
Renaming and the Weakest Family of Failure Detectors

Yehuda Afek

Tel-Aviv University

Petr Kuznetsov

TU Berlin/Deutsche Telekom Laboratories

Israel Nir

Tel-Aviv University

Abstract

We address the question of the weakest failure detector to circumvent the impossibility of (2n− 2)-
renaming in a system of up to n participating processes. We derive that in a restricted class of eventual
failure detectors there does not exist a single weakest oracle, but a weakest family of oracles ζn: every
two oracles in ζn are incomparable, and every oracle that allows for solving renaming provides at least
as much information about failures as one of the oracles in ζn. As a by product, we obtain one more
evidence that renaming is strictly easier to solve than set agreement.

Keywords: renaming, impossibility, synchrony assumptions, failure detectors

1 Introduction

Solving distributed computing problems in the presence of faults and in the absence of strong synchrony
assumptions is a challenging task. It is often argued that these two factors are exactly what makes dis-
tributed computing research interesting. Indeed, most important problems are impossible to solve in purely
asynchronous read-write shared-memory systems if processes participating in the computation may fail,
even within the simple crash fault model in which a faulty process stops taking steps in the computa-
tion [6, 13, 22, 27]. Therefore, if we want to solve such problems in a fault-tolerant manner, we need to
strengthen our synchrony assumptions.

A convenient approach to model partially synchronous systems is to use failure detectors [10,11]. Infor-
mally, a failure detector is a distributed service that provides hints about failures to processes participating
in a distributed computation. At any moment of time, this information does not have to be accurate and
complete, but it should satisfy certain axiomatic properties, depending on the specification of the failure
detector. The notion of the weakest failure detector [10] captures the minimal information about failures
that allows us to solve a given problem. That is, the information provided by the weakest failure detector for
solving problem P is both sufficient and necessary to solve P .

In this paper, we focus on the weakest failure detector question in the context of renaming [2, 23]. In
the problem of K-renaming, n processes come from a large set {p1, . . . , pm} (m ≥ 2n − 1) of potential
participants and choose new names in a smaller name space 1, . . . ,K, so that no two processes choose the
same name. We assume that the processes communicate by reading and writing in the shared memory.
Typical values of K considered in this paper are 2n− 1 and 2n− 2.

Background. In the read-write shared memory model, the K-renaming problem has a wait-free solution
when K ≥ 2n− 1 [5] (page 392, which is an adaptation of the message passing renaming algorithm of [2]).

1

Informally, a wait-free solution guarantees that each participating process obtains an output in a bounded
number of its own steps, regardless of the processing delays or failures of other processes [20].

In [7], it was shown that for infinitely many values of n, (2n− 2)-renaming is wait-free unsolvable. In
this paper, we assume that n is such that (2n − 2)-renaming is wait-free unsolvable, and we are interested
in the minimal information about failures (encapsulated in a failure detector) that must be provided to make
it solvable.

The problem of K-renaming is closely related to the (weak) symmetry breaking problem (SB) [18]
(called reduced renaming in [23]). In the SB problem, up to n participating processes are required to output
binary values. In every execution in which exactly n processes output, at least one process must output 0
and at least one process must output 1.

In fact, weak renaming (K = 2n− 2, we simply call this case renaming in the following) is equivalent
to SB [18]. In order to implement renaming from SB, we first observe that the (2n− 1)-renaming algorithm
of [2] has the property that if k ≤ n processes participate then they receive names in the range {1, . . . , 2k−
1}. Now SB can be used to partition the set of n participants into two non-empty sets S0 (processes decided
0) and S1 (processes decided 1). Then each class independently employs the wait-free algorithm of [2].
Processes in S0 simply output the names returned by the algorithm of [2]. If a process in S1 obtains name
x from the algorithm of [2], then it outputs 2n − 1 − x. If |S0| = r < n, then the largest name that can be
obtained by a process in S0 is 2r − 1, and the smallest name that can be obtained by a process in S1 is at
least 2n− 1− 2(n− r) + 1 = 2r. Thus, every process obtains a unique name in the range {1, . . . , 2n− 2}.
In the other direction, suppose that we can rename n processes in the range {1, . . . , 2n− 2}. Since there are
exactly n − 1 even names and exactly n − 1 odd names in {1, . . . , 2n − 2}, taking the parity of the output
name solves SB.

The requirement of at most n out of m processes participating in an execution can be formulated as a
condition on the allowed failure patterns. Informally, a failure pattern in a given execution tells where and
when failures might occur. In this paper we consider a specific set of failure patterns (an environment in the
parlance of [10]) in which m − n or more processes are initially faulty, and thus at most n processes can
participate, i.e., take steps in the computation.

In this “n-participant” environment, denoted by En, we are looking for the minimal information about
failures required to solve renaming. Put differently, we are looking for the weakest failure detector to solve
renaming in En [10]. Informally, D is the weakest failure detector for solving a given problemM if D is
both (1) sufficient to solveM, i.e., there exists an algorithm that solvesM using D, and (2) necessary to
solveM, i.e., any failure detector that is sufficient to solveM provides at least as much information about
failures as D does. Renaming belongs to the large class of problems for which a weakest failure detector is
guaranteed to exist [24].

But is this question meaningful? Strictly speaking, the weakest failure detector for solving the renaming
problem in En is renaming itself. Indeed, consider a failure detector Dren that outputs either ⊥ or a name
in the range {1, . . . , 2n − 2}. At every process, Dren initially outputs ⊥, but it may at some point switch
to outputting a distinct value in {1, . . . , 2n− 2}. Dren guarantees that no two processes are given the same
name and that every correct process is eventually given a single distinct name.
Dren is sufficient to solve renaming in En: a process can simply wait until Dren provides it with a

(unique) name. Dren is also necessary to solve renaming in En, since it can be implemented given any
algorithm that solves renaming in En. Notice that this transformation of the renaming problem into the
corresponding failure detector is possible due to the fact that renaming is an “input-less” task: the outputs
depend only on the execution’s schedule and not on the inputs of the participating processes.

Is this (trivial) solution satisfactory? Arguably, no: the “renaming” failure detectorDren is obviously ar-

2

tificial, and to implement it in a given distributed system model is equivalent to solving renaming. Therefore,
it does not provide any insights about the difficulty of solving renaming in “realistic” partially synchronous
models.

In this paper we consider a class Z [29] of “realistic” failure detectors. This class is defined by three
restrictions: First, we consider only eventual failure detectors, i.e., each failure detector is allowed to output
any value in its range (the set of its possible outputs) for an unbounded but finite period of time. Second,
we assume that the range of a failure detector is finite. Third, we assume that the “eventual” output of the
failure detector depends solely on the set of faulty processes and not on the exact timing or order of failures.
Most failure detectors in the literature are in Z , including ♦S [11], Ω [10], anti-Ω [29] and ¬Ωk [30]. Note
that Dren described above is not in Z , since it is not eventual.

Contributions. In the class Z of failure detectors, satisfying the three conditions above (see also Section
4), we establish the existence of a weakest family of failure detectors: a collection ζn of mutually irreducible
failure detectors (none of them can implement the other), such that each failure detector inZ that can solve a
non-trivial task (i.e., a task that cannot be solved in the asynchronous wait-free model, specifically symmetry
breaking), can implement some failure detector in ζn. Moreover, when m = 2n − 1, any element in ζn is
strong enough to solve renaming. Given that every two distinct failure detectors in ζn are incomparable, we
conclude that there is no unique weakest failure detector for renaming in Z .

Note that this result does not contradict the previously mentioned result of Jayanti and Toueg [24] that
many problems (including renaming) have a matching weakest failure detector. Indeed, given a collection
C of failure detectors that solve a problem M, the abstract reduction algorithm in [24] derives a failure
detector that is weaker than any failure detector in C but still sufficient to solveM. This constructed failure
detector is however not eventual: based on the failures in any run the construction picks in an irrevocable
manner an “algorithm” that solvesM. Therefore, it is not allowed to make mistakes. Naturally, Dren, the
weakest failure detector for renaming, is not eventual either.

As a side product, this paper shows that the task of set consensus [12] is strictly harder than the task
of renaming. In the environment En, when m = 2n − 1, any element in ζn is strong enough to solve
renaming. When m > 2n − 1, there exists a proper subset of detectors of ζn (and indeed, many such
subsets) whose combined power solves renaming. However, in both cases, no proper subset of ζn can solve
(n− 1)-set consensus in En.1 This is the first evidence of the relationship between the two tasks derived for
asynchronous systems equipped with failure detectors, complementing [17, 18].

Road map. Section 2 overviews the related work. Section 3 presents our model. Section 4 defines the
class Z of failure detectors considered in this paper. Section 5 introduces ζn and overviews the results of
this paper. Section 6 shows that no failure detector in ζn can be implemented by the other members of that
family, and that every non-trivial failure detector implements at least on of the members in ζn. Section 7
explores the collective power of ζn to solve (n− 1)-set consensus task. Section 8 shows that any element of
ζn solves symmetry breaking and that ζn is a family of weakest failure detector to solve renaming. Section 9
compares elements of ζn to failure detectors in the set consensus hierarchy [15]. Section 10 discusses
alternative perspectives on the problems considered in this paper and lists open questions.

1In the k-set consensus task (k-SC), the processes start with private inputs and produce outputs so that the set of output values
is a subset of the set of inputs of size at most k. In En, we say simply set consensus (SC) for (n− 1)-set consensus.

3

2 Related Work

Attiya et al. [2] introduced the task of renaming and conjectured that the task is impossible to solve for n
processes and an output name space of size 2n− 2 or less. Several papers later claimed to have proved this
conjecture for all n, using instruments of algebraic topology [4,21,23]. Castañeda and Rajsbaum discovered
that the claim is correct only for infinitely many values of n [8, 9].

In this paper, we derive the minimal information about failures (expressed using the formalism of failure
detectors) from the very impossibility of renaming and symmetry breaking. Therefore, the necessity part of
our results hold for those values of n for which the tasks are impossible to solve [8]. Notice that for other
values of n (namely, natural numbers the binomial coefficients of which are relative prime [8], the smallest
such number is 6), the tasks of renaming and symmetry breaking can be solved wait-free [9].

The equivalence between renaming for an output name space of size 2n−2 and SB was shown by Gafni
et alii [18].

A stronger variant of the renaming problem called adaptive renaming was introduced by Attiya and
Fouren [3]. Adaptive renaming additionally guarantees that if 1 ≤ k ≤ n participate, then all output
names belong to the range {1, . . . , 2k − 2}. Gafni et al. [14, 16] showed that adaptive renaming is, in a
strong sense, equivalent to (n − 1)-set consensus: any algorithm solving one problem can be used for a
“black-box” solution of the other. In this paper, we are focusing on (non-adaptive) renaming, for which the
necessary and sufficient information about failures for this problem was not yet well understood.

Failure detectors, as oracles that describe synchrony assumptions to solve distributed computing prob-
lems, were introduced by Chandra and Toueg [11], and the first “weakest failure detector” was determined
for the consensus task by Chandra, Hadzilacos, and Toueg [10]. Jayanti and Toueg showed that every prob-
lem in a large class of problems can be matched with the corresponding weakest failure detector [24].

Zieliński introduced the class Z of failure detectors and derived a complete classification of failure
detectors in Z according their ability to solve distributed tasks [29]. In a subsequent paper, Zieliński showed
that anti-Ω, the failure detector that outputs a process identifier so that some correct process is output only
finitely many times, is the weakest failure detector for solving (n − 1)-set consensus [30] in a system of
m = n processes. In [15], Gafni and Kuznetsov showed that¬Ωn−1, a generalization of anti-Ω that outputs a
set of m− n+ 1 processes such that some correct process is output only finitely many times, is the weakest
failure detector for solving (n − 1)-set agreement in a system of m ≥ n processes, in all environments,
regardless of the assumptions on when and where failures might occur.

The current paper is based on [1], where a model of loosely-named systems was introduced. Informally,
a loosely-named system assumes a set of n processes, where each process picks up an initial name in a large
range of m names (m ≥ 2n− 1) before joining the computation. Respectively, the notion of loosely-named
failure detectors is introduced in [1] and loosely-named failure detectors for set consensus, renaming and
symmetry breaking, are described. Specifically, it is shown in [1] that loose-anti-Ω, a failure detector that
outputs a process name so that eventually the name of some correct process is never output, is the weakest
loosely-named failure detector in Z to solve the set consensus task.

This paper observes that, regarding the information about failures, the loosely-named systems can be
replaced with a conventional system of m processes with a restriction that at most n of them are allowed
to participate in the computation. The latter restriction can be naturally modeled as an environment En [10]
which consists of failure patterns with at least m− n initially faulty processes.

This simple observation allowed us to focus on the (most interesting) result of [1] concerning the weakest
family of failure detectors. Indeed, loose-anti-Ω considered in En is equivalent to ¬Ωn−1 which is known
to be the weakest failure detector for solving (n− 1)-set consensus in any environment, including En [15].

4

3 Model

We consider a system of m processes Π = {p1, . . . , pm}. Unless otherwise stated, throughout this paper
we assume that the name of process pi is i. Processes communicate by reading and writing in the shared
memory and can query a failure detector [10, 11]. Processes are subject to crash failures: a failed process
simply stops taking steps in the computation.

3.1 Failure patterns and failure detectors

A failure pattern F is a function from the time range T = N to 2Π, where F (t) denotes the set of processes
that have crashed by time t. Once a process crashes, it does not recover, i.e., ∀t < t′ : F (t) ⊆ F (t′). We
define faulty(F) =

⋃
t∈T F (t), the set of faulty processes in F . Respectively, correct(F) = Π \ faulty(F).

When the failure pattern is well known, we use C to mark the set of correct processes. A process p ∈ F (t)
is said to be crashed at time t. An environment is a set of failure patterns. By default, we assume that at
least one process is correct in every failure pattern.

A failure detector history H with rangeR is a function from Π× T toR. H(pi, t) is interpreted as the
value output by the failure detector module of process pi at time t. A failure detector D with range RD is
a function that maps each failure pattern to a (non-empty) set of failure detector histories with range RD.
D(F) denotes the set of possible failure detector histories permitted by D for failure pattern F . We do not
put any restriction on the possible ranges of failure detectors, apart from requiring them to be finite.

3.2 The n-participant environment, En

Let n ≤ m. In this paper, we restrict our attention to the n-participant environment En that consists of all
failure patterns F such that |F (0)| ≥ m − n. Notice that m is omitted from the notation. In other words,
we only consider runs in which at most n processes are allowed to take steps. In case m = n, we say that
the system is tightly named.

For a set P ⊆ Π, |P | = n, let environment EP consist of failure patterns in which only processes in P
participate, i.e., take steps: EP = {F ∈ En | (Π \ P) ⊆ F (0)} = {F ∈ En | correct(F) ⊆ P}.

In this paper, we assume n ≥ 2 (for n = 1, the task of Renaming is trivial, and the task of SB is
undefined). Note also that for n = 2 participants, our tasks of Renaming and SB are equivalent to consensus
for which the weakest failure detector is known [10].

3.3 Algorithms

We define an algorithm A using a failure detector D as a collection of deterministic automata, one automa-
ton Ai for each process pi. In each step of Ai, process pi performs an operation on a shared register, or
queries its module of the failure detectorD and receives a value, and then performs a state transition accord-
ing to its automaton and the received values. A step is thus defined as a tuple that consists of a process id,
the type of the step (read, write, or query), the accessed register if it is a memory (read or write) step, the
read value if it is a read step, the written value if it is a write step, any process-local state transition and the
failure detector value if it is a query step.

For each process pi, the state of the automaton Ai includes a read-only input variable, denoted INi, and
a write-once output variable, denoted OUTi. In each initial state of Ai, the input variable INi contains the
input value of pi and the output variable OUTi is initialized to the special value ⊥ (to denote that it has not
yet been written by pi).

5

3.4 Runs

A state ofA defines the state of each process and each register in the system. An initial state I ofA specifies
the value of INi for every (participating) process pi. A run of algorithm A using a failure detector D in an
environment E is a tuple R = 〈F,H, I, S, T 〉 where F ∈ E is a failure pattern, H ∈ D(F) is a failure
detector history, I is an initial state of A, S is an infinite sequence of steps, respecting the automata A and
the sequential specification of shared registers (each read step returns the value of the last write step on the
same register), and T is an infinite list of increasing time values indicating when each step of S has occurred,
such that for every query step S[j] performed by process pi that returned value d, H(pi, T [j]) = d. We say
that a run R = 〈F,H, I, S, T 〉 is fair if every process in correct(F) takes infinitely many steps in S.

3.5 Distributed tasks.

A task is defined through a set I of m-input vectors (one input value for each participating process that
equals ⊥ for non-participating processes) a set O of output m-vectors (one output value for each process
that equals ⊥ for non-terminated processes) and a total relation ∆ that associates each input vector with a
set of possible output vectors. Intuitively, in the task solution, processes start with inputs in I and eventually
produce outputs in O, so that the resulting input and output vectors are related by ∆.

In the k-set consensus task, each process takes a value in {0, . . . , k} as an input, and the set of non-⊥
output values is a subset of the input values of size at most k. In environment En, the task of (n − 1)-
set consensus (we simply denote it by SC) is of special interest to us. A slightly stronger version of SC,
called Strong Set Consensus [6], requires that if every participating process outputs, then at least one process
outputs its own input value. It is straightforward to see that Strong Set Consensus is equivalent to SC [6].
Therefore, this paper assumes that every solution to SC satisfies this property.

3.6 Solving a task with a failure detector

Consider a task T = (I,O,∆) and an environment E . We say that an algorithm A solves T in E using a
failure detector D, if in every fair run 〈F,H, IN, S, T 〉 of A, where F ∈ E and IN ∈ I, every process in
correct(F) eventually decides, i.e., writes a non-⊥ output value to a write-once local variable OUTp, so that
the resulting vector OUT satisfies (IN,OUT) ∈ ∆.

We write D →En T if there exists an algorithm, A, that solves task T in environment E using a failure
detector D. If there is no such algorithm, we say that D doesn’t allow solving T in E , and use the notation
D 9En T .

3.7 Comparing failure detectors

We say that failure detector D is weaker than failure detector D′ in environment E , and we write D �E D′,
if there exists an algorithm A using D′ that emulates a query of D in E . (We call A a reduction algorithm.)
More precisely,Amaintains, at every process pi, a local variable D-outputi and guarantees that in every run
with failure pattern F , there exists a history H ∈ D(F) such that for all t ∈ T and all process pi, the value
D-outputi at time t is H(pi, t). If D �E D′ and D′ �E D, then we say that D is strictly weaker than D′ in
E , and we write D ≺E D′.
D is the weakest failure detector to solve a taskM in E if (i) there is an algorithm that solvesM using

D in E and (ii) D is weaker than any failure detector that can be used to solveM in E . Every task can be
shown to have a weakest failure detector [24].

6

A failure detectorD is trivial in E if there is an algorithm that emulatesD in E without using the outputs
of any other failure detector (we call such an algorithm asynchronous). For brevity, in such a case we may
also say that D can be implemented in E . A failure detector D is non-trivial if there is no such algorithm.

3.8 Anti-Ω and ¬Ωk

Two failure detectors are of special interest in this work, anti-Ω, introduced by Zieliński in [29] and its
generalization ¬Ωk introduced by Raynal [26].

Definition 1 anti-Ω is a failure detector that outputs a process name whenever queried, such that there is
at least one correct process whose name is returned only a finite number of times.

In [30], Zieliński showed that anti-Ω is the weakest failure detector for solving (m − 1)-set consensus
in Em (assuming that any set of processes can participate). This was followed [26] by the introduction of
k-anti-Ω, or ¬Ωk for short:

Definition 2 ¬Ωk is a failure detector that in every run outputs, when queried, a set of m − k process
names, such that at least one correct process is returned only a finite number of times.

Trivially, ¬Ωk is the same failure detector as anti-Ω when k = m− 1, and thus ¬Ωm−1 can implement
(m−1)-set consensus in Em. Moreover, when k = 1, ¬Ωk is equivalent to the Ω failure detector [10] which
eventually returns the name of a single correct process (by taking the complement to ¬Ω1’s output), and
thus, ¬Ω1 solves consensus.

In [30], Zieliński proved that for any k, ¬Ωk can be used to implement k-set consensus in any environ-
ment, by showing that it is equivalent to another failure detector,

−→
Ω k. In a nutshell,

−→
Ω k is a failure detector

that outputs a vector of k entries, each is a process id. Eventually, at least one of the entries behaves like
the Ω failure detector [10], that is, it stabilizes on the id of one of the correct processes. Finally, Gafni
and Kuznetsov [15] showed that ¬Ωk is the weakest failure detector for solving k-set agreement in any
environment.

3.9 Renaming and symmetry breaking

The task of K-renaming, for the n-participant environment En (m ≥ n) (n out of m processes are allowed
to participate), requires that every correct process eventually outputs a name in a name space 1, . . . ,K, and
that no two processes that output a name choose the same name.

In the related task of symmetry breaking (SB), n processes have no input and output a binary value, 0 or
1. If all n processes output, at least one process outputs 0 and at least one process outputs 1. As we sketched
in the introduction, SB is equivalent to (2n − 2)-renaming. In [7], it was shown that for infinitely many
values of n, SB and thus, (2n − 2)-renaming (simply called Renaming in that paper), cannot be solved in
the read-write asynchronous system.

Note that our environment-based definition of K-renaming slightly differs from the original definition
of [2, 23] that requires n processes, p1, . . . , pn, each with an input in a large space {1, . . . ,m} to output
names in a smaller space {1, . . . ,K} so that no two processes output the same name. To filter out trivial
solutions that simply use process identifiers (e.g., every process pi just outputs its identifier i), it is in [2,23]
assumed that the algorithm must be anonymous, i.e., may only depend on the inputs and not on the process
identifiers.

7

It is easy to see that the two definitions of K-renaming, the input-based one and the environment-based
one, are equivalent in the following sense: any read-write asynchronous algorithm to solve one version
of K-renaming can be used to solve the other. Informally, an algorithm Ainp that solves input-based K-
renaming for n processes can be used to solve the environment-based K-renaming in E by letting each
process pi ∈ {p1, . . . , pm} run the code of Ainp with input i. Similarly, an algorithm Aenv that solves K-
renaming in En can be used to solve the input-basedK-renaming among n processes by letting each process
with input i run the code of Aenv corresponding to process pi.

However, our version of K-renaming is easier to reason about in the models with failure detectors,
since it does not put restrictions on the algorithms (it is hard to extend the notion of anonymous algorithms
to failure-detector reductions). Note that in our model, K-renaming is an input-less task which allows us
to easily determine the corresponding weakest failure detector, denoted DK-ren. The range of DK-ren is
{⊥, 1, . . . ,K}. Initially it outputs ⊥ at every process. It may, eventually switch to outputting a distinct
name in {1, . . . ,K} so that (1) at every correct process, a name in {1, . . . ,K} is eventually permanently
output and (2) the same name is never output at different processes.

Obviously, DK-ren allows for solving K-renaming in En: every process simply waits until the output is
provided by its failure detector module. Moreover, every algorithm solving K-renaming using any failure
detector D can be used to implement DK-ren in En. Thus, DK-ren is the weakest failure detector to solve
K-renaming in En. To eliminate such trivial solutions, in the next section, we put some natural restrictions
on the scope of failure detectors we are willing to consider.

4 The class Z of failure detectors

In this paper, we make the following restrictions on the class of considered failure detectors [29].2:

Z1 A failure detector can behave arbitrarily for any finite amount of time.

Z2 The range of a failure detector is finite: |RD| <∞.

Z3 The output of a failure detector depends only on the set of correct processes and not on the timing of
failures: ∀F, F ′, correct(F) = correct(F ′): D(F) = D(F ′).

The class of failure detectors that satisfy Z1 – Z3 is denoted by Z . We observe that the reasoning
of [29] about the properties of failure detectors in Z , originally derived for the “wait-free” environment Em,
also works for any environment En. Due to Z3, we may now define D(C) as the set of possible failure
detector histories permitted by failure detector D when the set of correct processes is C.

Chiefly, a failure detector D ∈ Z is unambiguously determined by the set of values that can be output
infinitely often in any run using D. Formally, let inf (H), for a history H be the set of values appearing an
infinite number of times in H . Let infsetD(C) denote the set of valid sets of values the failure detector D
may return an infinite number of times when C is the set of correct processes, that is:

infsetD(C) = {inf (H) |H ∈ D(C)} (1)

To define a failure detector in Z it is thus sufficient to define the value infsetD(C) for all C ⊆ Π. For
instance, consider the ¬Ωk failure detector that, as mentioned previously, outputs when queried a set of

2We slightly reformulate the properties of [29] to match our definitions. Specifically, property Z3 is rewritten to conform with
the standard failure detector formalism [10].

8

m− k processes, so that eventually some correct process is never output. Formally:

infset¬Ωk
(C) = {T ⊆ 2Π | (C 6⊆ ∪S∈TS ∧ (∀S ∈ T. |S| = m− k)} (2)

It is easy to see that the K-renaming failure detector DK-ren defined in the previous section is not in Z ,
since it is not eventual: it only allowed to switch from ⊥ to a name in {1, . . . ,K} once.

5 The weakest failure detector family

Consider the environment En. In the class Z of failure detectors we establish the existence of a weakest
family of failure detectors in En. We introduce a collection ζn of mutually irreducible non-trivial failure
detectors, such that every non-trivial failure detector in Z can be used to implement some failure detector
in ζn.

Definition 3 Given a subset S ⊆ Π of n ≥ 2 processes (we simply say an n-subset of Π in the following),
ζ(S) is a failure detector that returns a process name whenever queried. Eventually, ζ(S) returns only the
names of processes in S. If some of the processes in S are correct, there is at least one correct process in S
that ζ(S) returns only a finite number of times. Essentially, ζ(S) can be thought of as a localized version of
anti-Ω for the subset S. Formally:

infsetζ(S)(C) = {T | (T ⊆ S) ∧ ((C ∩ S 6= ∅)⇒ (C ∩ S * T))}

Definition 4 Let ζn be the set of (mn) different possible failure detectors ζ(S), one for each n-subset S ⊆ Π
in En: ζn = {ζ(S) |S ⊂ Π, |S| = n}.

Definition 5 Let ζ̄n be a failure detector that returns a vector consisting of the outputs of the failure de-
tectors in ζn in some arbitrary and well known order. That is, ζ̄n can be considered as the union of failure
detectors in ζn.

The failure detectors in ζn satisfy the following properties in environment En, n ≥ 3 (proofs are given in
the next sections):

1. No failure detector in ζn can be implemented in En, even in a system equipped with all the other
failure detectors in the family. That is, ∀ζ ∈ ζn, ζ �En (ζn \ ζ) (Theorem 7 in Section 6).

2. Any non-trivial failure detector in Z implements at least one failure detector in ζn (Theorem 10 in
Section 6).

3. ζ̄n, the union of the failure detectors in ζn implements (n − 1)-set consensus in En, we simply write
ζn →En SC (Corollary 13 in Section 7).

4. No strict subset of ζn implements (n− 1)-set consensus: ∀ζ ∈ ζn, (ζn \ ζ) 9En SC (Corollary 14 in
Section 7).

5. When m = 2n − 1, there is an algorithm that solves Symmetry Breaking given the output of any
failure detector in ζn: ∀ζ ∈ ζn, ζ →En SB (Theorem 17 in Section 8).

9

6. When m > 2n − 1, there is an algorithm that solves Symmetry Breaking in En using a subset of
O(
(dm/2e

n

)
) failure detectors in ζn (Theorem 21 in Section 8).

Note that items 4, 5, and 6 above show that for m ≥ 2n − 1, solving Symmetry Breaking (and, thus,
renaming) requires strictly less information about failures than solving set consensus. This complements
the result of Gafni et al. [18] (which is extended in [17]) that in the iterated immediate snapshot model,
renaming is weaker than set consensus to the asynchronous shared memory models with failure detectors.

6 The power of ζn
One can consider each ζ(S) as a localized version of anti-Ω, operating on a specific subset S. If there
are no correct processes in S, eventually any output of ζ(S) is valid for anti-Ω. If, however, there is a
correct process in S, ζ(S) returns the name of at least one such process only a finite number of times. This
observation leads to Lemma 6, claiming that each ζ(S) is non-trivial, and to Theorem 10, claiming that the
ζn family is the set of weakest failure detectors.

Lemma 6 For any n-subset S ⊆ Π, ζ(S) cannot be implemented in ES .

Proof. By contradiction, suppose that there exists an algorithmA that for some n-subset S implements ζ(S)
in ES . We show that this implies that there exists an algorithm A′ implementing anti-Ω [29] in a system Π′

of n processes, which in turn means that SC is read-write solvable in Π′. Indeed, map every process qi ∈ Π′

to a distinct process δ(qi) ∈ S and let qi run the algorithm of δ(qi), implementing ζ(S). Eventually ζ(S)
returns only names of processes in S (initially, whenever it returns a name of a process not in S, we may
return the name of an arbitrary process in S as the output of anti-Ω). This would implement anti-Ω in Π′ —
a contradiction [29]. �

Note that Lemma 6 implies that ζ(S) cannot be implemented in En. Nevertheless, even though each
ζ(S) is non-trivial in En, it cannot implement ζ(S′) for S 6= S′. In fact, no failure detector in ζn can be
implemented by the collective power of all other failure detectors in ζn:

Theorem 7 Given S ⊂ Π, |S| = n, ζ(S) cannot be implemented in En using ζn \ {ζ(S)}.

Proof. It is enough to show that ζ(S) cannot be implemented by ζn \ {ζ(S)} in the environment ES that
consists of all failure patterns in which only processes in S participate. Indeed, since ES ⊆ En, this would
imply that ζ(S) cannot be implemented from ζn \ {ζ(S)} in En.

First we show that for each subset of processes S′ 6= S, |S′| = n, ζ(S′) can be implemented in read/write
in ES . We simply output any process p ∈ S′ \ S. (Since S′ 6= S and |S| = |S′|, S′ \ S 6= ∅.) Obviously, in
ES , p is faulty, and thus is a valid output for ζ(S′).

Therefore, for all S′ 6= S, the failure detector ζ(S′), and hence ζn \ {ζ(S)}, can be implemented in ES .
Thus, ζ(S) cannot be implemented from ζn \ {ζ(S)}, otherwise we would obtain a read-write implementa-
tion of ζ(S) in ES , contradicting Lemma 6. �

Our next step in showing the relative weakness of failure detectors in ζn is proving that any non trivial
failure detector that belongs to the class Z , implements at least one ζ(S). First, we show in the following
lemma that in En, for any non-trivial failure detector D, there is at least one set of n participating processes
for which D cannot be read/write implemented.

10

Lemma 8 For any non-trivial failure detector D ∈ Z in En, there is an n-subset set S ⊆ Π, such that D is
not implementable in ES .

Proof. Assume to the contrary that it is possible to implement D for any participating set S of size n.
To reach a contradiction we show that D is trivial, i.e., it can be implemented using only read/write

registers in any run in En. Let each process record its participation upon waking up. When process p needs
to query the output of D, it scans the memory and checks the set of processes that have already recorded
their participation. If p finds that n processes have already woken up, it can use the reduction algorithm
that implements D in read/write (such an algorithm exists according to our assumption). If fewer than n
processes have woken up, it chooses the first set (according to some predefined order known to all processes),
S ⊆ Π, of size n, which contains all the processes that have already published their participation. It then
implements D as though the participating set was S (and since | S |= n it can do that in read/write).

To maintain consistency among the processes that implement D using the given reduction algorithm,
processes should restart the reduction algorithm whenever they detect that a new process has woken up.
More precisely, whenever process p needs to perform another step of the reduction algorithm, it first checks
whether any new process has recorded its participation since it has previously scanned the set of participating
processes, and if so, it restarts its algorithm. Note that if process p was the first to restart its algorithm after
process q has recorded its participation, any other process p′ will also restart its algorithm when it is to
perform the next step in its algorithm.

Let t be a time after which no new process records its participation. Let t′ > t be the time after which
no process restarts its reduction algorithm. Due to Z1, D may behave arbitrarily for any finite amount of
time and thus the produced output is valid up to time t′. At time t′, all the correct processes have already
recorded their participation in the global array. The output of D is simulated (the corresponding D-outputi
variable is maintained) by every correct process pi using some set S ⊇ C (C is the set of correct processes
in that run). Since there is a run where the participating set is S, and the set of correct processes is C, the
implementation of D using S is consistent with C (due to D satisfying Z3). Thus our produced output for
D starting from time t′ is valid, as the set of allowed histories of D is only dependent on C. Therefore, we
obtain read/write implementation of D, implying that D—a contradiction. �

Note that Lemma 8 holds even if D does not satisfy Z2 (has an infinite range).

Lemma 9 Let D be a failure detector in Z . If there exists a subset of process S ⊂ Π , |S| = n, such that D
is not read/write implementable when the participating set is S then ζ(S) is weaker than D in En.

Proof. We present an implementation of ζ(S) from D. Let each process record its participation as the first
step when it wakes up.

To query ζ(S) a process p first scans the set of participating processes. If there is a process q ∈ S that
has not recorded its participation, ζ(S) simply returns the name of q. If q never records its participation it
follows that q is not a correct process, and in that case it is a correct implementation of ζ(S).

If, however, p finds that all the processes in S have woken up, since |S| = n, the participating set is
S. In this case, D cannot be implemented in read/write due to our choice of S. D can then be considered
as a non-trivial failure detector in a system of n processes. It follows from Theorem 12 of [29] that D can
implement anti-Ω in such a system.

Thus, we have an implementation of anti-Ω for the processes of S, which when queried, returns only
names of processes in S, and at least one of the correct processes in S is returned only a finite number of
times (since S is the participating set, at least one of the processes in S is correct). We have thus imple-
mented ζ(S). �

11

Theorem 10 Every non-trivial failure detector D ∈ Z implements at least one of ζn’s failure detectors in
En.

Proof. By Lemma 8, there is a set S, such that when S is the participating set (that is, in the environment
ES), failure detector D cannot be implemented in read/write. From Lemma 9, it follows that D implements
ζ(S). �

Theorems 7 and 10 imply that ζn is indeed the weakest family of non-trivial failure detectors in Z:
every non-trivial failure detector in Z can be used to implement at least one ζ(S) ∈ ζn but no ζ(S) can be
implemented using the collective power of ζn \ ζ(S). As a result:

Corollary 11 There does not exist a weakest non-trivial failure detector in Z in En.

7 Solving Set Consensus

We now show that ζ̄n, the union of failure detectors in ζn solves the (n− 1)-set consensus task.

Theorem 12 In En, ζ̄n and ¬Ωn−1 are equivalent, i.e., ζ̄n �En ¬Ωn−1 and ¬Ωn−1 �En ζ̄n

Proof. ζ̄n can implement ¬Ωn−1 in En as follows. Initially, every process records its participation. As
long as the current set S of participating processes is of size less than n, every process outputs any set of
m− n+ 1 processes not in S. When exactly n processes register their participation, every process outputs
the union of Π \ S and the current output of ζ(S) (which by itself is a process). Eventually, ζ(S) outputs a
process in S that is not the only correct process in S. Therefore, the resulting unions are sets of m− n+ 1
processes, which eventually, never contain some correct process. Thus, ¬Ωn−1 is implemented.

Similarly, ¬Ωn−1 implements ζ(S) for every S ⊆ Π, |S| = n, in En (which implies in turn that ¬Ωn−1

implements ζ̄n) as follows. As long as the currently observed set of participants P is not S, we output any
process in S \ P (there exists such a process since |P | ≤ n and P 6= S). If P = S, then we output any
process in S∩S′ where S′ is the current output of ¬Ωn−1. Since ¬Ωn−1 outputs sets ofm−n+1 processes
that eventually never contain some correct process, pi ∈ C ⊆ P = S, S ∩ S′ is non-empty and eventually
never contains pi. Thus, ¬Ωn−1 implements ζ̄n in En. �

It is shown in [15] that ¬Ωn−1 is the weakest failure detector for solving (n − 1)-set consensus in a
system of m ≥ n processes, in all environments, including En. Combined with Theorem 12, this implies
that:

Corollary 13 ζ̄n is the weakest failure detector for solving the (n− 1)-set consensus task in En.

Since ζ̄n ∈ Z , Theorems 7, 12 imply:

Corollary 14 No proper subset of ζn can solve (n− 1)-set consensus in En.

In the following section we show how to solve symmetry breaking (SB) using proper subsets of ζn,
which implies that SB does not have a single weakest failure detector in Z .

12

8 Symmetry Breaking Implementations

First, we present a simple algorithm using a single ζ(S) that solves Symmetry Breaking (SB) in En when
m = 2n− 1, and then a more elaborate algorithm solving SB when m > 2n− 1 using the combined power
of several detectors in ζn.

8.1 Symmetry Breaking implementation for m = 2n− 1

Algorithm 1 provides a simple implementation of the SB task using a single, arbitrary ζ(S) for the case
m = 2n− 1 and n ≥ 3.

Each process p /∈ S in Algorithm 1 outputs 0 in Line 3. On the other hand, processes that are in S
run a Strong (n− 1)-set consensus task among themselves by using the algorithm given in [30] for m = n
and ζ(S) as an implementation of anti-Ω for the processes in S. Processes that decide on their own name,
output 1 in Line 6 while processes that decide on a name different than their own, output 0 in Line 8. Since
m = 2n − 1, if all n processes output, there must be at least one participating process in S, and, thus, at
least one process outputs 1.

We are able to run the (n − 1)-set consensus algorithm of [30], since the processes in S only interact
with each other, and are not affected by processes outside of S, essentially, making them a closed system
of n processes. In that system, ζ(S)’s output can be used in lieu of anti-Ω’s output. The reader should note
that this construction solves the (n − 1)-set consensus task only for the processes in S and thus is not a
contradiction to Corollary 13.

Lemma 15 (wait freedom) A correct process in Algorithm 1 eventually writes an output and terminates.

Proof. The only way process pi can get stuck in the algorithm is while executing the SC algorithm in Line
4. Since the SC algorithm described in [30] terminates after a finite number of steps once the anti-Ω failure
detector stops outputting the name of one of the correct processes, it may get stuck only if our simulation of
anti-Ω using ζ(S) is invalid. That is, none of the correct processes in S are returned only a finite number of
times by ζ(S) (if there are no correct processes in S, processes executing the SC algorithm cannot get stuck
since they eventually fail). However, by definition ζ(S) returns one of the correct processes q ∈ S only a
finite number of times, and due to the condition in Line 2, this process participates in the SC task as well.
Therefore, q is considered correct by the process participating in the SC task and is returned only a finite
number of times by our simulation of anti-Ω, as required. �

Lemma 16 (safety) When n processes reach a decision in Algorithm 1, at least one of them outputs 0 and
at least one of them outputs 1.

Proof. Let P be the participating set in a given run. Since n processes reach a decision, |P | = n. Therefore,
we may consider two possible cases

(case 1) P 6= S. There is at least one process, p ∈ P , such that p /∈ S. Process p finds the condition in
Line 2 correct, and therefore outputs 0. On the other hand, since |S| = n and m = 2n− 1, there is at least
one process, q ∈ P , such that q ∈ S. Process q finds the condition in Line 1 false, and therefore participates
in the SC task of Line 4. Among those processes participating in the SC task, at least one decides on its own
name, and thus, finds the condition in Line 5 correct and outputs 1 in the following line. Therefore, at least
one process outputs 0 and one outputs 1, as required.

13

Algorithm 1: Solving SB algorithm using ζ(S) for m = 2n− 1.
Output: Either 0 or 1

1 Process pi’s Break Symmetry Procedure
2 if (pi /∈ S) then

// process does not belong to the group on which the failure
detector is defined

3 return 0
4 dec := SC.propose(i) // Run an anti-Ω based Strong (n− 1)-SC algorithm

among the processes in S. Simulate anti-Ω using the output
of ζ(S).

5 if (dec = i) then
6 return 1
7 else // dec 6= i
8 return 0

(case 2) P = S. Since all the processes of S are participating, n processes find the condition in Line 2
false, and thus, n processes execute the set consensus task. Therefore, at least one process decides upon its
own name, and outputs 1 in Line 6, and at least one process does not decide upon its own name, and outputs
0 in Line 8, as required. �

From the previous two lemmas we have:

Theorem 17 Algorithm 1 solves SB in En using a single ζ(S) for m = 2n− 1.

8.2 Symmetry Breaking implementation for m > 2n− 1

When we consider the casem > (2n−1), a single ζ(S) is far from sufficient in order to solve the Symmetry
Breaking task. The reader should note that one cannot trivially use a renaming algorithm in order to simulate
a system of 2n − 1 processes and utilize Algorithm 1 in order to solve SB. This is due to the fact that a
failure detector cannot adopt the new naming scheme, since failure detectors’ outputs may not be affected
by processes’ actions. Next, we present an upper bound on the number of ζ’s required to solve SB in such
systems. Let us first define the following failure detector:

Definition 18 In an En environment where m ≥ 2n − 1, consider the subsets B = {p1, . . . , pdm/2e} and
W = {pdm/2e+1, . . . , pm}. Let ζ-Set be a failure detector that returns a vector consisting of the outputs of
each ζ(S) such that S is a subset of either W or B and |S| = n. More formally, ζ-Set returns the output of
each ζ(S) ∈ {ζ(S) | (S ⊂ B ∨ S ⊂W) ∧ |S| = n}.

It is easy to see that each response of ζ-Set is composed from the outputs of
(dm/2e

n

)
+
(bm/2c

n

)
failure

detectors. Algorithm 2 is an implementation of the SB task for m ≥ 2n− 1 processes (out of which at most
n processes participate) using ζ-Set. At the heart of the algorithm is a division of the processes into two
groups, {p1, . . . , pdm/2e} and {pdm/2e+1, . . . , pm}; Processes that belong to the first group set their “default”
output value to 0, while others set it to 1 (Lines 6–9).

Each process pi has two shared SWMR registers, Output [i] and Participating [i]. Output [.] records the
decisions reached by the processes. In Participating [.] each process records its participation as soon as it

14

wakes up (Line 2), and it then scans Participating [.] in order to acquire V the set of currently participating
processes (Line 3). Next, pi checks if either fewer than n processes are participating or if ζ(V) is not one
of the ζ’s provided by ζ-Set (Line 10). If this is the case, pi outputs its default value. If pi detects the
participation of n processes, such that ζ(V) is one of the outputs provided by ζ-Set, it executes a Strong set
consensus algorithm based on anti-Ω using ζ(V), as discussed previously. If pi decides on its own name
(Line 16) it returns the complement to its default value. If it decides on another process name (Line 18), it
returns its default value. Concurrently while running the set consensus algorithm, pi checks Output. If pi
detects that some other process has recorded an output (Line 20), it returns the complement of that output.
The reason for doing so, is to avoid an edge-case where the correct processes names that are returned by
ζ(V) only a finite number of times all belong to processes that do not participate in the set consensus
task, invalidating the algorithm. Such processes can avoid participating in the SC task only by finding the
condition in Line 10 true, followed by writing to their Output register.

Lemma 19 (wait freedom) A correct process in Algorithm 2 eventually writes an output and terminates.

Proof. The only way process pi can get stuck in the algorithm is in the loop of Lines 13–15, when the set
consensus algorithm does not terminate and no other process records a decision in the Output array. Since
the SC algorithm described in [30] terminates after a finite number of steps once the anti-Ω failure detector
stops outputting the name of one of the correct processes, it may get stuck, only if our simulation of anti-Ω
using ζ(V) is invalid.

In the context of Algorithm 2, the simulation of anti-Ω may fail when a correct process, pj , that was
returned only a finite number of times by ζ(V), is not taking part in the set consensus algorithm (since it
found the condition in Line 10 true). As a result, for the set consensus algorithm, pj seems to be faulty.
However, in such a case, since pj is correct, it would eventually write its output (Line 11). Therefore, pi
would eventually see pj’s output (Line 15), and would exit the loop. �

Lemma 20 (safety) When n processes reach a decision in Algorithm 2, at least one of them outputs 0 and
at least one of them outputs 1.

Proof. Let P be the participating set. Due to our assumption that n processes reach a decision, |P | = n.
If any process outputs the complement of another process’s output, the validity of the proposition is trivial.
Therefore, assume that no process determines its output by taking the complement of another process’s
output. Let r be dm/2e (as it is defined in the algorithm). We consider the following two cases:

(case 1) P * {p1, . . . , pr} and P * {pr+1, . . . , pm}. In this case, every participating process finds the
condition in Line 10 true, and thus outputs its default value (set in Lines 7 and 9). Since some processes
are in {p1, . . . , pr} while some others are in {pr+1, . . . , pm}, at least one process has a default output value
0, and at least one other process has the default output value 1 (Lines 6–9). Therefore, at least one process
outputs 0 and at least one outputs 1.

(case 2) P ⊆ {p1, . . . , pr} or P ⊆ {pr+1, . . . , pm}. Without loss of generality, assume that P ⊆
{p1, . . . , pr}. Since at least one process detects the participation of all n processes in Line 3, at least one
finds the condition in Line 10 false, and thus at least one participates in the set consensus algorithm. Since
all processes that participate in the set consensus algorithm reach a decision (and, due to the assumption, do
not terminate the algorithm prematurely by taking the complement of another process’s decision), at least
one process, pi, decides on its own name. Thus, pi outputs the complement of its default value (1). If n
processes participate in the set consensus algorithm, at least one of them does not decide on its own name,

15

Algorithm 2: Solving SB with ζ-Set
Shared Variables:

Participating [1 . . .m] : registers initialized with 0.
Output [1 . . .m] : registers initialized with ⊥

Local Variables:
v, V , r : local variables for each process

1 Process pi’s Break Symmetry Procedure
2 Participating [i]← 1
3 V ← {k|Participating [k] = 1} // the set of observed participating

processes
4 r ← dm/2e
5 dec ←⊥ // local variable for each process
6 if (i ∈ {1, . . . , r}) then
7 v ← 0
8 else
9 v ← 1

10 if (|V | < n) or (V * {1, . . . , r} and V * {r + 1, . . . ,m}) then
11 Output [i]← v, return v
12 else // n processes are participating, ζ(V) is given by ζ-Set
13 repeat
14 Perform a single step in an anti-Ω based Strong (n− 1)-SC algorithm among the

processes in V , where each process proposes its own name. Simulate anti-Ω by using the
output of ζ(V). Let dec hold the decision, if one is reached

15 until (dec 6= ⊥) or (∃k.Output [k] 6= ⊥)

16 if (dec = i) then
// pi decided on its own name

17 Output [i]← 1− v, return 1− v
18 else if (dec 6=⊥) then // pi decided on another process name
19 Output [i]← v, return v
20 else if (∃k.Output [k] 6= ⊥) then
21 Output [i]← 1−Output [k]
22 return Output [i]

16

and thus, at least one of them outputs its default value (0). Otherwise, if there exists a process pk that does
not participate in the set consensus algorithm, it surely finds the condition in Line 10 false, and thus outputs
its default value (0). Therefore, at least one process outputs 0 and at least one other process outputs 1, as
required. Similar considerations apply to the case when P ⊆ {pr+1, . . . , pm}. �

The previous two lemmas lead to:

Theorem 21 Algorithm 2 solves the Symmetry Breaking task in En, m ≥ 2n − 1, using a ζ-Set failure
detector.

A natural lower bound on the number of ζ’s necessary to solve SB in En can be reached by reducing the
problem back to the case of m = 2n − 1. For example, when m = 2n, if the SB task was implementable
using a single ζ(S), one could solve the SB task for 2n− 1 processes without any failure detector. Assume
that there is an algorithm A that solves SB for m = 2n, using a single arbitrary ζ(S). In order to solve SB
for 2n− 1 processes, one could map the process names from {1, . . . , 2n− 1} to {1, . . . , 2n} in such a way
that no two process names are mapped to the same name, and there exists a name p ∈ S to which no process
is mapped to (since we are left with 2n − 1 names after the later restriction, such a mapping is possible).
Using this mapping, one can simulate running A in a system of 2n processes. Whenever ζ(S) is queried in
A, its output can be simulated by taking the name of p as its output. This is a valid output for ζ(S), since
p is not a correct process in the simulation. Therefore, as A solves SB for 2n processes, it solves SB in our
simulation of such a system, and the processes can adopt the resulting outputs.

The following theorem is a generalization of the arguments given above. It presents a necessary condi-
tion on the set of ζ failure detectors that should be available in order to solve the SB task in En.

Theorem 22 Consider a set of failure detectors ζF = {ζ(S1), . . . , ζ(Sk)}, and a system withm ≥ (2n−1)
processes such that SB cannot be solved wait-free in a system of 2n − 1 processes [7]. If there is a subset
of (2n − 1) processes G = {q1, q2, . . . , q2n−1} such that for every subset H ⊂ G, |H| = n , it holds that
ζ(H) /∈ ζF , then SB cannot be solved in En using ζF , when m ≥ (2n− 1).

Proof. Assume to the contrary that one can solve SB in En equipped with ζF as defined in the Theorem’s
definition by using algorithm A. We show that if this is the case, one could read/write solve SB for m =
2n− 1 without the use of any failure detector, and therefore reach a contradiction [8, 9, 18].

It follows from the definition of ζF that there exists a subset of (2n − 1) processes, G for which there
is no subset H ⊂ G of n processes such that ζ(H) ∈ ζF . In order to solve SB for m = 2n − 1, map the
process names in Π onto the names in G. Then, using the processes’ mapped names, execute algorithm A.
Whenever a failure detector ζ(S) ∈ ζF is queried inA, choose some process p ∈ S−G as its output. There
exists such a process p, since otherwise, S ⊂ G , |S| = n and ζ(S) ∈ ζF , in contradiction to the definition
of G. The name p is a valid output for ζ(S) in our simulation, since it is not in the participating set in the
simulation, and therefore not a correct process in the simulation. Thus,A could be wait-free simulated using
only read/write registers, and the outputs of the processes in A can be taken as their outputs for the SB task.
If n reach a decision by simulating steps of A, at least one of them outputs 0 and at least one other outputs
1, as required. �

Unfortunately, finding the size of the minimal set R of subsets of size r, such that each subset of size
k contains at least one of the sets in R is in itself an open problem in combinatorics, closely related to the
covering design task [19,25,28]. Therefore, calculating an exact numeric value for the lower bound induced

17

by Theorem 22 is an open problem3 . However, for some m and n, one can find a smaller set of ζ’s than the
size used by Algorithm 2 that is still eligible by the condition of Theorem 22. For example, when m = 9
and n = 4, ζ-Set consists of 6 ζ’s, while only 5 are required by the lower bound (due to [19]). This disparity
between the lower and upper bound may imply that a better algorithm than Algorithm 2 in terms of the
number of ζ’s used is yet to be found.

9 ζ(s) and the k-anti-Ω Hierarchy

In this section, we briefly discuss the power of a single ζ(S) failure detector in comparison with other well
known failure detectors. We first consider the environment Em that contains all possible failure patterns.
Then, in Section 9.2, we compare the relative power of a single ζ(S) in En where n < m.

Trivially, if |S| = m, then there is only one possible ζ(S), and it has the same behavior as anti-Ω, and
therefore, can solve the (m− 1)-set consensus task.

If |S| < m, we show that ζ(S) implements anti-Ω, and therefore allows for solving (m− 1)-set consen-
sus in Em, but not (m − 2)-set consensus. However, we show that Ω, which is a failure detector powerful
enough to solve the (m− 2)-set consensus task and, in fact, even the consensus task, cannot implement any
ζ(S) for 1 < |S| < m in Em.

9.1 ζ(S) in Em

Theorem 23 In Em, ζ(S), where S ⊂ Π and 1 < |S| ≤ m, implements anti-Ω.

Proof. One can implement anti-Ω by taking the output of ζ(S) verbatim. By definition, ζ(S) eventually
returns only the names of processes in S. If there are no correct processes in S, any such output by ζ(S) is
a valid output of anti-Ω. If however, there is a correct process in S, at least one of the correct processes in
S, p is returned only a finite number of times by ζ(S). Therefore, by using the output of ζ(S) as the output
of anti-Ω, there is at least one correct process (p) that is returned only a finite number of times, as required
by the definition of anti-Ω. �

Since any ζ(S) is able to solve (m− 1)-set consensus in Em for all 1 < |S| ≤ m, it is natural to inquire
whether it can do better and solve the (m − 2)-set consensus task. We show first that when |S| ≤ m, ζ(S)
is unable to solve the stronger task.

Theorem 24 In Em, no failure detector ζ(S), where S ⊆ Π and 1 < |S| ≤ m, can solve the (m − 2)-set
consensus task.

Proof. Let Π = {p1, . . . , pm}, as defined in Section 3.
Consider first the case |S| = m, i.e., S = Π. Recall that anti-Ω cannot solve (m−2)-set consensus [15].

Thus, by Theorem 23, ζ(Π) cannot solve (m− 2)-set consensus either.
Now consider any subset S ⊂ Π, |S| = n < m. Assume, by contradiction, that there exists an

algorithm A that uses ζ(S) to solve the (m− 2)-set consensus task. Without loss of generality, assume that
S = {p1, . . . , pn} (if S is another n subset of Π, processes in Π could be renamed so that this assumption
holds).

3However its value is bounded between ν = (m
2n−1)/(m−n

(2n−1)−n) = (m
n)/(2n−1

n), which is the number of sets of size 2n − 1

divided by the number of sets of this size covered by each ζ, and ν · [1 + ln(
`

m−n
m−(2n−1)

´
)] due to [25].

18

We show that following our previous assumption, it is possible to solve the (m− 2)-set consensus task
in read/write among m − 1 processes, q1, . . . , qm−1, leaving us with a contradiction. Map the processes
q1, . . . , qm−1 to p2, . . . , pm, by mapping each qi to pi+1. Now, run algorithm A using only read/write
registers, and whenever algorithm A queries ζ(S), simulate the output of ζ(S) by simply returning p1.
Since no process qi is mapped to p1, p1 is not participating in the simulation, and therefore it is a valid
output for ζ(S).

The result of running algorithmA is having the processes decide onm−2 names taken from p2, . . . , pm,
which can be simply mapped back to q1, . . . , qm−1. Thus, we have read/write implemented (m−2)-set con-
sensus for (m− 1) processes, and achieved the required contradiction. �

The last result may suggest that in tightly named systems, a given ζ(S) is weaker than any failure
detector, D, capable of solving the (m − 2)-set consensus task. However, this is not the case. Indeed,
consider the ¬Ωk set of failure detectors. As mentioned earlier, it was shown that ¬Ωm−1 is equivalent to
anti-Ω in every environment and thus can implement m− 1 set consensus, and that ¬Ω1 is equivalent to Ω
and thus can solve consensus.

Moreover, any failure detector ¬Ωk can implement ¬Ωr, when r ≥ k. Of particular interest to us
is ¬Ωm−2, which is able to solve the (m − 2)-set consensus task in Em, but as we show next, cannot
implement ζ(S). Moreover, in Theorem 25 we prove a stronger result: in tightly named systems, Ω itself
(that is ¬Ω1) cannot implement ζ(S), if |S| < m.

Theorem 25 In Em, Ω cannot implement ζ(S) for any 1 < |S| < m, S ⊂ Π.

Proof. Without loss of generality, assume that Π = {p1, . . . , pm} and S = {p1, . . . , pn} where n = |S| <
m (otherwise, we could always rename the processes in Π). We turn to the game theory approach presented
by Zieliński [29], in order to prove that Ω cannot implement ζ(S). In the framework of [29], two players
NO and Y ES play a game, where NO takes the first turn. In turn i, NO outputs (Ci, Zi), such that Ci
is a set of process names, Ci ⊂ Ci−1, Zi ⊆ Zi−1 (when i > 1), and Zi ∈ infsetΩ (Ci). Following NO,
Y ES outputs a set, Ti, such that Ti ⊆ Ti−1 (when i > 1) and Ti ∈ infsetζ(S)(Ci). The first player unable
to take a move loses the game. Y ES has a winning strategy if, and only if, Ω can implement ζ(S). We
provide a winning strategy for NO, and thus prove that the latter failure detector cannot be implemented by
the former.

The strategy for NO is rather simple. Since |S| < m, we are assured that pm /∈ S. Let C1 = Π, and
let Z1 = {pm}. Since pm ∈ C1, it is a correct process that Ω’s output can eventually stabilize on, and
therefore, Z1 ∈ infsetΩ (C1). Throughout the game, NO keeps pm ∈ Ci and Zi = Z1 for each i, and thus,
Zi ∈ infsetΩ (Ci). Our strategy enables NO to choose such Ci and Zi, while causing Y ES to decrease the
size of Ti at each move. When Y ES is left with only one process in Ti, it cannot take any further moves,
and loses.

At Y ES’s first move, T1 cannot equal S, since S ⊂ C1, and therefore there must be at least one process
q1 ∈ S, such that q1 /∈ T1 in order for T1 ∈ infsetζ(S)(C1). Note that there is no reason for Y ES to
eliminate more than one process from S in order to generate T1, as it can always do so in its next move.
Therefore we may assume that T1 = S \ q1.

As a response, NO can output C2 = C1 \ q1, Z2 = Z1. Since pm /∈ S while q1 ∈ S, we have pm 6= q1.
Therefore pm ∈ C2, and our prior requirements still hold. Y ES now has to respond with T2 ⊂ T1, since it
can no longer play T1 as C2 ∩ S = (C1 \ q1) ∩ S = S \ q1 = T1. Therefore the best response by Y ES is
to choose q2 ∈ T1 and have T2 = T1 \ q2. By induction, after each move by Y ES, Ti = Ti−1 \ qi, NO can
respond with Ci+1 = Ci \ qi, Zi+1 = {pm}. Since |C1| = m > n > n− 1 = |T1| , and in each turn, NO

19

eliminates from Ci a process previously eliminated by Y ES from Ti, Y ES is the first to run out of moves,
and therefore, this is a winning strategy for NO. �

9.2 ζ(S) in En

Since Ω cannot implement ζ(S) for any S (Theorem 25), no¬Ωk, 1 ≤ k ≤ m−1, can implement ζ(S). This
observation, combined with Theorem 24, looks somewhat paradoxical. On the one hand, we have shown
that for any S, ζ(S) cannot implement (m − 2)-set consensus in Em. On the other hand, we proved that
Ω, a failure detector capable of solving the consensus task, is unable to implement ζ(S), in such systems.
As a result, in Em, there does not exist a hierarchy that totally orders “eventual” failure detectors. However,
in En where n < m, and given a failure detector ζ(S), either a specific ¬Ωk failure detector is capable of
implementing ζ(S), or it can be wait-free implemented using only read/write registers, as proved below.

Theorem 26 Consider the environment En, where n < m. Let S ⊂ Π be a subset of n processes.
(a) for 1 ≤ r ≤ n− 1, ¬Ωr implements ζ(S).
(b) for n ≤ r ≤ m− 1, ¬Ωr can be wait-free implemented using only read/write registers.

Proof. (a) It suffices to show that ¬Ωn−1 implements ζ(S). When r < (n − 1), ¬Ωr implements ¬Ωn−1,
and therefore the other cases trivially follow. Whenever queried, ¬Ωn−1 returns a set of m− n+ 1 process
names. As |Π \ S| = m− n, at least one of the processes returned by ¬Ωn−1, p, is in S.

In order to implement ζ(S), the processes keep track of the current participating set, P . If P 6= S, there
is a process q ∈ S such that q /∈ P , that can be returned as the output of ζ(S). If, on the other hand, P = S,
we take any p ∈ S, returned by ¬Ωn−1, as the output of S. Such p exists as explained above.

We now show that the above implementation of ζ(S) is valid. Once no new processes wake up, P
stabilizes. If P 6= S, we infinitely return a process which is not in the participating set, and therefore not
correct, as (a valid) output of ζ(S). If, however, P = S, since |S| = n, no process in Π \S may participate,
according to our assumption on the maximum participating set size. Therefore, no process in Π \ S can be
correct, and if p is the only correct process in S, it is the only correct process in Π. Thus, if p ∈ S is returned
an infinite number of times by ¬Ωn−1, it cannot be the only correct process in S, or otherwise the output of
¬Ωn−1 would be invalid. Therefore we may return a process p as defined above, as a valid output of ζ(S).

(b) It suffices to show that ¬Ωn can be implemented in read/write. When r > n, ¬Ωn implements ¬Ωr

and the other cases trivially follow. Whenever queried, ¬Ωn returnsm−n processes. As there are at most n
participating processes, we can keep track of the participating set, and return the names of (the first) m− n
processes that have not yet taken a step as the output of ¬Ωn. Since we are not returning names of correct
processes, this is a valid output for ¬Ωn. �

Figure 1 summarizes the results presented in this section. In Em, ζ(S) is not part of the hierarchy formed
by the ¬Ωk failure detectors, while in En, n < m, it is weaker than any non read/write implementable failure
detector in that hierarchy.

Another interesting result is that in En, anti-Ω is a trivial failure detector while ζ(S) is non-trivial. On
the other hand, in Em, since Ω implements anti-Ω but does not implement ζ(S), anti-Ω cannot implement
ζ(S). Therefore, in both cases, anti-Ω is strictly weaker than ζ(S) (for any S).

20

(¬Ω)1

¬Ω 2

¬Ω n-1

¬Ω n

¬Ω n+1

¬Ω m-2

(¬Ω)m-1 (¬Ω)m-1

¬Ω m-2

¬Ω n+1

¬Ω n

(¬Ω)1

¬Ω 2

¬Ω n-1

Figure 1: Implementation of ζ(S) and ¬Ωk failure detectors in Em, and in En, when n < m. An arrow from failure
detector A to failure detector B signifies that B can be implemented using A. (a) In Em, any ζ(S) implements anti-Ω
but does not implement ¬Ωm−2, and cannot be implemented by Ω. (b) In En (n < m), ζ(S) can be implemented by
¬Ωn−1 (grayed failure detectors can be implemented in En using only reads and writes).

21

10 Concluding Remarks

In this paper, we focused on a specific environment En that describes runs in which at most n out of m
processes participate. In this environment we determined a weakest family of failure detectors for the task
of renaming in the class of Z1–Z3: each failure detector in Z1–Z3 that solves renaming or symmetry
breaking can be used to implement some failure detector in ζn.

In particular, we presented an algorithm that uses a subset of the detectors in ζn to solve the symmetry
breaking task. On the other hand, we show that all detectors in ζn are required to solve the (n − 1)-
set consensus task. This serves as an interesting distinction between the case n = m (all processes may
participate) and n < m (not all processes participate), where in the former the weakest non-trivial failure
detector in Z1–Z3 can be used to solve the (n − 1)-set consensus task. Intriguingly, there is no single
weakest detector in ζn and no detector in this family can be implemented by the combined power of the
others.

It may look surprising that renaming does not have a weakest failure detector in Z1 – Z3. Indeed, Jayanti
and Toueg has recently shown that any problem (within a very general definition of what a problem is that
covers renaming and symmetry breaking) has a weakest failure detector [24]. But there is no contradiction
here, applying the method by which weakest failure detector is constructed in [24] to the members of ζn we
obtain a failure detector that is not in Z1 – Z3, in particular it is not eventual (does not satisfy Z1). In fact,
as we have shown in this paper, the weakest failure detectors for renaming and symmetry breaking do exist
and they are renaming and symmetry breaking themselves: both these problems can be viewed as failure
detectors that satisfy Z2 and Z3 (but of course not Z1).

Therefore, Z1 is necessary in order to obtain our result. But are the other two assumptions, finite
ranges of the failure detector output (Z2) and independence of the timing of failures (Z3), necessary for the
derivation of our result? Z2 looks quite natural and is in fact a standard assumption that is used in many
recent simulation-based derivation of failure detectors [15, 30]. But can we get rid of Z3? For example, ¬Ω
is shown in [30] to be the weakest failure detector for (m − 1)-set consensus assuming only Z2. Can we
reuse the arguments of [30] to show that ζn is the weakest failure-detector family for renaming in Z1 – Z3?
This is a very appealing open question that does not seem to have a straightforward answer (at least we did
not manage to resolve after several attempts).

Another interesting unresolved question that merits further investigation concerns the discrepancy be-
tween the lower and upper bound of the number of ζn’s failure detectors necessary to implement the sym-
metry breaking task in En. Is there a more efficient algorithm than Algorithm 2? Failing to find a better
algorithm, is there a way to increase the lower bound?

Moreover, having a lower bound which is greater than a single failure detector out of ζn in En, alludes
to the possibility of an interesting task still weaker than symmetry breaking. Could such a task be found and
declared using the mechanisms provided in this paper?

Finally, what is the power of the failure detectors in ζn in Em? We have shown that in Em, any single
failure detector of ζ(S) ∈ ζn can implement (m− 1)-set consensus, but fails to implement the (m− 2)-set
consensus task. Yet, ζ(S) is strictly stronger than anti-Ω. Is there any task which can be solved using ζ(S)
which cannot be solved using anti-Ω in Em?

Acknowledgments

We are grateful to Eli Gafni, Piotr Zieliński and the anonymous referees of DISC and this journal, for many
fertile discussions, helping us to strengthen the results and improve the presentation.

22

References

[1] Yehuda Afek and Israel Nir. Failure detectors in loosely named systems. In PODC, pages 65–74,
2008.

[2] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk. Renaming in an
asynchronous environment. Journal of the ACM, 37(3):524–548, 1990.

[3] Hagit Attiya and Arie Fouren. Polynomial and adaptive long-lived (2k-1)-renaming. In DISC, pages
149–163, 2000.

[4] Hagit Attiya and Sergio Rajsbaum. The combinatorial structure of wait-free solvable tasks. SIAM
Journal on Computing, 31(4):1286–1313, 2002.

[5] Hagit Attiya and Jennifer Welch. Distributed Computing. Fundamentals, Simulations, and Advanced
Topics. McGraw-Hill, 1998.

[6] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient asynchronous
computations. In STOC, pages 91–100. ACM Press, 1993.

[7] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology upper and lower bounds for
renaming. In PODC, pages 295–304, 2008.

[8] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology upper and lower bounds for
renaming: The lower bound. Distributed Computing, 52(5-6):287–301, 2010.

[9] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology upper and lower bounds for
renaming: The upper bound. Journal of the ACM (to appear), 2012.

[10] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for solving
consensus. Journal of the ACM, 43(4):685–722, 1996.

[11] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

[12] Soma Chaudhuri. Agreement is harder than consensus: Set consensus problems in totally asyn-
chronous systems. In PODC, pages 311–324, 1990.

[13] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[14] Eli Gafni. Renaming with k-set-consensus: An optimal algorithm into n + k - 1 slots. In OPODIS,
pages 36–44, 2006.

[15] Eli Gafni and Petr Kuznetsov. On set consensus numbers. Distributed Computing, 24(3-4):149–163,
2011.

[16] Eli Gafni, Achour Mostéfaoui, Michel Raynal, and Corentin Travers. From adaptive renaming to set
agreement. Theoretical Computer Science, 410:1328–1335, 2009.

[17] Eli Gafni and Sergio Rajsbaum. Distributed programming with tasks. In OPODIS, pages 205–218,
2010.

23

[18] Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus tasks: Renaming is weaker than set
agreement. In International Symposium on Distributed Computing, pages 329–338, 2006.

[19] Daniel M. Gordon, Greg Kuperberg, and Oren Patashnik. New constructions for covering designs. J.
Combin. Designs, 3:269–284, 1995.

[20] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and
Systems, 13(1):123–149, 1991.

[21] Maurice Herlihy and Sergio Rajsbaum. Algebraic spans. Mathematical Structures in Computer Sci-
ence, 10(4):549–573, 2000.

[22] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient tasks. In
STOC, pages 111–120, 1993.

[23] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. Journal of
the ACM, 46(2):858–923, 1999.

[24] Prasad Jayanti and Sam Toueg. Every problem has a weakest failure detector. In PODC, pages 75–84,
2008.

[25] László Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13:383–
390, 1975.

[26] Michel Raynal. K-anti-Omega, August 2007. Rump session at PODC 2007.

[27] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topology of public
knowledge. In STOC, pages 101–110. ACM Press, 1993.

[28] Johanan Schönheim. On coverings. Pacific Journal of Mathematics, pages 1405–1411, 1964.

[29] Piotr Zielinski. Automatic classification of eventual failure detectors. In DISC, pages 465–479, 2007.

[30] Piotr Zieliński. Anti-omega: the weakest failure detector for set agreement. Distributed Computing,
22(5-6):335–348, 2010.

24

