
Universal Model Simulation:
BG and Extended BG as Examples

Petr Kuznetsov
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Abstract. This paper focuses on simulations as a means of deriving the
relative power of distributed computing models. We describe an abstract
simulation algorithm that enables reducing the question of solvability
of a generic distributed task in one model to an equivalent question in
another model. The technique implies simple equivalents to the funda-
mental reduction by Borowsky and Gafni, known as BG simulation, as
well as to Extended BG, a more recent extension of it to colored tasks.
We also sketch how the parameters of our technique can be tuned to
derive recent equivalence results for models that use, in addition to basic
read-write memory, k-set agreement or k-process consensus objects, or
make assumptions on active resilience.

1 Introduction

When do we say that a given problem is hard or even impossible to solve?
In computing, this typically means that, in a given model of computation, the
problem cannot be solved by any algorithm with desired properties. But if we
found the answer to the question in one model, can we derive it for another?
This is where simulations may be handy.

This paper focuses on simulations of distributed computing models. Here a
model specifies a collection of computing units, called processes, that communi-
cate via invoking operations on shared-memory variables or sending messages.
We restrict our attention to a class of decision problems called tasks, where every
process starts with its private input value and is expected, after some informa-
tion exchange with other processes, to produce an output value, so that the
inputs and the outputs are consistent with the task specification. For example,
in the consensus task, the processes are expected to agree on one of the inputs.

In this setting, informally, to simulate a model A in a model B means to
guarantee that in every execution of B, the processes in B reach a form of
agreement on the behaviour of the processes in A that is (1) consistent with some
execution of A, and (2) somehow reflects the inputs provided to the processes
in B. The first condition means that the simulation is correct, i.e., it indeed
produces something that could have happened in A. The second condition means
that the simulation is useful, i.e., the simulated run allows the simulators to
compute some outputs based on their inputs. These outputs depend on the goal



of the simulation, which in turn depends on the kind of relations between the
models we intend to capture.

The main concern of this paper is distributed computability : what can and
what cannot be computed in a given model. We aim at reductions of the question
of whether a task T is solvable in model A to an equivalent question in model
B.

We focus first on read-write shared-memory simulations. We assume that pro-
cesses run the full-information protocol using the atomic snapshot memory [1]
where every process first writes its input in the memory and then alternates
snapshots with updates, where every next update writes the result of the pre-
ceding snapshot.

We define an abstract simulation technique in which a set of simulators use
agreement protocols to reconcile on the evolution of the simulated processes.
The input of the simulated processes is agreed upon too based on a specific
initialization rule, which is a parameter of our simulation. A simulator may
decide to join the simulation using an activation rule based on the inputs of other
simulators, which is the second parameter of our simulation. At any point in the
simulation, a simulator may decide to terminate, using a specific termination
rule, which is the third parameter. By varying these three parameters, we can
obtain a wide spectrum of computability results.

One application of our abstract techinque is the celebrated result that the
question of t-resilient solvability of a colorless task T is equivalent to the question
of wait-free solvability of T in a system of t + 1 processes [5, 7]. We derive
the result by simply allowing each simulator to consider itself active, to use its
input value in initializing any simulated process, and terminate as soon as one
simulated process outputs.

We then go further and apply our simulation framework to the generic (not
necessarily colorless) tasks and show that t-resilient solvability can be reduced
to the wait-free solvability (obtained in [13] via Extended BG-simulation). We
speculate that our technique can be extended to other classes of simulation
algorithms, such as adversarial models [10, 16, 21] or models equipped with k-set
agreement primitives [15, 14]. In particular, we sketch how a simple modification
of parameters in our simulation framework may establish the recently shown
equivalence between a system in which any number of processes communicate
via read-write memory and k-set agreement objects and a system in which no
more than k − 1 active processes fail (k-active resilience).

The rest of the paper is organized as follows. In Section 2, we overview exist-
ing model simulations and hint how they can be unified in a common framework.
In Section 3, we briefly discuss our basic system model and introduce agreement
protocols as principal building blocks of our simulation. In Section 4, we present
our simulation framework and in Section 5, we use the framework to derive equiv-
alence results analogous to BG [5, 7] and Extended BG [13]. Section 6 sketches
applications of our framework to models beyond read-write t-resilience.
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2 Related work

Simulations improve our understanding of distributed computing by establish-
ing equivalence between seemingly different phenomena: synchrony and asyn-
chrony [12], message-passing and read-write shared memory [3], read-write shared
memory and atomic snapshot [1], atomic snapshot and immediate snapshot [6],
wait-freedom and t-resilience for distributed tasks [7, 13], k-set agreement and k-
concurrency [14], wait-freedom and superset-closed adversarial models [18], etc.
The motivation behind this paper is to establish a unifying simulation frame-
work that would encompass all existing and emerging equivalence results: by
tuning a small set of well-defined parameters of our framework, we should be
able produce the desired simulation protocol.

Our abstract simulation builds upon a weak simulation algorithm that always
ensures safety [2], i. e., it guarantees that the simulated execution indeed could
have taken place in the simulated model. A basic building block of the simulation
is an agreement protocol, e.g., the safe agreement protocol of [7] or obstruction-
free consensus [19, 4]. Since no asynchronous fault-tolerant protocol can achieve
agreement providing both safety and liveness [11], the liveness properties of
the simulation depend on the liveness properties exported by the agreement
protocols it employs. Interestingly, different simulated steps can use different
agreement protocols which enables a variety of simulation protocols suitable for
different models. The variants of BG and Extended BG proposed in this paper
employ obstruction-free consensus [19, 4] as an agreement protocol. Intuitively,
to make progress with this kind of agreement protocols, we must ensure that
eventually at least some of concurrently simulated processes is driven forward
by exactly one correct simulator, which was inspired by the simulations proposed
earlier in [17, 9].

Gafni and Guerraoui [15] have recently established that providing the pro-
cesses with k-set agreement objects is, in a precise sense, equivalent to having
access to k state machines, where at least one is guaranteed to progress. In par-
ticular, as is informally shown in [14], providing k-set agreement is equivalent,
with respect to task solvability, to assuming k-concurrency or active (k − 1)-
resilience. In this paper, we sketch how the latter equivalence result can be seen
as a straightforward application of our simulation framework.

3 Model

Processes. We consider a systemΠ of n processes, p1, . . . , pn, that communicate
via reading and writing in the shared memory. We assume that the system is
asynchronous, i.e., relative speeds of the processes are unbounded. Without loss
of generality, we assume that processes communicate via an atomic snapshot
memory [1], where every process may update its dedicated position and take
atomic snapshot of the whole memory. More precisely, atomic snapshot memory
exports two atomic operations: update(i, v) (i ∈ {1, . . . , n}) that writes value v
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to position i, and scan() that returns the vector of the most recently written
values to positions 1, . . . , n.

Simulators. An execution of the processes p1, . . . pn can be simulated by a set
of simulators s1, . . . , s` that mimic the steps of the full-information protocol in
a consistent way: for every execution Es, there exists an execution E of the full-
information protocol on p1, . . . , pn such that the sequence of simulated snapshots
for every process pi in Es have also been observed by pi in E.

A process or a simulator may only fail by crashing, and otherwise it must
respect the algorithm it is given. A correct process or simulator never crashes.

Tasks. In this paper, we focus on a specific class of distributed computing prob-
lems, called tasks [20]. In a distributed task [20], every participating process
starts with a unique input value and, after the computation, is expected to
return a unique output value, so that the inputs and the outputs across the pro-
cesses satisfy certain properties. More precisely, a task is defined through a set I
of input vectors (one input value for each process), a set O of output vectors (one
output value for each process), and a total relation ∆ : I 7→ 2O that associates
each input vector with a set of possible output vectors. An input ⊥ denotes a
not participating process and an output value ⊥ denotes an undecided process.

For example, in the task of k-set consensus, input values are in {⊥, 0, . . . , k},
output values are in {⊥, 0, . . . , k}, and for each input vector I and output vector
O, (I,O) ∈ ∆ if the set of non-⊥ values in O is a subset of values in I of size at
most k. The special case of 1-set consensus is called consensus [11].

We assume that every process runs a full-information protocol: initially it
writes its input value and then alternates between taking snapshots of the mem-
ory and writing back the result of its latest snapshots. After a certain number
of such asynchronous rounds, a process may gather enough state to decide, i.e.,
i.e., to produce an irrevocable non-⊥ output value. There is no loss of generality
in this assumption since the full-information protocol provides at least as much
information about the execution as any other protocol.

In colorless tasks (also called convergence tasks [7]), processes are free to
use each others’ input and output values, so the task can be defined in terms
of input and output sets instead of vectors. Formally, let val(U) denote the set
of non-⊥ values in a vector U . In a colorless task, for all input vectors I and
I ′ and all output vectors O and O′, such that (I,O) ∈ ∆, val(I) ⊆ val(I ′),
val(O′) ⊆ val(O), we have (I ′, O′) ∈ ∆. The k-set consensus task is colorless.

Note that to solve a colorless task, it is sufficient to find a protocol (a decision
function) that allows just one process to decide. Indeed, if such a protocol exists,
we can simply convert it into a protocol that allows every correct process to
decide: every process simply applies the decision function to the observed state
of any other process and adopts the decision.

The task of (m, k)-renaming involves m participating processes (out of n)
that are expected to select names in the range {1, . . . , k} so that no two processes
choose the same name. Renaming is a colored (not colorless) task.

Agreement. A basic building block of our simulations is an agreement ab-
straction that can be seen as a safe part of consensus. It exports one operation
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propose() taking v ∈ V as a parameter and returning w ∈ V , where V is a
(possibly infinite) value set. When a process pi invokes propose(v) we say that
pi proposes v, and when the invocation returns v′ we say that pi decides on v.
Agreement ensures three properties:

(i) every decided value has been previously proposed,
(ii) no two processes decide on different values, and
(iii) if a process decides, then, eventually, every process that takes sufficiently

many steps decides.

There are many protocols that satisfy the three properties above, additionally
offering some liveness guarantees.

The consensus protocol using the Ω failure detector [8] guarantees that every
correct process eventually decides, where Ω, at every correct process, eventually
outputs the same identifier of a correct process.

The BG agreement protocol [5, 7], guarantees that if every participating pro-
cess takes enough steps, then eventually every correct participant decides.

The obstruction-free consensus protocol (OF consensus) [19, 4], which is of
special interest for us here, guarantees that a process decides if it eventually runs
solo, i.e., it eventually encounters no step contention.

4 Abstract simulation

We present our simulation algorithm in a modular way. First, we describe the
procedure by which simulators advance one more step of a given simulated pro-
cess pi (Section 4.1). The procedure is using an agreement protocol that is, as
stated above, safe but not necessarily live. Thus, a correct simulator may block
forever in the middle of simulating a step.

Assuming that this procedure is used correctly, i.e., while a simulator is in the
middle of simulating a step of pi, it does not start simulating a new step of pi, we
show that the resulting simulated execution is consistent with some execution
of the full-information protocol on the simulated processes, where inputs come
from the simulators. simulation (Section 4.2).

4.1 Simulating one step

To simulate a step of a given process pi, every simulator follows the algorithm
in Figure 1. First, the simulator takes a snapshot of the current states of the
simulated processes (line 1). The states of the simulated systems is stored in an
atomic snapshot object St. Each simulator sj stores its view of the states of all
simulated processes in position j of St. The getState() call returns the vector
of most recent simulated states, and the updateState(i, [s, k + 1]) performed by
sj updates the state of process pi in jth position of St. Both operations can be
easily implemented using atomic snapshot memory shared by the simulators.

If pi has not yet performed a single simulated step, then pi’s evaluated state
is just its input value (line 4). Note that the procedure by which a simulator

5



Shared variables:
Ai

1, A
i
2, . . ., agreement protocols { used to simulate steps 1, 2, . . . of pi }

St, atomic snapshot object, initially [⊥, 0], . . . , [⊥, 0]

To simulate the next step of pi:
1 [S,K] := St.getState() { get the most recent simulated states }
2 k := K[i] { get the number of simulated steps of pi }
3 if k = 0 then
4 s := pi’s input value (using the provided initialization procedure)
5 else
6 s := S { the current simulated state }
7 s := Ai

k+1.propose(s) { agree on the next state of pi }
8 St.updateState(i, [s, k + 1])

Fig. 1. Safety: simulating one step of process pi

chooses the input for pi is a parameter of the simulation, and we give concrete
examples in Sections 5.1 and 5.2. Otherwise, the state of pi is evaluated as the
result of the last snapshot of the simulated state (line 1).

Then the simulated process pi is driven forward using a new instance of
agreement Ai

k+1. When Ai
k+1 returns s, the simulator publishes [s, k + 1] as the

simulated state of pi resulted after its (k + 1)th snapshot (line 8) .

We assume that every simulator is well-formed : it never starts simulating
a new step of pi (using the algorithm in Figure 1) if it has not yet computed
an input value for pi and it is not yet done with simulating pi’s previous step.
Respectively, an execution is well-formed if every simulator is well-formed in it.
We say that a process pi takes r simulated steps in a well-formed execution if at
least one simulator returned from an invocation of Ai

r.propose(s) (line 7).

Correctness. Now we show that any well-formed execution of the simulation
using the agreement protocol in Figure 1 indeed produces an execution of the
full-information protocol on p1, . . . , pn. More precisely, the sequence of simu-
lated snapshots obtained by every process pi settled by the agreement protocols
Ai

1, A
i
2, . . . in the well-formed execution could have been indeed observed in some

execution of the full-information protocol.

Any well-formed execution of the algorithm exports, for each process pi, a
sequence of states vi1, v

i
2, . . . of the full-information protocol returned by the

agreement instances Ai
1, A

i
2, . . ., each next state “extending” the previous one.

This sequence is well defined, since each of these agreement instances returns at
most one value and the instances are used one-by-one.

Intuitively, if the sequence of states vi1, v
i
2, . . . is finite (only finitely many

invocations of Ai
1, A

i
2, . . . return), pi takes only finitely many steps in the simu-

lation. Otherwise, if the sequence of pi’s states is infinite, then pi appears correct
(takes infinitely many steps) in the simulated execution.

Now we say an execution Es of the algorithm in Figure 1 is consistent with
an execution E of the full-information protocol for processes p1, . . . , pn if, for
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each pi, the sequence of states vi1, v
i
2, . . . exported to pi by Es is the sequence of

states of pi observed in E.

Lemma 1. Let Es be any well-formed execution on s1, . . . , s` using the algo-
rithm in Figure 1. There exists an execution E of the full-information protocol
on p1, . . . , pn, such that Es is consistent with E and the input of every process
participating in E is proposed in Es by some simulator in line 4.

Proof. Given a well-formed execution Es, we construct the corresponding exe-
cution E of the full-information protocol as follows.

First of all, we observe that, thanks to the use of agreement protocols, the
evolution of the state of every simulated process is observed consistently by all
simulators: the outcome of the kth snapshot of each process pi is witnessed in
the same way by all simulators in Es.

The inputs of each simulated process is agreed using the agreement protocol
in line 7, where each decided value is chosen by some simulator in line 4.

Further, since all snapshots of St are totally ordered, we can also totally
order all snapshots of the simulated states that were agreed in line 7 for some
simulated processes, so that every next snapshot contains the preceding one.
Thus, all snapshots obtained by the simulated processes in Es are related by
containment.

Also, a simulator only accesses agreement protocol Ai
k+1 if it observes (in

line 1) that pi performed k simulated snapshots so far. Since the full-information
state proposed by a simulator to the agreement protocol in line 7 contains pi’s
most recent snapshot, we also have self-inclusion: every simulated snapshot of a
process pi contains the most recent update of pi.

Now we construct E as follows: we place simulated snapshot operations in Es

respecting the containment order, and then place each kth update of a process pi
before the first snapshot operation that returns a vector containing the (k−1)th
snapshot of pi. Here the first update operation of pi simply writes the input of
pi. �

4.2 Simulating a run using OF consensus

Our simulation algorithm using obstruction-free (OF) consensus as an agreement
protocol is presented in Figure 2. The simulation is parameterized by:

– The initialization condition: how a simulator computes an input of any pro-
cess it is simulating (line 9).

– The activation condition: how a simulator decides when to participate in the
simulation (line 10).

– The termination condition: how a simulator decides when to depart from
the simulation (line 28).

Concrete examples of how these parameters can be defined are given in Sec-
tions 5.1 and 5.2. For now we only assume that the activation and termination
conditions are publicly known: each simulator can look at the simulated state
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St and decide which simulators are active and which are able to terminate. We
assume that the conditions are monotone: if a condition holds given the current
snapshot of the simulated state, it holds given any subsequent snapshot in the
simulation.

In our simulation, each simulator si first registers its input (line 9) and then
waits until it is activated. Once si becomes active, it writes 1 as its round number
in register Ri (line 14). Therefore, we say that a simulator si is active in a given
state of the simulations if Ri 6= ⊥.

Every active simulator si proceeds in rounds. In each round, si picks one
simulated process p` and tries to move it forward using the algorithm in Figure 1
with OF consensus objects [19, 4] as the agreement abstractions. The simulated
process p` is chosen based on the following rule:

– si computes the set U of currently active (but not yet terminated) simulators.
Let m = |U |.

– si computes its rank k in U , i.e., the number of simulators in U with ids
j ≤ i.

– If m ≤ n, i.e., the number of simulators in U does not exceed the num-
ber of processes to simulate, si chooses p` as the k-th smallest process in
Sm
r mod (n

m)
, the “next” set of m simulated processes. Here, for all m, the

set of process subsets of size m is ordered as Sm
0 , ...., S

m

(n
m)−1

. (Note that the

simulation may block if the number of active simulators exceeds the number
of simulated processes, which is not extremely surprising.)

The simulation of p` in round r is performed until p` moves forward (takes one
more simulated snapshot according to the algorithm in Figure 1) or another
simulator reaches a round higher than r. Note that in the special case when the
input value for p` is not yet known, the simulation simply moves round r + 1.

Ii is an n-vector that contains inputs for processes inΠ proposed by simulator
si. If the jth position in the vector is ⊥, it means that si does not have an input
for pi. The inputs given to different simulators do not have to be mutually
consistent: different simulators can be given different input values for the same
simulated process. We say that a process pj is initialized if in a given execution
of our simulation, at least one simulator si has written a non-⊥ value in the jth
position of Ii (line 9).

Note that the simulation is well-formed: no simulator starts simulating a
step of a process pi before it finishes simulating pi’s previous step. Thus, by
Lemma 1, it produces a correct execution of the full-information protocol where
every participating simulated process starts with an input proposed by one of
the active simulators.

Moreover, our abstract simulation ensures the following property that will
be instrumental (in our concrete examples in Section 5.1 and 5.2).

Theorem 1. If, eventually, there are exactly m active and not terminated sim-
ulators, at least one of which is correct, and at least ` ≥ m processes are initial-
ized, then at least `−m+ 1 processes take infinitely many steps in the simulated
execution.
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Shared variables:
Ii, for each simulator si, initially ⊥
Ri, for each simulator si, initially ⊥

Code for each simulator si with input V :
9 Ii := initialize(V ) { the initialization rule }
10 wait until active() { the activation rule }
11 r := 0
12 repeat
13 r := r + 1
14 Ri := r
15 repeat
16 U := active and not yet terminated simulators
17 m := |U |
18 k := rank of si in U
19 if m ≤ n then
20 p` := the k-th process in Sm

r mod (n
m) { pick a process in Sm

r mod (n
m) }

21 if p` is initialized in one of I1, . . . , In then
22 run one step of the algorithm in Figure 1 for p` using OF consensus

(start a new snapshot simulation if done with the previous one)
23 else
24 break
25 else
26 break
27 until ∃sj : Rj > r or p` moves forward
28 until decided in St { the termination rule }
29 return the output

Fig. 2. Abstract simulation: the code of each simulator si

Proof. We show first that every correct simulator proceeds through infinitely
many rounds of the algorithm in Figure 2. Suppose, without loss of generality,
that r is the smallest round that is never completed by some correct simulator si.
Since a simulator completes round r as soon as it observes that another simulator
reaches a higher round (line 28), we derive that every correct process is blocked
forever in round r.

Consider the moment after which the set W of active and not yet terminated
simulators is of size m. Recall that the termination condition for each simulator
is publicly known. Therefore, there is a time after which every correct simulator
evaluates the set of such simulators as W in line 16.

Every simulator with rank k in W chooses kth process in the set Sm
r mod (n

m)
to simulate. Since no simulator reaches a round higher than r by breaking in
line 24, we observe that every correct active simulator is blocked in simulating a
step of an initialized process. But there are exactly m processes in Sm

r mod (n
m)

,
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thus, eventually, at most one simulator is promoting every initialized process in
Sm
r mod (n

m)
.

Since we use OF consensus as the agreement protocol in Figure 1 and si is
the only process to take steps of the protocol, eventually, the agreement protocol
in line 7 returns. Thus, si eventually simulates one more step of its process in
Sm
r mod (n

m)
and moves to round r + 1—a contradiction.

Thus, a correct simulator si goes through infinitely many rounds of the al-
gorithm in Figure 2. Suppose, by contradiction, that there is a set W of m
initialized simulated processes that take only finitely many steps in the resulting
simulated execution. Note that since all sets of size m are continuously explored
in the round-robin fashion, eventually, si infinitely often reaches round r such
that Sm

r mod (n
m)

= W . Since all processes in W are initialized, at least one of

them is takes at least one simulated step. By repeating this argument, we de-
rive that at least one process in W takes infinitely many simulated steps—a
contradiction.

Thus, at most m − 1 initialized processes can take only finitely many steps
in the simulated execution, i.e., at least `−m+ 1 processes take infinitely many
steps. �

5 Applications

Now we apply our abstract simulation to establish the equivalence of t-resilient
systems and wait-free (t + 1)-process systems, first for colorless tasks [5, 7] and
then for generic (colored) tasks [13].

5.1 BG simulation: characterizing t-resilient solvability of colorless
tasks

BG simulation [5, 7] is a technique by which k+1 simulators s1, . . . , sk+1 (k < n)
can wait-free simulate a t-resilient execution on processes p1, . . . , pn (n > t) of a
protocol solving a colorless task. The technique is applied to derive the following
result which we now obtain using our abstract simulation:

Theorem 2. A colorless task T is t-resiliently solvable if and only if it is wait-
free solvable by t+ 1 processes.

Proof. The “if” part of this result is straightforward. Suppose that T is solvable
wait-free by t+ 1 processes. We just let processes p1, . . . , pt+1 run the wait-free
algorithm, where each pi (i = 1, . . . , t + 1) runs the algorithm of si. As soon
as a process in {p1, . . . , pt+1} decides, it posts its decision value in the shared
memory. Every process periodically checks the memory, and returns the first
decision value it finds. In any t-resilient execution, every correct process returns.

To obtain the “only if” part, suppose that there is a t-resilient solution of T
on processes p1, . . . , pn. We want to show that T can thus be solved wait-free by
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s1, . . . , st+1. To use our abstract simulation, we need to specify the initialization,
activation, and termination parameters for the algorithm in Figures 1 and 2.

To initialize simulated processes, si puts its input value vi in all positions of
the vector Ii: Ii = [vi, ..., vn]. Every simulator si that reached line 10 is considered
active.

The termination condition is also straightforward. A simulator terminates as
soon it observes (in line 28) a simulated state St in which some simulated process
decides. The simulator then simply returns the value decided by the simulated
process.

By Theorem 1, the resulting simulated execution is going to be t-resilient and,
thus, eventually, some simulated process must decide. Therefore, every correct
simulator eventually decides and, since the task is colorless and the inputs of the
simulated processes come from the simulators, the decisions of the simulators
are consistent with the inputs in regard to the task specification. �

5.2 Extended BG simulation: characterizing generic tasks

In EBG [13], any task T = (I,O, ∆) defined for n processes p1, . . . , pn, is asso-
ciated with a task T ′ = (I ′,O′, ∆′) defined for t + 1 simulators s1, . . . , st+1 as
follows:

– In every input vector I ′ ∈ I ′, each simulator si is given a set of input values
for pi and n− t− 1 processes with ids higher than i. No two simulators are
given different input values for the same process.

– In every output vector O′ ∈ O′, each simulator si obtains a set of output
values for pi and n−t−1 processes with ids higher than i. No two simulators
obtain different output values for the same process.

– For every (I ′, O′) ∈ ∆′, the corresponding input vector I and output vector
O for processes in Π satisfy (I,O) ∈ ∆.

We apply our abstract simulation to derive the following result originally
presented in [13]:

Theorem 3. T can be solved t-resiliently if and only if T ′ can be solved wait-
free.

Proof. In both directions we use the simulation described in Figures 1 and 2
where the agreement protocols are instances of OF consensus. Recall that, in
addition to the three properties of agreement, OF consensus guarantees that
every process that, from some point on, runs solo eventually decides.

The “only if” part. Suppose we are given an algorithm that t-resiliently solves
T . In a wait-free solution of T ′ for t+ 1 simulators s1, . . . , st+1, every simulator
that reached line 10 is considered active. As in Section 5.1, every simulator si
simply uses its input in T ′ to initialize its vector Ii. Then every active si runs
the algorithm in Figures 1 and 2 until it observes outputs for pi and n − t − 1
processes with ids higher than i (the termination condition in line 28).
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Initialization (line 9):
Ii := V { V is si’s input of T ′, a vector of at least n− t input values of T }

Activation (line 10):
true

Termination (line 28):
pi and n− t− 1 processes with ids higher than i decided in St

Fig. 3. The parameters of T ⇒ T ′ (lines 9, 10 and 28 in Figure 2)

Again, we show first that every correct simulator eventually terminates. Sup-
pose, by contradiction, that there is a set W of exactly m ≥ 1 active simulators
that never terminate, and at least one of them is correct. Since there are m
active simulators, exactly ` ≥ n− t+m− 1 simulated processes are initialized.

By Theorem 1, in the resulting execution, at most m − 1 ≤ t initialized
processes take only finitely many steps in the resulting simulated execution. Since
the simulated algorithm is t-resilient, we derive that at most m − 1 initialized
processes never decide.

Let {si1 , . . . , sim} be the simulators in W sorted in the order of increasing
ids. Note that there are at least n − t + m − 1 initialized processes with ids
i1 and higher, and at most m − 1 of them never decide. Hence, si1 eventually
observes at least n − t decided processes with ids i1 or higher. We derive that
pi1 never decides, otherwise si1 would observe that pi−1 and n− t− 1 processes
with ids higher than i1 are decided and terminate. Inductively, sj observes at
least n − t + m − j initialized decided processes with ids ij and higher and at
most m− j of them never decide. But for j = m this gives at least n− t decided
processes with ids im and higher, and, thus, sim terminates—a contradiction.

Thus, eventually, every correct simulator outputs.

The “if” part. Now suppose we are given a wait-free solution of T ′ for processes
p1, . . . , pt+1. We derive a t-resilient solution for T on n simulators s1, . . . , sn as
follows.

Every simulator registers its participation by writing its input of T in the
shared memory. As soon as a simulator si ∈ {s1, . . . , st+1} witnesses the partic-
ipation of at least n − t − 1 processes with ids higher than its own, it joins the
simulation of the wait-free algorithm solving T ′. Respectively, in the simulation,
a process pi is considered initialized if si and n− t−1 simulators with ids higher
than i have posted their inputs of T .

Note that, initially, every active simulator si ∈ {s1, . . . , st+1} corresponds to
a distinct initialized simulated process pi. Thus, the number of active not yet
terminated simulators does not exceed the number of simulated processes, and,
by Theorem 1, at least one simulated process takes sufficiently many steps to
decide (the simulated protocol is wait-free).

Once at least one simulated process decides (i.e., at least n − t participat-
ing simulators terminate), every simulator si without output (whether it is in
{s1, . . . , st+1} or not) joins the simulation and runs it until some simulated pro-
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Initialization (line 9):
Ii := V { V is si’s input in T }

Activation (line 10):
if si /∈ {s1, . . . , st+1} then

wait until at least one simulated process in {p1, . . . , pt+1} decides
Termination (line 28):

some pj decides with an output containing the value of si

Fig. 4. The parameters of T ′ ⇒ T (lines 9, 10 and 28 in Figure 2)

cess produces an output for it (see the activation procedure in Figure 4). A
simulator terminates as soon as its output is produced by some decided simu-
lated process (the termination condition in 28).

Again, suppose, by contradiction that there are ` > 0 participating simulators
that never decide, at least one of which is correct. We observe first that there
are at least ` initialized processes in {p1, . . . , pt+1} that never terminate. Indeed,
since n − t simulators decided in the first phase of our simulation, the total
number of participating simulators is n− t+ k ≥ n− t+ `, where k is the exact
number of participating simulators in {s1, . . . , st+1}.

Note that, since exactly ` out of m simulators are undecided in the current
simulation, exactly ` out of k initialized simulated processes never terminate.
Indeed if we imagine that k− `+ 1 out of k initialized simulators terminate, the
total number of decided simulators must be n− t+k−`+1 which, together with
the ` participating simulators that never decide gives n− t+ k+ 1 participating
simulators in total.

By Theorem 1, at most ` − 1 simulated process takes only finitely many
steps in the simulated execution. Thus, at least one of the ` never terminated
simulators take infinitely many steps, and, since the simulated protocol is wait-
free, eventually decides—a contradiction.

Thus, our construction indeed ensures that every live simulator eventually
decides. Since the decision come from an execution of a protocol solving T ′ with
the same inputs, the solution is correct with respect to T . �

6 Concluding remarks and speculations

This paper proposes a simple and intuitive simulation technique that is general
enough to derive a wide variety of models equivalence results. At a high level, the
technique maintains the invariant that the number of simulators conincides with
the number of currently simulated processes. Therefore, as long as there is a live
simulator, at least one of the simulated processes makes progress. To maintain
the invariant, a terminated process may bring the number of simulators by one.
As our algorithms in Section 5 suggest, multiple existing and new equivalence
results can be established by simply parameterizing initialization, activation,
and termination rules in our simulation framework.
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Below we briefly sketch how the equivalence between the “generalized k-state
machine”’ [15] and active (k − 1)-resilience. Sorting out details of the sketched
algorithms and proving their correctness is left for (immediate) future work.
We also show how to extend the technique to models equipped with k-process
consensus objects.

Bounded active resilience. Suppose that we have a protocol solving task T
assuming that at most k − 1 active processes may fail. Recall that a process is
considered active if it has started the protocol and have not yet output. Without
loss of generality, we assume that in the first step of the protocol, each process
registers its input value in the shared memory. Thus, at any point of the execu-
tion, active processes are not yet terminated processes whose input values are
registered.

In a (k − 1)-active resilient model, we can easily solve k-set agreement as
follows. Assuming active (k−1)-resilience, the active processes simulate the first
steps of at most k processes q1, . . . , qk. As soon as the first step of at least
one simulated process qi is completed, every process can decide on the posted
value. A process participates in the simulation as long as it is among the first k
active processes. In that case, the process with rank ` ∈ {1, . . . , k} is assigned to
simulate process q`. If there are k or more active processes with smaller ids, then
the process simply waits until a decision value is posted. Since at most k − 1
active processes may fail, at least one simulated process will eventually complete
its first step, and every correct process will eventually decide.

In the other direction, we employ the simulation algorithm of Section 4.2
run on min(k, `) state machines, where ` is the number of active processes. The
construction of [15] guarantees that at most min(k, `) − 1 state machines may
stall. Moreover, as long as there is at least one correct active process, at least one
machine makes progress by simulating an active k-resilient execution. Therefore,
every correct active process eventually terminates.

Beyond read-write. It is straightforward to extend our colorless simulations
to the models where simulators can use k-process consensus objects so that, e.g.,
` simulators can simulate a system of d`/ke processes in the wait-free manner.

Indeed, consider the one-step simulation in Figure 1, where the agreement
protocol Ai

k+1 is augmented with k-processes consensus. “Augmented” means
here that the protocol additionally guarantees that if at least one process among
the first k to access it is correct, then every correct simulator returns. We can
easily implement such an abstraction using k-process consensus object and read-
write registers.

Now we apply our abstract simulation in Figure 2 and observe that a simu-
lated process can only block forever if some k faulty simulators died in the middle
of its simulation. As long as there is one correct simulator, at most dk/`e − 1
simulated processes can fail.

Acknowledgements. The author is grateful to Eli Gafni for multiple discus-
sions on model simulations and to Armando Castañeda for sharing his confusions
about the original EBG algorithm [13], which inspired deriving the technique
proposed in this paper.
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