(s)

15: if curr.val = s then 27: Remove(s):

16 result «— true 28: (prev, curr) <— Locate(s)

17 else 29: if curr.val = s then

18: result — false 30: curr.marked < true

19: retl.u'n result 31: // Mark node for removal

' - o 32: prev.next < curr.next
tryCommit
£;7 33: return ok
tryCommit Z;;7

startTxn

20: Insert(s): Plenty of STMs exist:

21: (prev, curr) — Locate(s)

22. if curr.val # s then ¢ Opaque

23 X < new-node(s) _ o

24: X..next — curr ¢ StnCtIy Senahzable

25: prev.next — X, .

[J
26: return ok EIaStIC

tryCommit 7 °

19

What about efficiency?

“Amount of concurrency”: the sets of accepted
schedules (orderings of sequential steps)

v'Each (correct) implementation accepts a subset of
schedules

v The more schedules are accepted the better

Which technique provides most concurrency?

20

Relaxation vs. Optimism

PL: deadlock-free (fine-grained) lock-based
M. strongly consistent (serializable) TMs
R: relaxed (data-type-aware) TMs

oo
N\ ®J

21

M ﬁ(LL,set) PL

. 2 C5

insert(2)'--- '“---7insert(5)
ca'n,ta'zins(S)[o o o o]

R(h) R(X:1) R(Xs) R(X4) R(X5)

insert(2) H

R(R) W(X;)

insert(5) H

R(h) R(X,) W(X,)

22

Accepted by locks
Gy 1 s [a b(r)

P4 contains(')[° ° ° ° —
R(h) R(X;) R(Xs) R(X4) R(X5)

P2 insert(2) H

R(h) W(Xy)

Ps imnsert(d) Eo—o—%

R(h) R(X,) W(X,)

= Accepted by hand-over-hand
v'p, and p, are consistent with different serializations

23

But not serializable!

T, [° ° ° ® ®
R(h) R(X1) R(X3) R(X4) R(X5)

T, ‘ \

R(h) W(X,)

= T,->T, (T, read X, before T, updated it)
= T,->T, (T, sees the effect of T,)
= T,->T, (T, sees the effect T,)

24

PL f(LL,set) M

insert(1) fe—e—] No writes: accepted
{1’2’3} R(h) R(X1) byM

insert(2) [o o]

Both ops are about to msert(l) —e——e
write: rejected by M (at (3 R(h) R(X1)
least one txn aborts)

But must be accepted by
PL too! R(h) - R(X)

insert(2) [o o

25

M <(LL,set) R PL ~(LL,set) R

« R accepts every observable correct schedule of
(LL,set)

« R accepts the linearizable but not serializable
schedules of non-conflicting updates (1)

« R accepts the potentially conflicting-update
schedule (2)

('()-‘nz‘.a‘zf-ns(f))[o o o o] insert(1) [o o]
R(h) R(X,) R(X;) R(Xy) R(X5) {1 5 .3} R(h) R(Xy)

insert(2) o - 1

R(h) W(X,) ZﬂSET’t(Z) N ® ® ®]

imsert(D) H R(h) R(X1) R(X2)

R(h) R(X,) W (X))

(1) (2)

Results and implications

What is a correct concurrent wrapper?
v'LS-linearizability
How to measure relative efficiency of
concurrent wrappers?
v'Accepted schedule sets

Benefits of relaxation and optimism formally
captured

A language to reason about the “best”
synchronization technique, the “most suitable”
data structure

27

Open questions

= Extend the results to more general classes of
types, data structures

« Workload analysis: which schedules are
relevant?

= What concurrency tells us? The cost of
concurrency?

Details: http://arxiv.org/abs/1203.4751

28

Distributed # Parallel

= The main challenge is efficient and robust
synchronization

= “you know you have a distributed system
when the crash of a computer you've never
heard of stops you from getting any work
done” (Lamport)

29

Merci beaucoup!

30

