
The Weakest Failure Detector for Solving k-Set Agreement ∗

Eli Gafni† Petr Kuznetsov‡

Abstract

A failure detector is a distributed oracle that provides processes in a distributed system with
hints about failures. The notion of a weakest failure detector captures the exact amount of
synchrony needed for solving a given distributed computing problem.

In this paper, we determine the weakest failure detector for solving k-set agreement among
n processes (n > k) using reads and writes in shared memory, regardless of the assumptions
on when and where failures might occur. This failure detector is derived directly from the
impossibility of wait-free k + 1-process k-set agreement. Our approach can be viewed as an
extension of the asynchronous BG-simulation technique to partially synchronous systems.

Keywords: k-set agreement, synchrony assumptions, failure detectors, BG-simulation

1 Introduction

The amount of synchrony is a crucial factor in reasoning about solvability of distributed computing
problems in the presence of faults. A synchronous system, in which communication delays and
relative processing speeds are bounded, and the bounds are known a priori, provides a fault-
tolerant solution to almost any meaningful synchronization problem. On the other hand, in an
asynchronous system, in which no synchrony assumptions can be made, even a basic form of non-
trivial synchronization (consensus) is impossible if only one process may fail by crashing [12, 20].

Chandra and Toueg proposed failure detectors as a convenient and flexible language to describe
synchrony assumptions in the presence of faults [7]. Informally, a failure detector is a distributed
oracle that provides processes with hints about failures. The notion of a weakest failure detector
captures the exact amount of synchrony needed for solving a given distributed computing prob-
lem [6]. D is the weakest failure detector for solving a problemM if D is both (1) sufficient to solve
M, i.e., there exists an algorithm that solves M using D, and (2) necessary to solve M, i.e., any
failure detector that is sufficient to solve M provides at least as much information about failures
as D does.
∗The conference version of these results (PODC 2009) contains slight technical inconsistencies corrected in this

technical report.
†Computer Science Department, University of California, Los Angeles. 3731F Boelter Hall, UCLA, LA. CA.

90095, USA, e-mail: eli@ucla.edu
‡TU Berlin/Deutsche Telekom Laboratories, Sekr. TEL 16, Ernst-Reuter-Platz 7, 10587 Berlin, e-mail:

pkuznets@acm.org (contact author)

1

1.1 Background

In this paper, we address the weakest failure detector question in the following context. We consider
a distributed system in which n crash-prone processes communicate using atomic reads and writes
in shared memory. We focus on a class of distributed computing problems, called tasks, which
are defined exclusively through processes’ inputs and outputs. One example of a distributed task
is binary consensus [12]: each process starts with a binary input and every correct (never-failing)
process is supposed to output one of the inputs such that no two processes output different values.
Chandra et al. [6] showed that the “eventual leader” failure detector Ω is the weakest failure detector
to solve consensus. When queried, Ω outputs a process identifier, such that, eventually, the same
correct (never failing) process identifier is always output at all processes.

In a generalization of consensus, k-set agreement [8], processes start with values in {0, . . . , k}
and the set of outputs must be a subset of inputs of size at most k. In case k = 1, k-set agreement
coincides with consensus. It has been established that k + 1-process k-set agreement (also written
as (k + 1, k)-set agreement) is impossible to solve in a wait-free manner (tolerating up to k faulty
processes) [16, 23, 3]. Moreover, for all n ≥ k+ 1, there is no n-process algorithm that solves k-set
agreement and tolerates k faulty processes [3].

Zieliński [24] determined the weakest failure detector for solving n-process (n−1)-set agreement.
This failure detector (called anti-Ω) outputs, when queried, a process identifier and guarantees that
eventually some correct process is never output.

Thus, while the question of the weakest failure-detector for the extremes, 1- and (n − 1)-set
agreements has been resolved, the general question of the weakest failure detector to solve k-set
agreement for 1 < k < n− 1 has remained open until now.

Raynal [21] conjectured that a generalization of anti-Ω is the weakest failure-detector for n-
process k-set agreement. This failure detector, denoted k-anti-Ω (or ¬Ωk for short), outputs, when
queried, a set of n− k processes such that, eventually, at least one correct process is never output.

1.2 Contribution

This paper proves Raynal’s conjecture. We show that for all k = 1, . . . , n − 1, ¬Ωk is indeed the
weakest failure detector to solve k-set agreement. The statement holds for all environments, i.e.,
for all possible assumptions on when and where failures may occur.

On the technical side, our proof that ¬Ωk is necessary for solving k-set agreement extends the
classical construction of Chandra et al. [6]. We use two key observations. First, every run of an
algorithm A using failure detector D induces a directed acyclic graph (DAG) that samples the
output of D in that run [6]. Second, this DAG can then be used for an asynchronous simulation of
partial runs of A [24]. Our new insight here is that a k-resilient run of this asynchronous simulation
can, in turn, be simulated, in a wait-free manner, by k+1 processes by applying the BG-simulation
technique [3, 5]. Assuming that A uses D to solve k-set agreement, we apply the technique to
eventually identify a “never-deciding” k-resilient run of the asynchronous simulation of A. To
emulate ¬Ωk, it is sufficient to output n− k processes that appear the most in that run. At least
one correct process is eventually never output: otherwise, the run would involve infinitely many
steps of every correct process, and therefore would be deciding.

The argument above is a natural generalization of earlier results that derive a necessary failure
detector for solving a wait-free impossible problem from the very fact that the problem is wait-free
impossible, without explicitly using the problem semantics [13, 24]. The important difference is

2

that in our case, the original task (k-set agreement) is impossible to solve in the k-resilient way, and
to reduce the derivation of the corresponding weakest failure detector to the wait-free impossibility
of (k+ 1)-process k-set agreement we extend the wait-free BG-simulation technique to the world of
failure detectors. The extension involves a novel technique of corridor-based depth-first simulation
and is interesting in its own right.

As a byproduct, this paper gives an alternative (and seemingly simpler than in [6]) proof that
Ω is the weakest failure detector for solving consensus in the read-write shared memory model.1

1.3 Roadmap

The rest of the paper is organized as follows. Section 2 describes our system model. Section 3
formally defines ¬Ωk and shows that ¬Ωk is sufficient to solve n-process k-set agreement. Sections 4
proves that ¬Ωk is necessary to solve n-process k-set agreement task. Section 5 overviews the related
work and Section 6 concludes the paper by discussing implications of our results.

2 Model

Our model in which a collection of processes communicate through read-write shared objects and
use failure detectors is based on [6, 13, 15]. We describe below the details necessary for showing
our results.

2.1 Processes and objects

We consider a distributed system composed of a set Π of n processes {p1, . . . , pn} (n ≥ 2). Processes
are subject to crash failures. A process that never fails is said to be correct. Processes that are not
correct are called faulty. Process communicate through applying atomic operations on a collection
of shared objects. When presenting our algorithms, we assume that the shared objects are registers,
i.e., they export only atomic read-write operations. The necessary parts of our results do not
restrict the types of shared objects, but, for simplicity of presentation, we assume that the objects
are deterministic, i.e., the value returned by an object is solely determined be the object’s state
and the applied operation.

2.2 Failure patterns and failure detectors

A failure pattern F is a function from the time range T = {0} ∪ N to 2Π, where F (t) denotes
the set of processes that have crashed by time t. Once a process crashes, it does not recover, i.e.,
∀t : F (t) ⊆ F (t+1). We define faulty(F) = ∪t∈TF (t), the set of faulty processes in F . Respectively,
correct(F) = Π− faulty(F). A process p ∈ F (t) is said to be crashed at time t. An environment is
a set of failure patterns. By default, we assume that at least one process is correct in every failure
pattern.

A failure detector history H with range R is a function from Π×T to R. H(pi, t) is interpreted
as the value output by the failure detector module of process pi at time t. A failure detector D
with range RD is a function that maps each failure pattern to a (non-empty) set of failure detector

1A self-contained version of this result that explicitly uses consensus instances in the extraction algorithm can be
found in [18].

3

histories with range RD. D(F) denotes the set of possible failure detector histories permitted by
D for failure pattern F . We do not restrict possible ranges of failure detectors.

2.3 Algorithms

We define an algorithm A using a failure detector D as a collection of deterministic automata, one
for each process in the system. Ai denotes the automaton on which process pi runs the algorithm
A. Computation proceeds in atomic steps of A. In each step of A, process pi

(i) invokes an atomic operation on a shared object and receives a response from the object or
queries its failure detector module Di and receives a value from D, and

(ii) applies its current state, the response received from the shared object, or the value output by
D to the automaton Ai to obtain a new state.

A step of A is thus identified by a tuple (pi, d), where d is the failure detector value output at pi
during that step if D was queried, and ⊥ otherwise.

If the state transitions of all automata Ai do not depend on the failure detector values, we say
that the algorithm A is asynchronous. Thus, for an asynchronous algorithm, a step is uniquely
identified by the process id.

2.4 Runs

A state of A defines the state of each process and each object in the system. An initial state I of
A specifies an initial state for every automaton Ai and every shared object.

A run of algorithm A using a failure detector D in an environment E is a tuple R = 〈F,H, I, S, T 〉
where F ∈ E is a failure pattern, H ∈ D(F) is a failure detector history, I is an initial state of A,
S is an infinite sequence of steps of A respecting the automata A and the sequential specification
of shared objects, and T is an infinite list of increasing time values indicating when each step of
S has occurred, such that for all k ∈ N, if S[k] = (pi, d) with d 6= ⊥, then pi /∈ F (T [k]) and
d = H(pi, T [k]).

Let inf (R) denote the set of processes that appear infinitely often in S. We say that a run
R = 〈F,H, I, S, T 〉 is fair if correct(F) = inf (R), and k-resilient if |inf (R)| ≥ n− k. A partial run
of an algorithm A is a finite prefix of a run of A: a tuple 〈F,H, I, S′, T ′〉 where S′ and T ′ are finite
prefixes of the same length of some infinite sequences S and T such that 〈F,H, I, S, T 〉 is a run of
A.

Two (partial) runs of A that agree on the initial state I and the sequence of steps S are
indistinguishable to the processes. Therefore, in our reduction algorithm, a run is understood as
an equivalence class of indistinguishable runs that agree on I and S.

2.5 Distributed tasks

A task is defined through a set I of input n-vectors (one input value for each process), a set O
of output n-vectors (one input value for each process) and a total relation ∆ that associates each
input vector with a set of possible output vectors. An output may be ⊥, which models undecided
processes. We stipulate that if (I,O) ∈ ∆, then, for each O′ resulting after replacing some items
in O with ⊥, (I,O′) ∈ ∆. That is, the safety property of a task implementation depends only on

4

non-⊥ output values. An algorithm A solves a task M = (I,O,∆) if in each fair run of A with
input vector I, every correct process decides on an output and the vector O of outputs satisfies
(I,O) ∈ ∆.

In the n-process k-set agreement task, each process takes a value in {0, . . . , k} as an input, and
the set of non-⊥ output values is a subset of the input values of size at most k. Note that to solve
k-set agreement it is sufficient to ensure that, in every fair run, at least one process decides (and
writes the decided value in the shared memory). A (partial) run of a set agreement algorithm in
which at least one process decides is thus called deciding.

2.6 Comparing failure detectors

We say that an algorithm A using D′ extracts the output of D in an environment E , if A implements
a distributed variable D-output such that for every run R = 〈F,H ′, S, T 〉 of A, where F ∈ E , there
exists H ∈ D(F) such that for all pi ∈ Π and t ∈ T, D-outputi(t) = H(pi, t) (i.e., the value of
D-output at pi at time t is H(pi, t)). We call A a reduction algorithm.2

If, for failure detectors D and D′ and an environment E , there is a reduction algorithm using
D′ that extracts the output D in E , then we say that D is weaker than D′ in E . If D and D′ are
weaker than each other in E , we say they are equivalent in E .
D is the weakest failure detector to solve a task M in E if (i) there is an algorithm that solves

M using D in E and (ii) D is weaker than any failure detector that can be used to solve M in E .
Every task can be shown to have a weakest failure detector [17].

3 The candidate failure detector

The failure detector ¬Ωk outputs, at each process and each time, a set of n − k processes. ¬Ωk

guarantees that there is a time after which some correct is never output:

∀F, ∀H ∈ ¬Ωk(F), ∃pi ∈ correct(F), t ∈ T,
∀t′ > t,∀pj ∈ Π : pi /∈ H(pj , t′).

By definition, ¬Ωn−1 is equivalent to anti-Ω [24]. Also, ¬Ω1 is equivalent to Ω [6]. To see this,
we can simply output the complement of ¬Ω1 in Π: eventually, the same correct process will always
be output at all processes.

We also consider the following “vector-Ω” failure detector, denoted
−→
Ω k. This failure detector

outputs a k-vector of process ids and guarantees that, eventually, at least one position in the vector
stabilizes, at all processes, on the same correct process id:

∀F, ∀H ∈
−→
Ω k(F), ∃pi ∈ correct(F), ` ∈ {1, . . . , k}, t ∈ T,

∀t′ > t,∀pj ∈ Π : H(pj , t′)[`] = pi.

As conjectured in [24], ¬Ωk and
−→
Ω k are equivalent. To obtain ¬Ωk from

−→
Ω k, it is sufficient to

output, at every process, any set of n− k processes that are not output by
−→
Ω k. Eventually, some

correct process will never be output at any process. The other direction is a simple generalization
2The notion of failure detector reduction (introduced in [6]) has been improved in [17] (in particular, by making

it reflexive), but the difference between this notions of [6] and [17] does not affect our results.

5

of the reduction algorithm for the case k = n− 1 in [24] (similar, in turn, to the reduction of [10])
and is presented in the Appendix.

Solving k-set agreement with
−→
Ω k is straightforward [24]. Just run k instances of Ω-based

consensus protocol [19], C1, . . . , Ck, where each C` uses position ` in the output of
−→
Ω k. As an

input in every instance of consensus, each process uses its input value for k-set agreement. The
first value to be returned by an instance of consensus is used as the output for k-set agreement. By
the agreement property of consensus, at most k distinct values can be output. Since, in at least one
position, the output of

−→
Ω k stabilizes on the same correct process, at least one instance of consensus

eventually returns at every process, and there are at most k different values can be returned. Thus:

Theorem 1 ¬Ωk is sufficient to solve k-set agreement in all environments.

4 Necessity

Now we show that ¬Ωk is not only sufficient but also necessary to solve k-set agreement. Let A be
an algorithm that solves k-set agreement using D. Our goal is to construct a reduction algorithm
that extracts the output of ¬Ωk using D. Recall that to extract the output of ¬Ωk means to output,
at each time and at each process, a set of n−k process identifiers and ensure that, eventually, some
correct process is never included in the output sets.

Our reduction algorithm uses the observation that a run of any D-based algorithm induces a
directed acyclic graph (DAG). The DAG contains a sample of failure detector values output by D
in the current run and captures some causal relations between them [6]. Given such a DAG G, we
can construct an asynchronous algorithm A′ that, instead of the “real” failure detector D, uses G
to simulate (possibly finite and unfair) runs of A [24]. Using BG-simulation [3, 5], k + 1 processes
can simulate k-resilient runs of A′. The fact that (k + 1, k)-set agreement is wait-free impossible
implies that the simulation must produce at least one infinite “non-deciding” k-resilient run of A′.
This k-resilient run can be then used to extract the output of ¬Ωk: it is sufficient to output the
set of n− k processes that appear infinitely often in it. At least one correct process will eventually
never be output, because, otherwise, the run would simulate a fair and thus deciding run of A.

There are two issues we have to address here. One difficulty is how to make sure that eventually
each correct process eventually forever selects ever-increasing non-deciding partial runs that are in
a strict sense close to such an infinite non-deciding run. E.g., by ordering simulated runs lexico-
graphically, and choosing the first non-deciding one, we cannot prevent the case of (temporarily)
choosing a prefix of a deciding run that contains steps of arbitrary processes. We address the issue
by employing the novel corridor-based depth-first ordering technique explained later in this section.

The second issue is that the DAGs constructed at different processes evolve in different ways.
Thus, the non-deciding k-resilient runs located at different correct processes can be different. We
resolve the issue by making sure that the correct processes eventually adopt the most “successful”
simulation: whenever a process pi observes that the “smallest” non-deciding simulated run is
considered deciding by another process pj , pi adopts the set of simulated runs of pj , and continues
the simulation from there.

Our reduction algorithm consists therefore of two components that are running in parallel: the
communication component and the computation component. In the communication component, ev-
ery process pi maintains the ever-growing directed acyclic graph (DAG) Gi by periodically querying
its failure detector module and exchanging the results with the others through the shared memory.

6

Shared variables:
for all pi ∈ Π: Vi, initially (⊥,⊥,⊥)

1 ki := 0
2 while true do
3 for all pj 6= pi do (Gj , αj , βj) := Vj ; Gi := Gi ∪Gj

4 di := query failure detector D
5 ki := ki + 1
6 add vertex [pi, di, ki] to Gi

for each vertex v of Gi, v 6= [pi, di, ki]:
add edge (v, [pi, di, ki]) to Gi

7 Vi := (Gi, αi, βi)

Figure 1: Building a DAG: the code for each process pi

In the computation component, every process simulates a set of runs of A using the DAG and
extracts the output of ¬Ωk.

4.1 DAGs

The communication component is presented in Figure 1. The component maintains, for each process
pi, an ever-growing DAG Gi that contains a sample of the current failure detector history. The
DAG is stored in a register Vi which can be written by pi and read by all processes.

In addition, Vi stores two elements, the set αi of runs simulated by pi so far and the delay map
βi, that specify the details of how exactly these runs were simulated by pi. We explain how these
mappings are maintained and used in Sections 4.2 and 4.5.

DAG Gi has some special properties which follow from its construction [6]. Let F be the current
failure pattern, and H ∈ D(F) be the current failure detector history. Then for any correct process
pi and any time t a fair run of the algorithm in Figure 1 guarantees that (here Gi(t) denotes the
value of Gi at time t):

(1) The vertices of Gi(t) are of the form [pj , d, `] where pj ∈ Π, d ∈ RD and ` ∈ N. There is a
map τ : vertices of Gi(t) 7→ T, such that:

(a) For any vertex v = [pj , d, `], pj /∈ F (τ(v)) and d = H(pj , τ(v)).
(b) For any edge (v, v′), τ(v) < τ(v′).

(2) If v′ = [pj , d, `] and v′′ = [pj , d′, `′] are vertices of Gi(t) and ` < `′ then (v, v′) is an edge of
Gi(t).

(3) Gi(t) is transitively closed: if (v, v′) and (v′, v′′) are edges of Gi(t), then (v, v′′) is also an edge
of Gi(t).

(4) For all correct processes pj , there is a time t′ ≥ t, a d ∈ RD and an ` ∈ N such that, for every
vertex v of Gi(t), (v, [pj , d, `]) is an edge of Gi(t′), and Gi(t) ⊆ Gj(t′).

In a fair run, the ever-growing DAGs at correct processes tend to the same limit infinite DAG
Ḡ = ∪t∈TGi(t), and the set of processes that obtain infinitely many vertices in Ḡ is the set of
correct processes [6]. A subDAG of Ḡ is any DAG that consists of a finite subset of vertices of Ḡ
with the corresponding edges. Trivially, each subDAG satisfies properties (1)–(3) above.

7

4.2 Asynchronous simulation of A

Let G be a DAG constructed as shown in Figure 1. Let β be any mapping from Π× N to N such
that β(pi, `) = 0 if ` > 1 and the latest vertex of pi in G (if any) has the form [pi, d, `′] where
`′ < `− 1. of the form [pi, d, `]. We call β a delay map for G.

We show that G and β can be used to construct an asynchronous algorithm Aβ that, for each
input vector I simulates a run of A (Figure 2). In the algorithm, each process pi starts with its
input value in I and performs a sequence of simulated steps of A. Each simulated step of A is
associated with a vertex in G.

To perform the next step of A, pi first scans the shared memory (line 9 in Figure 2) to get the
list of vertices associated with the latest simulated steps of A performed by other processes (every
simulated step is registered in the shared memory). Then pi chooses the earliest vertex [pi, d, `]
of G such that all simulated steps of A currently observed by pi are associated with vertices of G
that precede [pi, d, `] in G. Then pi takes the next step specified by the automaton Ai. In case the
next step is a query step, pi uses d as the corresponding failure detector value. Thus, instead of
querying D, processes use the sample of D’s output contained in G.

To locate `-th vertex of pi in G, the simulation first takes β(pi, `) (in case β(pi, `) > 0) “waiting”
rounds (lines 13–16 in Figure 2). If β(pi, `) = 0 (which means that `-th vertex of pi has not yet
been used in the simulation), then pi waits until the vertex arrives (through the concurrently run
algorithm in Figure 1). If such a vertex never appears in G, then pi waits forever, and therefore
appears no more in the currently simulated run of A. If the vertex arrives after r waiting rounds,
then β(pi, `) is set to r.

Intuitively, memorizing the number of waiting rounds for every considered vertex in the delay
map β ensures that a given finite run of Aβ repeated multiple times will simulate the same run of
A even when the underlying DAG G is concurrently growing. Indeed, fix a finite run R of Aβ using
a finite graph G. Now consider any extension R′ of R and suppose that R′ is using β constructed
in R and a super-graph G′ of G that now contains vertices and edges that were possibly missing
in G. We observe that the run of A simulated by R′ extends the run of A simulated by R: each
“new” vertex appearing in G′ may only contribute to a simulated step of A appearing after all
steps of A simulated by R took place. This implies that Aβ is not affected by the way the partial
DAGs are constructed in the algorithm in Figure 1, and depends only on β and the limit infinite
DAG. The concurrent maintenance of β will be used in Section 4.5 for multiple simulations of runs
of A using ever-growing DAGs G.

The following theorem shows that the sequence of simulated steps produced by Aβ indeed
belongs to a (possibly unfair) run of A.

Theorem 2 Let G be a DAG produced by the algorithm in Figure 1 in a fair run R with a failure
pattern F . Let β be any delay map for G. Let R′ be any run of Aβ using G and an input vector I
(Figure 2). Then the sequence of steps simulated by Aβ in R′ belongs to a run of A, RA, with input
vector I and failure pattern F , inf (RA) = correct(F)∩inf (R′). Specifically, if correct(F) ⊆ inf (R′),
then RA is fair.

Proof. Recall that a step of A of a process pi can be either a memory step in which pi accesses
shared memory or a query step in which pi queries the failure detector. Since memory steps are
performed in Aβ as in A, to check whether the algorithm produces a run of A with failure pattern
F , it is enough to make sure that the sequence of failure detector queries in the simulated run
(using vertices of G) could have been observed in a real run of A with F .

8

Shared variables:
V1, . . . , Vn, initially ⊥, . . . ,⊥
Shared variables of A

Initially: assign processes p1, . . . , pn with states of A using I

To simulate the next step of pi:
8 ` := 0
9 U := [V1, . . . , Vn]
10 repeat
11 ` := `+ 1
12 r := 0
13 repeat
14 r := r + 1
15 if r > β(pi, `) then β(pi, `) := r
16 until G includes [pi, d, `] for some d and r = β(pi, `)
17 until ∀j, U [j] 6= ⊥: (U [j], [pi, d, `]) ∈ G
18 Vi := [pi, d, `]
19 take the next step of A using d as the output of D

Figure 2: Aβ: an asynchronous simulation of A with input vector I

Consider two simulated query steps si and sj are associated with vertices [pi, di, `] and [pj , dj , `′],
respectively. Suppose that in RA, si occurs before sj .

If [pi, di, `] precedes [pj , dj , `′] in G, i.e., ([pi, di, `], [pj , dj , `′]) is an edge of G, then, by property
(1) of DAGs, τ([pi, di, `]) < τ([pj , dj , `′]), and si and sj could have taken place in RA with F in
that order.

Now suppose that [pi, di, `] does not precede [pj , dj , `′] in G. We show that sj does not causally
precede si in the simulated run, and, thus, the simulated run is indistinguishable from a run in
which si takes place before sj . Suppose not, i.e., pj simulated at least one memory step s′j after
sj , and pi simulated at least one memory step s′i before si, such that the memory access of s′j took
place before the memory access of s′i in R. But then pi must have found [pj , dj , `′] or a later vertex
in Vj before simulating step si (line 9) and, thus, the vertex of G used for simulating si must be a
descendant of [pj , dj , `′] — a contradiction. Thus, the sequence of steps of A simulated in R could
have happened in a run RA of A with failure pattern F and input vector I.

Since in Aβ, a simulated step of pi can only be performed by pi itself, inf (RA) ⊆ inf (R′). Also,
since each faulty in F process contains only finitely many vertices in G, each process in inf (R′)−
correct(F) is eventually blocked forever in lines 13–16 in Figure 2, and, thus, inf (RA) ⊆ correct(F).
By property (4) of DAGs, for every finite set V of vertices in G, every process in correct(F) obtains
infinitely many vertices in G that succeed every vertex in V . Thus, no process in correct(F)∩inf (R′)
can be blocked forever in lines 13–16. Hence, every process in correct(F) ∩ inf (R′) simulates in-
finitely many steps of Aβ, and, thus, inf (RA) = correct(F) ∩ inf (R′). Specifically, if correct(F) ⊆
inf (R′), then the set of processes that appear infinitely often in RA is correct(F), and the run is
fair. �

9

4.3 The BG-simulation technique

Borowsky and Gafni proposed a simulation technique by which k + 1 processes q1, . . . , qk+1, called
simulators, can wait-free simulate a k-resilient execution of any asynchronous n-process protocol [3,
5]. Informally, the simulation works as follows. Every simulator qi tries to simulate steps of all
n processes p1, . . . , pn in a round-robin fashion. The simulation guarantees that the next step of
every process pj is either agreed on by all simulators, or one less simulator participates further in
the simulation for each step which is not agreed on. Consequently, as long as there is at least one
live simulator, at most k simulated processes may be blocked and at least n−k simulated processes
in {p1, . . . , pn} accept infinitely many simulated steps. A sequence of steps σ of the simulators
q1, . . . , qk+1 determines the unique sequence BG(σ) of processes in p1, . . . , pn that specifies the
order in which the processes take steps in the corresponding simulated k-resilient execution.

Let σ be any infinite execution of simulators q1, . . . , qk+1. A process pi is said to be blocked in
σ if pi appears only finitely often in BG(σ). Let live(σ) denote the set of simulators that appear
infinitely often in σ and faulty(σ) be the complement to live(σ) in {q1, . . . , qk+1}. In our reduction
algorithm, we are going to use the following property of the BG-simulation technique [3, 5]:

(BG1) Let σ′ be the shortest prefix of σ that includes all steps the processes in faulty(σ) take in σ.
Then for any extension σ′ · ζ such that ζ includes only steps of simulators in live(σ), every
process which is blocked in σ is also blocked in σ′ · ζ, and BG(σ) and BG(σ′ · ζ) agree on the
shortest prefix which contains all steps of the blocked in σ processes.

pi
simulates runs of BG-simulation on

q1, . . . , qk+1

simulate runs of Aβ on

p′1, p
′
2, . . . , p

′
n−1, p

′
n

simulate runs of A
⇓

¬Ωk-output i

Figure 3: Three levels of simulation.

4.4 Hierarchical simulation

Our reduction algorithm employs triple simulation (summarized in Figure 3). For a given DAG G
and a delay map β defined on G, a process pi locally simulates multiple partial runs of a system of
k + 1 simulators Q = {q1, . . . , qk+1} that use the BG-simulation technique to collectively produce
partial runs of Aβ for n simulated processes Π′ = {p′1, . . . , p′n}. In turn, each run of Aβ on p′1, . . . , p

′
n

simulates a run of the original algorithm A using, instead of failure detector D, the sample of D’s
output encoded in G (as shown in Figure 2). To avoid confusion, here we use p′j to denote the
process that models pj in a run of Aβ simulated by a “real” process pi. There is a trivial bijection
between pj and p′j .

10

To simulate steps of p′j in a set agreement algorithm, simulators q1, . . . , qk+1 should agree first
on the its input value. Therefore, in the first simulated step of p′j , every simulator proposes its own
input value in I as the input value of p′j . Once the input value of p′j is agreed upon, the simulation
moves forward as before. Note that the output of the simulated run of A on p′1, . . . , p

′
n complies

with the inputs of the simulators and thus the specification of k-set agreement is not violated.
The “waiting” cycle in lines 13–16 is simulated by q1, . . . , qk+1 as one local step. Thus, before

pj performs a step of A using a vertex [pj , d, `] in DAG Gi (line 19 in Figure 2), it first performs
βi(pj , `) local “waiting” steps. If a vertex of the form [pj , d, `] never appears in Gi, then pj performs
infinitely many local steps, and drops out from the simulated run of A.

4.5 Extracting ¬Ωk

The computational component of our reduction algorithm is presented in Figure 4. Each initial
state I for k + 1-process k-set agreement, each schedule σ, a sequence specifying the order in
which simulators q1, . . . , qk+1 take steps of BG-simulation, and the DAG Gi, determine a run of
Aβi , denoted αi(I, σ). For brevity, domI(αi) denotes here all distinct (not related by containment)
schedules σ explored so far by pi with input vector I, i.e., used for evaluating αi(I, σ) in line 23.

We say that αi(I, σ) is deciding if it simulates a run of A in which at least one process decides.
Respectively, a schedule σ is called deciding at pi with input vector I if αi(I, σ) is deciding.

4.5.1 Overview

For all input vectors I (chosen in some deterministic order <), the reduction algorithm simulates
longer and longer executions of Aβi , using longer and longer schedules of steps of simulators. The
schedules are selected following the depth-first-search strategy: every next simulated step extends
the longest currently observed non-deciding schedule. Each process pi periodically registers in the
shared memory all currently simulated runs in the form of the simulation map αi and the delay
map βi (Figure 2), and scans the memory to get the latest update on the maps of other processes.
If pi finds out that, at some process pj , all distinct schedules simulated so far by pi (including the
currently simulated schedule σ) are deciding (line 24), then pi adopts all simulations of pj , rolls
back and continues the simulation from the longest non-deciding prefix of σ.

Periodically, pi evaluates the set of n − k processes that appear the latest in the currently
simulated run of Aβi as the output of ¬Ωk. The intuition is that, since the task has no wait-free
solution for k + 1 processes, eventually, all processes will proceed with longer and longer prefixes
of the same schedule that corresponds to a non-deciding k-resilient runs of Aβi . Otherwise, by
Theorem 2, we would obtain a wait-free algorithm for k + 1-process k-set agreement.

4.5.2 Maintaining the simulation corridors

The conventional depth-first-search technique allows the simulation to temporarily go along a finite
deciding “branch” of the ever-growing non-deciding schedule, and such branches may involve steps
of arbitrary processes in p1, . . . , pn. As a result, the set of n − k process that appear the latest in
the currently simulated run of Aβi may infinitely often include arbitrary processes.

To overcome this issue, we put an additional restriction on the order in which we choose the
next simulator to extend the current non-deciding schedule σ. At each point in the simulation, we
maintain a “corridor” (the third parameter in function explore) — the set of simulators that can be

11

20 for all inputs I0 (in a deterministic order <) do { For all possible inputs for q1, . . . , qk+1 }
21 explore(I0,⊥,Π)

22 function explore(I, σ, S)
23 ¬Ωk-output i := n− k processes that appear the latest in αi(I, σ)

(where each p′
j is replaced with pj)

24 if ∃pj ∈ Π: ∀σ′ ∈ domI(αi), ∃σ′′, a prefix of σ′: αj(I, σ′′) is deciding then
{ If all explored schedules are deciding at some pj with I }

25 αi := αj ; βi := βj {adopt pj ’s simulation}
26 else
27 for all non-empty S′ ⊆ S (in a deterministic order consistent with ⊆) do
28 for all qj ∈ S′ (in a deterministic order) do
29 explore(I, σ · qj , S′)

Figure 4: Computational component of the reduction algorithm: code for each process pi.

used for further extensions of the current schedule. The extended schedule can only use simulators
in a sub-corridor of the current corridor, and the sub-corridors are selected in a deterministic order,
consistent with the ⊆ relation (lines 27 and 28 in Figure 4). Thus, the algorithm first explores all
“solo” corridors consisting of solo extensions of σ, then all “duet” corridors consisting of extensions
including steps of two given processes, then “trio”, etc. If all extensions within the chosen sub-
corridor turn out to be deciding, the next sub-corridor is selected, etc.3

As a result, eventually, only simulators that appear infinitely often in some never-deciding
run will be output: otherwise, the simulation already operates in proper superset of a more narrow
corridor that contains a never-deciding schedule σ̃, and that contradicts the order in which corridors
are chosen (consistently with ⊆).

At least one simulated process p′j , such that pj ∈ correct(F), must be blocked in σ̃. Otherwise,
the schedule would simulate a fair run of A and thus would be deciding. Moreover, since all
correct processes extend longer and longer prefixes of σ̃, by property (BG1) of BG-simulation, p′j
eventually stops taking steps in runs simulated at correct processes. All simulated runs of Aβi

extend ever-growing prefixes of a k-resilient run, and hence the set of n−k latest processes in them
will eventually never include pj . Thus, the output of ¬Ωk updated in line 23 at each correct process
will eventually never include pj .

Our reduction algorithm therefore outputs, at each time and at every process, a set of n − k
processes, such that, eventually, some correct process is never output — ¬Ωk is extracted.

4.5.3 Correctness

Consider any fair run of the algorithm in Figures 1 and 4. Let F be the failure pattern of that run.
First we prove the following auxiliary lemmas:

Lemma 3 If the currently simulated schedule σ is deciding at a process pi with the current input
vector I (in line 23), then (i) ∀σ′ ∈ domI(αi), αi(I, σ′) is deciding, and (ii) ∀σ′, ∀J < I, ∃σ′′, a
prefix of σ′ such that αi(J, σ′′) is deciding.

3Here we apply the technique proposed in [24] to simulators.

12

Proof. The domain of mapping αi is constantly growing, and a process considers a new schedule σ
in line 23 to be deciding with the current input vactor I only if all distinct schedules σ considered
up to now were deciding with I.

Furthermore, for all previously considered input vectors J < I all schedules have deciding
prefixes: the invocation of explore(J,⊥,Π) in line 21 returns only if all possible schedules σ have
deciding with J prefixes.

This property is inductively preserved if pi adopts αj from another process pj in line 25. �

Lemma 4 If explore(I, σ, S) invoked by a correct process pi in line 21 or 29 returns, then it returns
at every correct process.

Proof. Suppose explore(I, σ, S) invoked by a correct process pi returns. In other words, every
sufficiently long extension of σ (within the corridor S) is considered deciding with I at pi. Thus,
eventually, pi registers αi in the shared memory (line 7 in Figure 1) and it will be read (line 3 in
Figure 1) and adopted by every correct process pj in line 25: thus every sufficiently long extension
of σ (within the corridor S) will be considered deciding with I at pj . �

Lemma 5 There exists an input vector I, such that each correct process pi eventually invokes
explore(I,⊥,Π) in line 21 and the invocation never returns.

Proof. Suppose that, at some correct process pi, explore(I,⊥,Π) returns for all input vectors
I. Let β be the value of βi and α be the value of αi when the last such invocation returns. By
Lemma 3, for all input vectors I and for all schedules σ, there exists σ′, a prefix of σ, such that
α(I, σ′), i.e., the run of BG-simulation with input vector I and schedule σ′ simulates a deciding
run of Aβ.

Note that Aβ uses vertices of a DAG G instead of the failure detector output. For all possible
input vectors I, consider the tree of all schedules σ of steps of the simulators that are deciding with
I. All such trees have finite branching (each vertex has at most k+ 1 descendants) and contain no
infinite paths. By König’s lemma, the trees have finitely many vertices. Thus, the set of vertices
of G used by the runs of A′ simulated by deciding schedules of BG(A′β) is also finite. Let Ḡ be a
finite subgraph of G that includes all vertices used by these runs.

Thus, we can construct a wait-free k-set agreement algorithm for q1, . . . , qk+1 as follows. Each
process qi runs BG-simulation of Aβ using the finite DAG Ḡ as a parameter. To simulate the
first step of a process pj , qi uses its own input value as the input value of pj . When qi simulates
a step of Aβ in which a simulated process p′j decides, qi writes the decided value in the shared
memory and returns the value. Since every simulated run is deciding, each qi eventually simulates
a deciding step or finds a decided value in the shared memory. Since the decided values are coming
from a run of the failure-detector-based k-set agreement algorithm A, and the inputs are provided
by q1, . . . , qk+1, the set of decided val;ues is a subset of the inputs of size at most k. But this
contradicts [16, 23, 3].

Thus, there exists I such that explore(I,⊥,Π) invoked by a correct process pi never returns.
By the algorithm, the invocation previously returned for all input vectors J < I. By Lemma 4,
explore(I,⊥,Π) is also invoked by every other correct process and never returns. �

13

Theorem 6 In all environments E, if a failure detector D solves n-process k-set agreement, then
¬Ωk is weaker than D.

Proof. By Lemma 5, there exists I, such that for all correct process pi, pi invokes explore(I,⊥,Π) in
line 21 and the invocation never returns. Thus, every correct process pi makes an infinite sequence of
recursive invocations of explore with parameters (I, σ0, S0), (I, σ1, S1), . . ., where (line 27) ∀` ∈ N:
S` 6= ∅, S`+1 ⊆ S`. By Lemma 4, all correct processes agree on the sequence (I, σ0, S0), (I, σ1, S1),
. . ..

Since all S` are non-empty, there exist S̃ 6= ∅ and `′ ∈ N, such that ∀` ≥ `′: S` = S̃. Also, each
σ` is a prefix of some infinite non-deciding schedule σ̃. Now we show that S̃ = live(σ̃), the set of
processes that appear infinitely often in σ̃.

By construction (line 28), live(σ̃) ⊆ S̃. Suppose, by contradiction, that live(σ̃) is a proper
subset of S̃. Let S′0, S

′
1, . . . be the sequence of non-empty subsets of Π such that ∀0 ≤ ` < `′:

S′` = S` and ∀` ≥ `′: S` = live(σ̃). Thus, the non-deciding schedule σ̃ = qi0 , qi1 , . . . fits the
corridor specified by S′0, S

′
1, . . ., i.e., ∀` ∈ N : qi` ∈ S′0. By the algorithm, before making the infinite

sequence of invocations explore(I, σ0, S0), explore(I, σ1, S1), . . ., pi has previously explored prefixes
of all schedules that fit S′0, S

′
1, . . ., including a prefix of σ̃, and found all of them deciding — a

contradiction.
Thus, all correct processes pi perform the same infinite sequence of recursive invocations of

explore with parameters (I, σ0, S0), (I, σ1, S1), . . ., (I, σ`′ , live(σ̃)), (I, σ`′+1, live(σ̃)),
Let σ′ be the shortest prefix of σ̃ that contains all appearances of the simulators that are faulty

in σ̃, faulty(σ̃). Eventually, all correct processes simulate extensions of σ′ in which processes in
faulty(σ̃) do not appear. Let W be the set of simulated processes in {p′1, . . . , p′n} that are blocked
in σ̃ (Section 4.3). We argue that W contains at least one process p′j such that pj ∈ correct(F).

By contradiction, suppose that no process in correct(F) is blocked in σ̃. Let pj ∈ correct(F).
Thus, pi simulates a run of Aβi in which p′j appears infinitely often. Moreover, map βi maintained
at pi ensures that for all ` ∈ N, β(pj , `) eventually stops growing. This is because every correct
process ps eventually finds a vertex [pj , d, `] in Gs and stops incrementing β(pj , `) and there is a
time after which pi does not adopt delay maps of faulty processes in line 25. Thus, by Theorem 2,
the run of Aβi with input vector I simulated by q1, . . . , qk+1 in schedule σ̃ produces a fair and thus
deciding run of A — a contradiction.

Now, by property (BG1) of BG-simulation, p′j eventually stops participating in all runs of Aβi

simulated at every correct process pi. Moreover, since pi simulates extensions of longer and longer
prefixes of some k-resilient run R′, eventually, the latest n − k processes seen in every run of Aβi

simulated by pi will include only processes in inf (R) and, thus, pj will eventually never be output
in line 23.

To summarize, we have an algorithm that outputs, at each time and at every process, a set
of n−k processes, such that, eventually, some correct process is never output — ¬Ωk is extracted. �

A combination of Theorem 1 and Theorem 6 implies:

Theorem 7 In all environments E, ¬Ωk is the weakest failure detector to solve k-set agreement.

14

5 Related Work

Chandra et al. [6] derived the first “weakest failure detector” result by showing that Ω is necessary
and sufficient to solve consensus in the message-passing model. The result was later generalized to
the read-write shared memory model.4

Guerraoui et al. [13] proposed the notion of the weakest failure detector ever : a failure detector
that is sufficient to circumvent some asynchronous impossibility and necessary to circumvent any
asynchronous impossibility. A candidate failure detector, denoted Υ was proposed in [13] and
shown to be strong enough to solve wait-free (n − 1)-set agreement. Υ was shown to be weaker
than any stable failure detector that circumvents an asynchronous impossibility. The result easily
extends to the case of n-process k-set agreement through failure detector Υk. 5

Zieliński [24] introduced anti-Ω and proved that it is the weakest failure detector to solve
wait-free (n− 1)-set agreement in the whole universe of failure detectors (including unstable ones).
However, generalizing [24, 13] to k-set agreement for all k without restricting the space of considered
failure detectors turned out to be non-trivial and has remained unresolved until now.

The necessity part of this paper builds atop of two fundamental results. The first is the cel-
ebrated BG-simulation [3, 5] that allows k + 1 processes simulate, in a wait-free manner, a k-
resilient run of any n-process asynchronous algorithm. The second is a brilliant observation made
by Zieliński [24] that any run of an algorithm A using a failure detector D induces an asynchronous
algorithm that simulates (possibly finite and unfair) runs of A. Unlike [24], however, our reduction
algorithm assumes the conventional read-write shared memory model without using immediate
snapshots [4]. Also, instead of growing “precedence” and “detector” maps of [24], we use directed
acyclic graphs á la [6].

Concurrently and independently, two papers [11, 2] claimed to have shown that ¬Ωk is the
weakest failure detector for solving k-set agreement, [11] — for all environments, and [2] — for all
environments in which at most k processes fail.

6 Discussion

In this paper, we show that, for all k = 1, . . . , n − 1, ¬Ωk is the weakest failure detector to solve
n-process k-set agreement, in all environments, i.e., regardless of the assumptions on when and
where failure may occur. The paper fills the gap between the proof that Ω (equivalent to ¬Ω1) is
the weakest failure detector to solve consensus [6] and the proof that anti-Ω (equivalent to ¬Ωn−1)
is the weakest failure detector to solve (n− 1)-set agreement. Therefore, this paper closes the long-
standing quest for finding the weakest failure detector for general k-set agreement [6, 22, 9, 13, 24].

Given that k-set agreement is equivalent to k simultaneous consensuses of which one is guar-
anteed to return [1], one may be tempted to try determining the weakest failure detector for k-set
agreement through running k parallel CHTs (reduction algorithms of Chandra et al. [6] that derive
the weakest failure detector for consensus). But such a derivation may be tricky to find: CHT
re-implements crucial elements of the FLP consensus impossibility proof [12], and thus extending
it to set agreement may be similar to extending FLP to proving the impossibility of set agreement,

4The result was stated in [19], but the only published proof of it (we are aware of) appears in [15].
5The conference version of the paper [13] assumes that failure detectors are stable and their output depends only

on the set of correct processes, and not on the timing of failures. The second assumption is eliminated in the full
version of this paper [14].

15

and such an extension stays elusive for many years.
Instead, our proof derives a necessary failure detector for solving k-set agreement from the very

fact that wait-free k + 1-process k-set agreement is impossible [16, 23, 3]. Borowsky and Gafni
showed in [3] that the impossibility of solving a task in a k-resilient manner can be derived from
the impossibility of solving the task in a wait-free manner among k + 1 processes. In this paper,
we extend this observation to the failure detector world, and we derive the weakest failure detector
to circumvent an impossibility of solving a task from the impossibility itself, ignoring the exact
specification of the task. One interesting feature of our necessity proof is that it does not restrict
the space of available shared objects. We show that ¬Ωk is necessary for solving k-set agreement
in any system and any environment in which the task cannot be solved asynchronously.

As a byproduct, this paper gives an alternative (and seemingly simpler than in [6, 15]) proof
that Ω is the weakest failure detector for solving consensus using reads and writes among n > 2
processes (the case n = 2 is covered in [24]). The proof only uses the fact that wait-free 2-process
consensus is impossible, and unlike [6, 15], does not involve elements of consensus impossibility [12],
such as bivalency, critical configurations, etc. The proof is however not self-contained, since it relies
heavily on BG simulation.

Finally, this paper provides an evidence for the “folklore” hierarchy of n-process “sub-consensus”
symmetric distributed tasks, based on the amount of synchrony needed to solve them using reads
and writes. (A task is symmetric if the input-output relation withstands an arbitrary permutation
of process identifiers.) The bottom level (level 0) in this conjectured hierarchy is populated by
trivial tasks, tasks that can be solved asynchronously (e.g., (2n−1)-renaming). The top level (level
n−1) is populated by universal tasks (e.g., consensus): if a failure detector solves a universal task,
then it solves any task. The weakest failure detector to solve a universal task is Ω [6, 15]. Now
level ` (` = 1, . . . , n− 2) is defined iteratively as follows. A task T belongs to level ` if and only if
it does not belong to level `− 1 and any failure detector that solves a task that does not belong to
level `− 1 also solves T .

Level 1 of the conjectured task hierarchy is characterized in [24] where (n − 1)-set agreement
is shown to be the easiest (in the failure detector sense) non-trivial task and ¬Ωn−1 to be the
matching weakest failure detector. Our results suggest that level ` (` = 2, . . . , n− 1) is populated
by (n− `)-set agreement and the corresponding failure detector is ¬Ωn−`. Proving this conjecture
would boil down to showing that ¬Ωk is necessary to solve any symmetric task that cannot be
solved using ¬Ωk−1 which is more general than the necessity result of our paper.

Acknowledgements

The conjectured hierarchy of tasks described in Section 6 was conjectured concurrently by several
researchers, including Eli Gafni, Rachid Guerraoui, Achour Mostefaoui, and Michel Raynal.

References

[1] Yehuda Afek, Eli Gafni, Sergio Rajsbaum, Michel Raynal, and Corentin Travers. Simultaneous
consensus tasks: A tighter characterization of set-consensus. In ICDCN, pages 331–341, 2006.

[2] Antonio Fernández Anta, Sergio Rajsbaum, and Corentin Travers. Weakest failure detectors
via an egg-laying simulation (brief announcement). In PODC, 2009.

16

[3] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In STOC, pages 91–100. ACM Press, May 1993.

[4] Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and fast renaming. In PODC,
pages 41–51, New York, NY, USA, 1993. ACM Press.

[5] Elizabeth Borowsky, Eli Gafni, Nancy A. Lynch, and Sergio Rajsbaum. The BG distributed
simulation algorithm. Distributed Computing, 14(3):127–146, 2001.

[6] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685–722, July 1996.

[7] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

[8] Soma Chaudhuri. Agreement is harder than consensus: Set consensus problems in totally
asynchronous systems. In PODC, pages 311–324, August 1990.

[9] Wei Chen, Jialin Zhang, Yu Chen, and Xuezheng Liu. Weakening failure detectors for -set
agreement via the partition approach. In DISC, pages 123–138, 2007.

[10] F. Chu. Reducing Ω to ♦W . Information Processing Letters, 67(6):298–293, September 1998.

[11] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas Tielmann. The
disagreement power of an adversary (brief announcement). In PODC, 2009.

[12] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[13] Rachid Guerraoui, Maurice Herlihy, Petr Kouznetsov, Nancy A. Lynch, and Calvin C. New-
port. On the weakest failure detector ever. In PODC, pages 235–243, August 2007.

[14] Rachid Guerraoui, Maurice Herlihy, Petr Kuznetsov, Nancy A. Lynch, and Calvin C. Newport.
On the weakest failure detector ever. Distributed Computing, 21(5):353–366, February 2009.

[15] Rachid Guerraoui and Petr Kuznetsov. Failure detectors as type boosters. Distributed Com-
puting, 20(5):343–358, 2008.

[16] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient tasks.
In STOC, pages 111–120, May 1993.

[17] Prasad Jayanti and Sam Toueg. Every problem has a weakest failure detector. In PODC,
pages 75–84, 2008.

[18] Petr Kuznetsov. Simle CHT: A new derivation of the weakest failure detector for consensus.
Technical report, 2009.

[19] Wai-Kau Lo and Vassos Hadzilacos. Using failure detectors to solve consensus in asynchronous
shared memory systems. In WDAG, LNCS 857, pages 280–295, September 1994.

[20] M.C. Loui and H.H. Abu-Amara. Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research, 4:163–183, 1987.

17

Shared variables:
for all pj ∈ Π: Countersj , initially 0, . . . , 0

30 while true do
31 output := query ¬Ωk

32 for all p` ∈ output do
33 Countersi[`] := Countersi[`] + 1
34 for ` = 1, 2, . . . , n do
35 total [`] := Counters1[`] + . . .+ Countersn[`]
36 pi1 , . . . , pin := deterministic permutation of p1, . . . , pn

w.r.t. increasing total [`]
37

−→
Ω k-output := (pi1 , . . . , pik

)

Figure 5: Transforming ¬Ωk into vector-Ωk: the code for each process pi

[21] Michel Raynal. K-anti-Omega, August 2007. Rump session at PODC 2007.

[22] Michel Raynal and Corentin Travers. In search of the holy grail: Looking for the weakest
failure detector for wait-free set agreement. In OPODIS, pages 3–19, 2006.

[23] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topology
of public knowledge. In STOC, pages 101–110. ACM Press, May 1993.

[24] Piotr Zieliński. Anti-omega: the weakest failure detector for set agreement. In PODC, August
2008.

¬Ωk and vector-Ωk are equivalent

Theorem 8 For all E and all k ∈ {1, . . . , n− 1},
−→
Ω k is weaker than ¬Ωk in E.

Proof. The algorithm transforming ¬Ωk into
−→
Ω k is presented in Figure 5. Periodically, every

process pi queries ¬Ωk, and for each pj output by ¬Ωk, increments the shared counter register
Counters i[j] and calculates k processes pi1 , . . . , pik which are least output by ¬Ωk so far (summed
over all processes). Then the k-vector of the extracted output of

−→
Ω k is updated to [pi1 , . . . , pik].

Let U ⊆ Π be the set of processes p` that are output only finitely many times by ¬Ωk, and,
thus, total [`] eventually stabilizes on the same finite value at each correct process. Since at least
one correct process is eventually never output by ¬Ωk, U includes at least one correct process. On
the other hand, since ¬Ωk always outputs n−k processes, there are at least n−k processes p` such
that total [`] grows without bound at each correct process, and thus |U | ≤ k. Thus, there is a time
after which all correct processes agree on the first |U | processes pi1 , . . . pi|U| in the produced output

of
−→
Ω k and at least one of them is correct — the output of

−→
Ω k is extracted. �

18

