
On the Benefits of Being  
  Optimistic and Relaxed 

Petr Kuznetsov 
INFRES, Télécom ParisTech 

Joint work with Srivatsan Ravi (TU Berlin) and 
Vincent Gramoli (U Sydney)



2 

What is computing?



3 

   



4 



5 



6 



7 



8 



9 

Amdahlʼs Law
  p – fraction of the work that can be done in parallel 

(no synchronization), 1-p for synchronization
  n -  the number of processors

For n=9, p=9/10, S=5! S<9, regardless of n! 

Minimizing synchronization costs is crucial!



10 

But…
  Concurrent programming is hard

 A new algorithm worth a PhD (or a paper at least)
  Sequential programming is “easy” 

 e.g., for data structures (queues, trees, skip lists, 
hash tables,…) 

  What about a “wrapper” that allows for 
running sequential operations concurrently?
 Let the wrapper care about conflicts

  How? Locks, transactional memory…



11 

Our contribution
  What it means to share a sequential program

 Locally serializable (LS) linearizability 

  What it means for sharing to be efficient
 Relative concurrency of different synchronization 

techniques (e.g., locks vs. TMs)

  What are the benefits of being relaxed and optimistic
 Type-specific (relaxed) consistency and transactional 

(optimistic) concurrency control supersede both



12 

Correctly sharing sequential code?
Given a sequential implementation P of a data 

structure type T, provide a concurrent one that:

  Locally appears sequential – the user simply 
runs the sequential code of P
 Local serializability

  Globally makes sense – the high-level operations 
give consistent global order wrt T
 Linearizability [HW90] 



13 

Example: Integer Set 

Type: Integer Set:
  boolean insert(x)
  boolean remove(x)
  boolean contains(x)

Implemented sequentially as a sorted linked 
list: 

… 2 5 7 9 h t



14 

Linearizable histories

p1 

p2 

p3 

 insert(3)                        true 

contains(1)                              true 

 insert(1)          true 

 remove(1)                true 

The history is equivalent to a legal sequential history 
on a set (real-time order preserved) 



15 

Linked‐list for Integer Set: 
sequenQal implementaQon 



16 

As is?

Not LS-linearizable: locally serializable, 
but not linearizable…

2 

3 

H T 

Insert(3) 

Insert(5) 

5 

The update is lost!



17 

p1 

p2 

p3 

 insert(3)                       ok 

Contains(3)         false 

 insert(2)          ok 

 insert(5)                  ok 

? 

•  protect data items (critical sections),  
•  provide roll-backs (transactions)



18 

Locking schemes for a linked‐list 

… Coarse‐grained locking 

… 2‐phase locking 

… Hand‐over‐hand locking: 

relaxed for specific data  
structures 



19 

OpQmisQc wrapper for a linked‐list 

Plenty of STMs exist:
•  Opaque
•  Strictly serializable
•  Elastic
•  …

startTxn 

tryCommit 

startTxn 

tryCommit 

startTxn 

tryCommit 



20 

What about efficiency? 

“Amount of concurrency”: the sets of accepted 
schedules (orderings of sequential steps)
 Each (correct) implementation accepts a subset of 

schedules
 The more schedules are accepted the better

Which technique provides most concurrency?



21 

Relaxation vs. Optimism
PL: deadlock-free (fine-grained) lock-based  
M: strongly consistent (serializable) TMs
R: relaxed (data-type-aware) TMs 

PL M

R



22 



23 

  Accepted by hand‐over‐hand 
 p1 and p3 are consistent with different serializaQons  

1 3 H T 4 

p1  

p2  

p3  

Accepted by locks



24 

  T1‐>T2  (T1 read X1 before T2  updated it) 
  T2‐>T3  (T3 sees the effect of T2) 

  T3‐> T1  (T1 sees the effect T3) 

T1  

T2  

T3  

But not serializable!

1 3 H T 4 



25 

  No writes: accepted 
by M

•  Both ops are about to 
write: rejected by M (at 
least one txn aborts)

•  But must be accepted by 
PL too!  



26 

  R accepts every observable correct schedule of 
(LL,set)

  R accepts the linearizable but not serializable 
schedules of non-conflicting updates (1)

  R accepts the potentially conflicting-update 
schedule (2)

(1) (2)



27 

Results and implications
  What is a correct concurrent wrapper?

 LS-linearizability
  How to measure relative efficiency of 

concurrent wrappers?
 Accepted schedule sets

  Benefits of relaxation and optimism formally 
captured

  A language to reason about the “best” 
synchronization technique, the “most suitable” 
data structure 



28 

Open questions

  Extend the results to more general classes of 
types, data structures

  Workload analysis: which schedules are 
relevant?

  What concurrency tells us? The cost of 
concurrency?

Details: http://arxiv.org/abs/1203.4751



29 

Distributed ≠ Parallel

  The main challenge is efficient and robust 
synchronization

  ʻʻyou know you have a distributed system 
when the crash of a computer youʼve never 
heard of stops you from getting any work 
done” (Lamport)



30 

Merci beaucoup!


