
The Weakest Failure Detectors to Boost
Obstruction-Freedom

Rachid Guerraoui1,2, Micha l Kapa lka2, and Petr Kouznetsov3

1 Computer Science and Artificial Intelligence Laboratory, MIT
2 School of Computer and Communication Sciences, EPFL

3 Max Planck Institute for Software Systems

Abstract. This paper determines necessary and sufficient conditions to
implement wait-free and non-blocking contention managers in a shared
memory system. The necessary conditions hold even when universal ob-
jects (like compare-and-swap) or random oracles are available, whereas
the sufficient ones assume only registers.
We show that failure detector ♦P is the weakest to convert any obstruction-
free algorithm into a wait-free one, and Ω∗, a new failure detector which
we introduce in this paper, and which is strictly weaker than ♦P but
strictly stronger than Ω, is the weakest to convert any obstruction-free
algorithm into a non-blocking one.

1 Introduction

Multiprocessor systems are becoming more and more common nowadays. Mul-
tithreading thus becomes the norm and studying scalable and efficient synchro-
nization methods is essential, for traditional locking-based techniques do not
scale and may induce priority inversion, deadlock and fault-tolerance issues when
a large number of threads is involved.

Wait-free synchronization algorithms [1] circumvent the issues of locking and
guarantee individual progress even in presence of high contention. Wait-freedom
is a liveness property which stipulates that every process completes every opera-
tion in a finite number of its own steps, regardless of the status of other processes,
i.e., contending or even crashed. Ideal synchronization algorithms would ensure
linearizability [2,3], a safety property which provides the illusion of instantaneous
operation executions, together with wait-freedom.

Alternatively, a liveness property called non-blockingness4 may be considered
instead of wait-freedom. Non-blockingness guarantees global progress, i.e., that
some process will complete an operation in a finite number of steps, regardless of
the behavior of other processes. Non-blockingness is weaker than wait-freedom
as it does not prevent some processes from starvation.
4 The term non-blocking is defined here in the traditional way [1]: “some process will

complete its operation in a finite number of steps, regardless of the relative execution
speeds of the processes.” This term is sometimes confused with the term lock-free.
Note that non-blocking implementations provide a weaker liveness guarantee than
wait-free implementations.



Wait-free and non-blocking algorithms are, however, notoriously difficult to
design [4,5], especially with the practical goal to be fast in low contention sce-
narios, which are usually considered the most common in practice. An appealing
principle to reduce this difficulty consists in separating two concerns of a syn-
chronization algorithm: (1) ensuring linearizability with a minimal conditional
progress guarantee, and (2) boosting progress. More specifically, the idea is to fo-
cus on algorithms that ensure linearizability together with a weak liveness prop-
erty called obstruction-freedom [6], and then combine these algorithms with sep-
arate generic oracles that boost progress, called contention managers [7,8,9,10].
This separation lies at the heart of modern (obstruction-free) software transac-
tional memory (STM) frameworks [7].

With obstruction-free (or OF, for short) algorithms, progress is ensured only
for every process that executes in isolation for sufficiently long time. In presence
of high contention, however, OF algorithms can livelock, preventing any process
from terminating. Contention managers are used precisely to cope with such
scenarios. When queried by a process executing an OF algorithm, a contention
manager can delay the process for some time in order to boost the progress of
other processes. The contention manager can neither share objects with the OF
algorithm, nor return results on its behalf. If it did, the contention manager
could peril the safety of the OF algorithm, hampering the overall separation of
concerns principle.

In short, the goal of a contention manager is to provide processes with enough
time without contention so that they can complete their operations. In its sim-
plest form, a contention manager can be a randomized back-off protocol. More
sophisticated contention management strategies have been experimented in prac-
tice [8,9,11]. Precisely because they are entirely devoted to progress, they can
be combined or changed on the fly [10]. Most previous strategies were prag-
matic, with no aim to provide worst case guarantees. In this paper we focus on
contention managers that provide such guarantees. More specifically, we study
contention managers that convert any OF algorithm into a non-blocking or wait-
free one, and which we call, respectively, non-blocking or wait-free contention
managers.

Two wait-free contention managers have recently been proposed [12,13]. Both
rely on timing assumptions to detect processes that fail in the middle of their
operations. This suggests that some information about failures might inherently
be needed by any wait-free contention manager. But this is not entirely clear
because, in principle, a contention manager could also use randomization to
schedule processes, or even powerful synchronization primitives like compare-
and-swap, which is known to be universal, i.e., able to wait-free implement any
other object [1]. In the parlance of [14], we would like to determine whether a
failure detector is actually needed to implement a contention manager with worst
case guarantees, and if it is, what is the weakest one [15]. Besides the theoretical
interest, determining the minimal conditions under which a contention manager
can ensure certain guarantees is, we believe, of practical relevance, for this might
help portability and optimization.



We show that the eventually perfect failure detector ♦P [14] is the weakest
to implement a wait-free contention manager.5 We also introduce a failure de-
tector Ω∗, which we show is the weakest to implement a non-blocking contention
manager. Failure detector Ω∗ is strictly weaker than ♦P, and strictly stronger
than failure detector Ω [15], known to be the weakest to wait-free implement
the (universal) consensus object [1].6

It might be surprising that Ω is not sufficient to implement a wait-free or
even a non-blocking contention manager. For example, the seminal Paxos al-
gorithm [16] uses Ω to transform an OF implementation of consensus into a
wait-free one. Each process that is eventually elected a leader by Ω is given
enough time to run alone, reach a decision and communicate it to the others.
This approach does not help, however, if we want to make sure that processes
make progress regardless of the actual (possibly long-lived) object and its OF
implementation. Intuitively, the leader elected by Ω may have no operation to
perform while other processes may livelock forever. Because a contention man-
ager cannot make processes help each other, the output of Ω is not sufficient:
this is so even if randomized oracles or universal objects are available. Intuitively,
wait-free contention managers need a failure detector that would take care of ev-
ery non-crashed process with a pending operation so that the process can run
alone for sufficiently long time. As for non-blocking contention managers, at least
one process that never crashes, among the ones with pending operations, should
be given enough time to run alone.

The paper is organized as follows. Section 2 presents our system model and
formally defines wait-free and non-blocking contention managers. These defini-
tions are, we believe, contributions in their own rights, for they capture precisely
the interaction between a contention manager and an obstruction-free algorithm.
In Sect. 3 and 4, we prove our weakest failure detector results. In each case, we
first present (necessary part) a reduction algorithm [15] that extracts the out-
put of failure detector Ω∗ (respectively ♦P) using a non-blocking (respectively
wait-free) contention manager implementation. When devising our reduction al-
gorithms, we do not restrict what objects (or random oracles) can be used by
the contention manager or the OF algorithm. Then (sufficient part), we present
algorithms that implement the contention managers using the failure detectors
and registers. These algorithms are devised with the sole purpose of proving our
sufficiency claims. We do not seek to minimize the overhead of the interaction
between the OF algorithm and the contention manager, nor do we discuss how
the failure detector can itself be implemented with little synchrony assumptions
and minimal overhead, unlike the transformations presented in [12]. However, as
we show in [17], our algorithms can be easily extended to meet these challenges.
The proofs of a few minor results are omitted due to the space limitations and
can be found in the full version of the paper [18].

5 ♦P ensures that eventually: (1) every failure is detected by every correct (i.e., non-
faulty) process and (2) there is no false detection.

6 Ω ensures that eventually all correct (i.e., non-faulty) processes elect the same correct
process as their leader.



2 Preliminaries

Processes and Failure Detectors. We consider a set of n processes Π =
{p1, . . . , pn} in a shared memory system [1,19]. A process executes the (possibly
randomized) algorithm assigned to it, until the process crashes (fails) and stops
executing any action. We assume the existence of a global discrete clock that
is, however, inaccessible to the processes. We say that a process is correct if it
never crashes. We say that process pi is alive at time t if pi has not crashed by
time t.

A failure detector [14,15] is a distributed oracle that provides every process
with some information about failures. The output of a failure detector depends
only on which and when processes fail, and not on computations being per-
formed by the processes. A process pi queries a failure detector D by accessing
local variable D-outputi—the output of the module of D at process pi. Failure
detectors can be partially ordered according to the amount of information about
failures they provide. A failure detector D is weaker than a failure detector D′,
and we write D � D′, if there exists an algorithm (called a reduction algorithm)
that transforms D′ into D. If D � D′ but D′ � D, we say that D is strictly
weaker than D′, and we write D ≺ D′.

Base and High-Level Objects. Processes communicate by invoking primitive
operations (which we will call instructions) on base shared objects and seek to
implement the operations of a high-level shared object O. Object O is in turn
used by an application, as a high-level inter-process communication mechanism.
We call invocation and response events of a high-level operation op on the im-
plemented object O application events and denote them by, respectively, inv(op)
and ret(op) (or invi(op) and reti(op) at a process pi).

An implementation of O is a distributed algorithm that specifies, for every
process pi and every operation op of O, the sequences of steps that pi should
take in order to complete op. Process pi completes operation op when pi returns
from op. Every process pi may complete any number of operations but, at any
point in time, at most one operation op can be pending (started and not yet
completed) at pi.

We consider implementations of O that combine a sub-protocol that ensures
a minimal liveness property, called obstruction-freedom, with a sub-protocol that
boosts this liveness guarantee. The former is called an obstruction-free (OF) algo-
rithm A and the latter a contention manager CM . We focus on linearizable [2,3]
implementations of O: every operation appears to the application as if it took
effect instantaneously between its invocation and its return. An implementation
of O involves two categories of steps executed by any process pi: those (executed
on behalf) of CM and those (executed on behalf) of A. In each step, a process
pi either executes an instruction on a base shared object or (in case pi executes
a step on behalf of CM ) queries a failure detector.



Obstruction-freedom [6,7] stipulates that if a process that invokes an opera-
tion op on object O and from some point in time executes steps of A alone7, then
it eventually completes op. Non-blockingness stipulates that if some correct pro-
cess never completes an invoked operation, then some other process completes
infinitely many operations. Wait-freedom [1] ensures that every correct process
that invokes an operation eventually returns from the operation.

Interaction Between Modules. OF algorithm A, executed by any process
pi, communicates with contention manager CM via calls tryi and resigni im-
plemented by CM (see Fig. 1). Process pi invokes tryi just after pi starts an
operation, and also later (even several times before pi completes the operation)
to signal possible contention. Process pi invokes resigni just before returning
from an operation, and always eventually returns from this call (or crashes).
Both calls, tryi and resigni, return ok.8

We denote by B(A) and B(CM) the sets of base shared objects, always
disjoint, that can be possibly accessed by steps of, respectively, A and CM , in
every execution, by every process. Calls try and resign are thus the only means
by which A and CM interact. The events corresponding to invocations of, and
responses from, try and resign are called cm-events. We denote by tryinv

i and
resigninv

i an invocation of call tryi and resigni, respectively (at process pi), and
by tryret

i and resignret
i —the corresponding responses.

Executions and Histories. An execution of an OF algorithm A combined
with a contention manager CM is a sequence of events that include steps of A,
steps of CM , cm-events and application events. Every event in an execution is
associated with a unique time at which the event took place. Every execution
e induces a history H(e) that includes only application events (invocations and
responses of high-level operations). The corresponding CM-history HCM(e) is
the subsequence of e containing only application events and cm-events of the
execution, and the corresponding OF-history HOF(e) is the subsequence of e
containing only application events, cm-events, and steps of A. For a sequence s
of events, s|i denotes the subsequence of s containing only events at process pi.

We say that a process pi is blocked at time t in an execution e if (1) pi is
alive at time t, and (2) the latest event in HCM(e)|i that occurred before t is
tryinv

i or resigninv
i . A process pi is busy at time t in e if (1) pi is alive at time t,

and (2) the latest event in HCM(e)|i that occurred before t is tryret
i . We say that

a process pi is active at t in e if pi is either busy or blocked at time t in e. We
say that a process pi is idle at time t in e if pi is not active at t in e.9 A process
resigns when it invokes resign on a contention manager.
7 I.e., without encountering step contention [20].
8 An example OF algorithm that uses this model of interaction with a contention

manager is presented in [18]. A discussion about overhead of wait-free/non-blocking
contention managers that explains when calls to try/resign can be omitted for effi-
ciency reasons can be found in [17].

9 Note that every process that has crashed is permanently idle.



OF algorithm A

Contention Manager
Module

Failure Detector
Module

OF algorithm A

Contention Manager
Module

Failure Detector
Module

Process pi Process pj

tryi / resigni tryj / resignj

B(CM)

B(A)

Base shared objects

invi / reti invj / retj

High-Level Object O

Contention Manager CM

Failure

Detector D

Fig. 1. The OF algorithm/contention manager interface

We say that pi is obstruction-free in an interval [t, t′] in an execution e, if pi is
the only process that takes steps of A in [t, t′] in e and pi is not blocked infinitely
long in [t, t′] (if t′ = ∞). We say that process pi is eventually obstruction-free
at time t in e if pi is active at t or later and pi either resigns after t or is
obstruction-free in the interval [t′,∞) for some t′ > t. Note that, since algorithm
A is obstruction-free, if an active process pi is eventually obstruction-free, then
pi eventually resigns and completes its operation.

Well-Formed Executions. We impose certain restrictions on the way an OF
algorithm A and a contention manager CM interact. In particular, we assume
that no process takes steps of A while being blocked by CM or idle, and no
process takes infinitely many steps of A without calling CM infinitely many
times. Further, a process must inform CM that an operation is completed by
calling resign before returning the response to the application.

Formally, we assume that every execution e is well-formed, i.e., H(e) is lin-
earizable [2,3], and, for every process pi, (1) HCM(e)|i is a prefix of a sequence
[op1][op2], . . ., where each [opk] has the form invi(opk),tryinv

i , tryret
i , . . . , tryinv

i ,
tryret

i , resigninv
i , resignret

i ,reti(opk); (2) in HOF(e)|i, no step of A is executed
when pi is blocked or idle, (3) in HOF(e)|i, invi can only be followed by tryinv

i ,
and reti can only be preceded by resignret

i ; (4) if pi is busy at time t in e, then
at some t′ > t, process pi is idle or blocked. The last condition implies that
every busy process pi eventually invokes tryi (and becomes blocked), resigns
or crashes. Clearly, in a well-formed execution, every process goes through the
following cyclical order of modes: idle, active, idle, . . ., where each active period
consists itself of a sequence blocked, busy, blocked, . . ..



Non-blocking Contention Manager. We say that a contention manager CM
guarantees non-blockingness for an OF algorithm A if in each execution e of A
combined with CM the following property is satisfied: if some correct process is
active at a time t, then at some time t′ > t some process resigns.

A non-blocking contention manager guarantees non-blockingness for every
OF algorithm. Intuitively, this will happen if the contention manager allows at
least one active process to be obstruction-free (and busy) for sufficiently long
time, so that the process can complete its operation. More precisely, we say that
a contention manager CM is non-blocking if, for every OF algorithm A, in every
execution of A combined with CM the following property is ensured at every
time t:

Global Progress. If some correct process is active at t, then some correct
process is eventually obstruction-free at t.

We show in [18] that a contention manager CM guarantees non-blockingness for
every OF algorithm if and only if CM is non-blocking.

Wait-Free Contention Manager. We say that a contention manager CM
guarantees wait-freedom for an OF algorithm A if in every execution e of A
combined with CM , the following property is satisfied: if a process pi is active
at a time t, then at some time t′ > t, pi becomes idle. In other words, every
operation executed by a correct process eventually returns.

A wait-free contention manager guarantees wait-freedom for every OF algo-
rithm. Intuitively, this will happen if the contention manager makes sure that
every correct active process is given “enough” time to complete its operation,
regardless of how other processes behave. More precisely, a contention manager
CM is wait-free if, for every OF algorithm A, in every execution of A combined
with CM , the following property is ensured at every time t:10

Fairness. If a correct process pi is active at t, then pi is eventually obstruction-
free at t.

We show in [18] that a contention manager CM guarantees wait-freedom for
every OF algorithm if and only if CM is wait-free.

In the following, we seek to determine the weakest [15] failure detector D to
implement a non-blocking (resp. wait-free) contention manager CM . This means
that (1) D implements such a contention manager, i.e., there is an algorithm that
implements CM using D, and (2) D is necessary to implement such a contention
manager, i.e., if a failure detector D′ implements CM , then D � D′. In our
context, a reduction algorithm that transforms D′ into D uses the D′-based
implementation of the corresponding contention manager as a “black box” and
read-write registers.

10 This property is ensured by wait-free contention managers from the literature [12,13].



3 Non-blocking Contention Managers

Let S ⊆ Π be a non-empty set of processes. Failure detector ΩS outputs, at
every process, an identifier of a process (called a leader), such that all correct
processes in S eventually agree on the identifier of the same correct process in
S.11

Failure detector Ω∗ is the composition {ΩS}S⊆Π,S 6=∅: at every process pi,
Ω∗-outputi is a tuple consisting of the outputs of failure detectors ΩS . We po-
sition Ω∗ in the hierarchy of failure detectors of [14] by showing in [18] that
Ω ≺ Ω∗ ≺ ♦P.

To show that Ω∗ is necessary to implement a non-blocking contention man-
ager, it suffices to prove that, for every non-empty S ⊆ Π, ΩS is necessary to
implement a non-blocking contention manager. Let CM be a non-blocking con-
tention manager using failure detector D. We show that Ω∗ � D by presenting
an algorithm TD→ΩS

(Algorithm 1) that, using CM and D, emulates the output
of ΩS .

Algorithm 1: Extracting ΩS from a non-blocking contention manager (code for
processes from set S; others are permanently idle)

uses: L—register
initially: ΩS-outputi ← pi, L← some process in S

Launch two parallel tasks: Ti and Fi

parallel task Fi1.1

ΩS-outputi ← L1.2

parallel task Ti1.3

while true do1.4

issue tryi and wait until busy (i.e., until call tryi returns)1.5

L← pi // announce yourself a leader1.6

The algorithm works as follows. Every process pi ∈ S runs two parallel
tasks Ti and Fi. In task Ti, process pi periodically (1) gets blocked by CM
after invoking tryi (line 1.5), and (2) once pi gets busy again, announces itself a
leader for set S by writing its id in L (line 1.6). In task Fi, process pi periodically
determines its leader by reading register L (line 1.2).12

Thus, no process ever resigns and every correct process in S is permanently
active from some point in time. Intuitively, this signals a possible livelock to CM
which has to eventually block all active processes except for one that should
run obstruction-free for sufficiently long time. By Global Progress, CM cannot
11 ΩS can be seen as a restriction of the eventual leader election failure detector Ω [15]

to processes in S. The definition of ΩS resembles the notion of Γ -accurate failure
detectors introduced in [21]. Clearly, ΩΠ is Ω.

12 If a process is blocked in one task, it continues executing steps in parallel tasks.



block all active processes forever and so if the elected process crashes (and so
becomes idle), CM lets another active process run obstruction-free. Eventually,
all correct processes in S agree on the same process in S. Processes outside S
are permanently idle and permanently output their own ids: they do not access
CM .

This approach contains a subtlety. To make sure that there is a time after
which the same correct leader in S is permanently elected by the correct processes
in S, we do not allow the elected leader to resign (the output of ΩS has to
be eventually stable). This violates the assumption that processes using CM
run an obstruction-free algorithm, and, thus, a priori, CM is not obliged to
preserve Global Progress. However, as we show below, since CM does not “know”
how much time a process executing an OF algorithm requires to complete its
operation, CM has to provide some correct process with unbounded time to run
in isolation.

Theorem 1. Every non-blocking contention manager can be used to implement
failure detector Ω∗.

Proof. Let S ⊆ Π, S 6= ∅ and consider any execution of Algorithm 1. If S
contains no correct process, then ΩS-outputi (for every process pi ∈ S) trivially
satisfies the property of ΩS . Now assume that there is a correct process in S. We
claim that CM eventually lets exactly one correct process in S run obstruction-
free while blocking forever all the other processes in S.

Suppose not. We obtain an execution in which every correct process in S is
allowed to be obstruction-free only for bounded periods of time. But the CM-
history of this execution corresponds to an execution of some OF algorithm
A combined with CM in which no active process ever completes its operation
because no active process ever obtains enough time to run in isolation. Thus, no
active process is eventually obstruction-free in that execution. This contradicts
the assumption that CM is non-blocking.

Therefore, there is a time after which exactly one correct process pj ∈ S is
periodically busy (others are blocked or idle forever) and, respectively, register
L permanently stores the identifier of pj . Thus, eventually, every correct process
in S outputs pj : the output of ΩS is extracted. ut

We describe an implementation of a non-blocking contention manager using
Ω∗ and registers in Algorithm 2 (we prove its correctness in [18]). The algorithm
works as follows. All active processes, upon calling try, participate in the leader
election mechanism using Ω∗ in lines 2.3–2.5. The active process pi that is elected
a leader returns from try and is (eventually) allowed to run obstruction-free until
pi resigns. Once pi resigns, the processes elect another leader. Failure detector
Ω∗ guarantees that if an active process is elected and crashes before resigning,
another active process is eventually elected.

Theorem 2. Algorithm 2 implements a non-blocking contention manager.



Algorithm 2: A non-blocking contention manager using Ω∗ = {ΩS}S⊆Π,S 6=∅

uses: T [1, . . . , n]—array of single-bit registers
initially: T [1, . . . , n]← false

upon tryi do2.1

T [i]← true2.2

repeat2.3

S ← { pj ∈ Π | T [j] = true }2.4

until ΩS-outputi = pi2.5

upon resigni do2.6

T [i]← false2.7

4 Wait-Free Contention Managers

We prove here that the weakest failure detector to implement a wait-free con-
tention manager is ♦P. Failure detector ♦P [14] outputs, at each time and
every process, a set of suspected processes. There is a time after which (1) every
crashed process is permanently suspected by every correct process and (2) no
correct process is ever suspected by any correct process.

We first consider a wait-free contention manager CM using a failure detector
D, and we exhibit a reduction algorithm TD→♦P (Algorithm 3) that, using CM
and D, emulates the output of ♦P.

Algorithm 3: Extracting ♦P from a wait-free contention manager

uses: R[1, . . . , n]—array of registers
initially: ♦P-outputi ← Π − {pi}, k ← 0, R[i]← 0

Launch n(n− 1) parallel instances of CM : Cjk, j, k ∈ {1, . . . , n}, j 6= k
Launch 2n− 1 parallel tasks: Tij , Tji, j ∈ {1, . . . , n}, i 6= j, and Fi

parallel task Fi3.1

while true do R[i]← R[i] + 1 // ‘‘heartbeat’’ signal3.2

parallel task Tij, j = 1, . . . , i− 1, i + 1, . . . , n3.3

while true do3.4

xj ← R[j]3.5

♦P-outputi ← ♦P-outputi − {pj} // stop suspecting pj3.6

issue tryij
i (in Cij) and wait until busy3.7

issue resignij
i (in Cij) and wait until idle3.8

♦P-outputi ← ♦P-outputi ∪ {pj} // start suspecting pj3.9

wait until R[j] > xj // wait until pj takes a new step3.10

parallel task Tji, j = 1, . . . , i− 1, i + 1, . . . , n3.11

while true do issue tryji
i (in Cji) and wait until busy3.12



We run several instances of CM . These instances use disjoint sets of base
shared objects and do not directly interact. Basically, in each instance, only
two processes are active and all other processes are idle. One of the two pro-
cesses, say pj , gets active and never resigns thereafter, while the other, say pi,
permanently alternates between being active and idle. To CM it looks like pj

is always obstructed by pi. Thus, to guarantee wait-freedom, the instance of
CM has to eventually block pi and let pj run obstruction-free until pj resigns
or crashes. Therefore, when pi is blocked, pi can assume that pj is alive and
when pi is busy, pi can suspect pj of having crashed, until pi eventually observes
pj ’s “heartbeat” signal, which pj periodically broadcasts using a register. This
ensures the properties of ♦P at process pi, provided that pj never resigns.

As in Sect. 3, we face the following issue. If pj is correct, pi will be eventu-
ally blocked forever and pj will thus be eventually obstruction-free. Hence, in
the corresponding execution, obstruction-freedom is violated, i.e., the execution
cannot be produced by any OF algorithm combined with CM . One might argue
then that CM is not obliged to preserve Fairness with respect to pj . However,
we show that, since CM does not “know” how much time a process executing
an OF algorithm requires to complete its operation, CM has to provide pj with
unbounded time to run in isolation.

More precisely, the processes in Algorithm 3 run n(n−1) parallel instances of
CM , denoted each CM jk, where j, k ∈ {1, . . . , n}, j 6= k. We denote the events
that process pi issues in instance CM jk by tryjk

i and resignjk
i . Besides, every

process pi runs 2n − 1 parallel tasks: Tij , Tji, where j ∈ {1, . . . , n}, i 6= j, and
Fi. Every task Tij executed by pi is responsible for detecting failures of process
pj . Every task Tji executed by pi is responsible for preventing pj from falsely
suspecting pi. In task Fi, pi periodically writes ever-increasing “heartbeat” values
in a shared register R[i].

In every instance CM ij , there can be only two active processes: pi and pj .
Process pi cyclically gets active (line 3.7) and resigns (line 3.8), and process
pj gets active once and keeps getting blocked (line 3.12). Each time before pi

gets active, pi removes pj from the list of suspected processes (line 3.6). Each
time pi stops being blocked, pi starts suspecting pj (line 3.9) and waits until pi

observes a “new” step of pj (line 3.10). Once such a step of pj is observed, pi

stops suspecting pj and gets active again.

Theorem 3. Every wait-free contention manager can be used to implement fail-
ure detector ♦P.

Proof. Consider any execution e of TD→♦P , and let pi be any correct process.
We show that, in e, ♦P-outputi satisfies the properties of ♦P, i.e., pi eventually
permanently suspects every non-correct process and stops suspecting every cor-
rect process. (Note that if a process pi is not correct, then ♦P-outputi trivially
satisfies the properties of ♦P.)

Let pj be any process distinct from pi. Assume pj is not correct. Thus pi is
the only correct active process in instance CM ij . By the Fairness property of
CM , pi is eventually obstruction-free every time pi becomes active, and so pi



cannot be blocked infinitely long in line 3.7. Since there is a time after which
pj stops taking steps, eventually pi starts suspecting pj (line 3.9) and suspends
in line 3.10, waiting until pj takes a new step. Thus, pi eventually suspects pj

forever.
Assume now that pj is correct. We claim that pi must eventually get perma-

nently blocked so that pj would run obstruction-free from some point in time
forever. Suppose not. But then we obtain an execution in which pi alternates
between active and idle modes infinitely many times, and pj stays active and
runs obstruction-free only for bounded periods of time. But the CM-history
of this execution could be produced by an execution e′ of some OF algorithm
combined with CM in which pj never completes its operation because pj never
runs long enough in isolation. Thus, Fairness is violated in execution e′ and this
contradicts the assumption that CM is wait-free. Hence, eventually pi gets per-
manently blocked in line 3.7. Since each time pi is about to get blocked, pi stops
suspecting pj in line 3.6, there is a time after which pi never suspects pj .

Thus, there is a time after which, if pj is correct, then pj stops being suspected
by every correct process, and if pj is non-correct, then every correct process
permanently suspects pj . ut

We describe an implementation of a wait-free contention manager using ♦P
and registers in Algorithm 4 (we prove its correctness in [18]). The algorithm
relies on a (wait-free) primitive GetTimestamp() that generates unique, locally
increasing timestamps and makes sure that if a process gets a timestamp ts, then
no process can get timestamps lower than ts infinitely many times (this primitive
can be implemented in an asynchronous system using read-write registers). The
idea of the algorithm is the following. Every process pi that gets active receives a
timestamp in line 4.2 and announces the timestamp in register T [i]. Every active
process that invokes try repeatedly runs a leader election mechanism (lines 4.3–
4.6): the non-suspected (by ♦P) process that announced the lowest (non-⊥)
timestamp is elected a leader. If a process pi is elected, pi returns from tryi and
becomes busy. ♦P guarantees that eventually the same correct active process
is elected by all active processes. All other active processes stay blocked until
the process resigns and resets its timestamp in line 4.8. The leader executes
steps obstruction-free then. Since the leader runs an OF algorithm, the leader
eventually resigns and resets its timestamp in line 4.8 so that another active
process, which now has the lowest timestamp in T , can become a leader.

Theorem 4. Algorithm 4 implements a wait-free contention manager.

Acknowledgements. We are very grateful to Hagit Attiya, Maurice Herlihy,
Bastian Pochon, Faith Fich, Victor Luchangco, Mark Moir and Nir Shavit for
interesting discussions on the topic of this paper. We would also like to thank
the anonymous reviewers for helpful comments.



Algorithm 4: A wait-free contention manager using ♦P
uses: T [1, . . . , N ]—array of registers (other variables are local)
initially: T [1, . . . , N ]← ⊥
upon tryi do4.1

if T [i] = ⊥ then T [i]← GetTimestamp()4.2

repeat4.3

sacti ← { j | T [j] 6= ⊥ ∧ pj /∈ ♦P-outputi }4.4

leaderi ← argminj∈sacti
T [j]4.5

until leaderi = i4.6

upon resigni do4.7

T [i]← ⊥4.8

References

1. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13(1) (1991) 124–149

2. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12(3) (1990)
463–492

3. Attiya, H., Welch, J.L.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition). Wiley (2004)

4. LaMarca, A.: A performance evaluation of lock-free synchronization protocols.
In: Proceedings of the 13th Annual ACM Symposium on Principles of Distributed
Computing (PODC’94). (1994) 130–140

5. Bershad, B.N.: Practical considerations for non-blocking concurrent objects. In:
Proceedings of the 14th IEEE International Conference on Distributed Computing
Systems (ICDCS’93). (1993) 264–273

6. Herlihy, M., Luchango, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. In: Proceedings of the 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS’93). (2003) 522–529

7. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: Proceedings of the 22nd Annual
ACM Symposium on Principles of Distributed Computing (PODC’03). (2003) 92–
101

8. Scherer III, W.N., Scott, M.L.: Contention management in dynamic software trans-
actional memory. In: PODC Workshop on Concurrency and Synchronization in
Java Programs. (2004)

9. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic
software transactional memory. In: Proceedings of the 24th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC’05). (2005)

10. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention management.
In: Proceedings of the 19th International Symposium on Distributed Computing
(DISC’05), LNCS, Springer (2005) 303–323

11. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention
managers. In: Proceedings of the 24th Annual ACM Symposium on Principles of
Distributed Computing (PODC’05). (2005)



12. Fich, F., Luchangco, V., Moir, M., Shavit, N.: Obstruction-free algorithms can
be practically wait-free. In: Proceedings of the 19th International Symposium on
Distributed Computing (DISC’05). (2005)

13. Guerraoui, R., Herlihy, M., Kapa lka, M., Pochon, B.: Robust contention man-
agement in software transactional memory. In: Proceedings of the Workshop on
Synchronization and Concurrency in Object-Oriented Languages (SCOOL); in con-
junction with the ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA’05). (2005)

14. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2) (1996) 225–267

15. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4) (1996) 685–722

16. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems
16(2) (1998) 133–169

17. Guerraoui, R., Kapa lka, M., Kouznetsov, P.: Boosting obstruction-freedom with
low overhead. Technical report, EPFL (2006) Submitted for publication.

18. Guerraoui, R., Kapa lka, M., Kouznetsov, P.: The weakest failure detectors to boost
obstruction-freedom. Technical report, EPFL (2006)

19. Jayanti, P.: Robust wait-free hierarchies. Journal of the ACM 44(4) (1997) 592–614
20. Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads and writes in the

absence of step contention. In: Proceedings of the 19th International Symposium
on Distributed Computing (DISC’05). (2005)

21. Guerraoui, R., Schiper, A.: “Γ -accurate” failure detectors. In: Proceedings of the
10th International Workshop on Distributed Algorithms (WDAG’96), Springer-
Verlag (1996)


