The Weakest Failure Detector
for Non-Blocking Atomic Commit,

Rachid Guerraoui Petr Kouznetsov

Distributed Programming Laboratory
EPFL

Abstract

This paper addresses the question of the weakest failure detector for solving the Non-Blocking
Atomic Commit problem (NBAC) in a message passing system where processes can fail by crash-
ing.

We define a failure detector, denoted by X', which we show to be sufficient to solve NBAC
with a majority of correct processes. Then we give an algorithm which, no matter how many
processes may crash, uses any failure detector that solves NBAC to emulate X, i.e., we prove that
X is also necessary for solving NBAC.

A similar result was obtained concurrently and independently by Hadzilacos and Toueg [11].

Keywords: atomic commitment, failure detector, non-blocking, asynchronous distributed system, consensus.

1 Introduction

Problem. Non-Blocking Atomic Commit (NBAC) is a fundamental agreement problem in dis-
tributed computing [12, 6, 10]. The problem occurs in distributed transactional systems. To ensure
the atomicity of a distributed transaction, processes must agree on a common outcome: commit
or abort. Every process that does not crash during the execution of the algorithm (i.e., a correct
process), should eventually decide on an outcome without waiting for crashed processes to recover.
Moreover, commit is decided only if no process proposes to abort, and abort is decided only if a
process proposes to abort or crashes.

More precisely, the Non-Blocking Atomic Commit (NBAC) problem [12] consists for a set of pro-
cesses to reach a common decision, commit or abort, according to some initial votes of the processes,
yes or no, such that the following properties are satisfied: (1) Agreement: no two processes decide
differently; (2) Termination: every correct process eventually decides; (3) C-Validity: abort can only
be decided if some process votes no or crashes; and (4) A-Validity: commit can only be decided if
all processes vote yes. For brevity, we denote yes and commit by 1, while no and abort by 0.

In this paper, we discuss the solvability of the problem in a distributed crash-stop asynchronous
message-passing model. Informally, the model is one in which processes exchange messages through
reliable communication channels, processes can fail by crashing, and there are no bounds on message
transmission time and relative processor speeds.

Failure detectors. Clearly, NBAC is not solvable in this model if at least one process can crash.
Indeed, there is no way to distinguish a single slow process proposing 1 from a crashed one. As a

result, a correct process might never be able to decide. Thus, NBAC belongs to the class of agreement
problems that are not solvable in an asynchronous system where at least one process can crash [4] I.

To circumvent the impossibility of agreement problems, Chandra and Toueg [2] introduced the
notion of failure detector. Informally, a failure detector is a distributed oracle that gives (possibly
incorrect) hints about the crashes of processes. Each process has access to a local failure detector
module that monitors other processes in the system. A failure detector can be implemented with
synchrony assumptions in a message passing system. It was shown in [2] that a rather weak failure
detector ©S is sufficient to solve Consensus in an asynchronous system with a majority of correct
processes, and in [1] that &S is in some sense necessary to solve Consensus. More precisely, it was
shown in [1] that any failure detector solving Consensus can emulate ¢S. In the parlance of [1],
OS is the weakest failure detector to solve Consensus: ¢S encapsulates the exact information about
failures needed to solve Consensus in a system with a majority of correct processes. ¢S guarantees
that, in any execution, the following properties are satisfied: (strong completeness) every crashed
process is eventually suspected by every correct process, and (eventual weak accuracy) there is a
time after which at least one correct process is never suspected.

In this paper we address the question of the weakest failure detector to solve NBAC. That is, we
aim at determining the minimal amount of information about failures needed to solve NBAC.

Background. It was pointed out in [1, 7] that ¢S was not sufficient to solve NBAC and the
question for the weakest remained open since then.

In [8] the anonymously perfect failure detector 7P was introduced, and shown to be necessary to
solve NBAC. Each module of 7P at a given process outputs either the empty set or the identifier of
the process. When the failure detector module of 7P at a process p; outputs p;, we say that p; detects
a crash. 7P satisfies the following properties: (anonymous completeness:) if some process crashes,
then there is a time after which every correct process permanently detects a crash, and (anonymous
accuracy:) no crash is detected unless some process crashes. In other words, 7P correctly detects
that some process has crashed, but does not tell which process has actually crashed.

It was stated in [5] that P is the weakest failure detector to solve NBAC, but [8] pointed out that
[5] assumes NBAC to be solved among any subset of the processes in the system, then showed that
P is not the weakest failure detector to solve NBAC without that assumption. In fact, an algorithm
that transforms Consensus into NBAC using 7P was presented in [8]. Since ©S is sufficient to solve
Consensus in a system with a majority of correct processes, 7P + S is sufficient to solve NBAC. It
was also shown in [8] that (a) 7P+ OS is strictly weaker than P(if more than one process can crash),
and (b) yet 7P + ©S§ is not the weakest for NBAC (It is shown in [9] that 7P + ©S is necessary
for NBAC among the class of time-free failure detectors, i.e., all failure detectors are not allowed to
provide timing information).

If at most one process can crash, then 7P can easily emulate ¢S. Given that 7P + OS solves
NBAC [8] in a system with a majority of correct processes, 7P is hence the weakest failure detector
to solve NBAC in a system of n > 2 processes where one process can crash.

This leaves open the general case however: what is the weakest failure detector, among all possible
failure detectors (in the original sense of [2]), in a system where more than one process can crash?
This paper answer the question for systems in which a majority of processes is correct..

Contribution. In this paper, we precisely define the weakest failure detector to solve NBAC with a
majority of correct processes. This failure detector, denoted by X, is strictly weaker than 7P + OS,

'In fact, the impossibility result of [4] is shown for Weak Consensus and applies to both Consensus and NBAC
(though a simpler proof can clearly be devised for NBAC because of its validity properties). In Consensus, the processes
need to decide on one out of two values, 0 or 1, based on proposed values, 0 or 1, so that, in addition to the agreement
and termination properties of NBAC, the following validity property holds: A value decided must be a value proposed.

and thus than P. Roughly speaking, X eventually either (1) accurately and uniformly detects a
crash or (2) uniformly misses a crash (no crash is detected unless it happens and no two processes
disagree). If a crash is detected, no further communication is needed to solve NBAC: processes can
safely decide 0. Otherwise, X provides the same information as 7P + &8 provides. We show that
X is sufficient to solve NBAC when a majority of processes is correct. We show in this paper that
X is also necessary to solve NBAC (in any environment). That is, we prove that there is an algorithm
that emulates X using any failure detector that solves NBAC.

The construction of our emulation algorithm is slightly more involved than the one of [1]. In-
tuitively, the emulation algorithm exploits the failure detection flavor of the NBAC problem itself.
Indeed, if every process proposes 1 and the decision value of an NBAC algorithm using a failure
detector D is 0, then, by the c-validity property of the problem, there is a failure. Moreover, by
termination and agreement, it is guaranteed that any process either detects the failure or crashes.
As a result, if the failure is detected, no further failure detection is necessary. Otherwise, if no failure
is detected, it turns out that the information provided by D is sufficient to emulate ¢S. Indeed,
under the condition that 1 is decided in some execution of the NBAC algorithm using D, there exists
an algorithm that eventually, at every correct process, outputs the same correct process identifier,
which is sufficient to emulate ¢S [1].

Our weakest failure detector for solving NBAC X provides an insight to the implementation aspect
of the problem. For instance, in [3] a transaction commit algorithm was proposed. The algorithm
ensures a-validity, agreement and, with probability 1, termination of NBAC. The c-validity property
is guaranteed under the condition that the underlying system “behaves well”: e.g., all messages
arrive within some known time bound. (Note that there is no purely randomized solution to NBAC
due to the “failure-sensitive” nature of the problem.) In a precise sense, X' captures what “behaves
well” means to make the algorithm of [3] solve the original NBAC problem.

Important remark. Concurrently and independently of this work, Vassos Hadzilacos and Sam
Toueg came out with a similar result [11].

In fact, Hadzilacos and Toueg determined the weakest failure detecor for a slightly stronger
version of the NBAC problem. With respect to the original definition of the problem given in [10],
the definition of [11] does not allow processes to abort because of future failures. However, this
limitation does not seem to be important from the practical point of view.

Another difference between our approach and the one of [11] has to do with the proof technique.
Our proof directly attacks the NBAC problem whereas the proof of [11] goes through defining first
the weakest failure detector for another problem, a weaker variant of consensus, which is by itself an
interesting result. That makes the proof of [11] a bit more technically involved than our proof.

Roadmap. Section 2 defines our system model. Section 3 defines our candidate failure detector
and shows that it is sufficient to solve NBAC. Section 4 gives a brief reminder of the technique used
in [1] to show that ¢S is necessary for solving Consensus and extends the technique to the NBAC
problem. Section 5 proves the necessity part of our result.

2 Model

We consider in this paper a crash-prone asynchronous message passing model augmented with the
failure detector abstraction. We recall here what in the model is needed to state and prove our
results. More details on the model can be found in [2].

System. We assume the existence of a global clock to simplify the presentation. The processes
do not have direct access to the clock (timing assumptions are captured within failure detectors).

We take the range T of the clock output values to be the set of natural numbers and the integer 0,
({0} UN). The system consists of a set of n processes Il = {p1, ..,pr }(n > 1). Every pair of processes
is connected by a reliable communication channel. The systems is asynchronous: there is no time
bound on message delay, clock drift, or the time necessary to execute a step [4].

Failures and failure patterns. Processes are subject to crash failures. A failure pattern F is
a function from the global time range 7 to 2!, where F(t) denotes the set of processes that have
crashed by time ¢. Once a process crashes, it does not recover, i.e., Vi < t': F(t) C F(t'). We define
correct(F) = II — UyeT F(t) to be the set of correct processes. A process p; ¢ F(t) is said to be up
at time t. A process p; € F(t) is said to be crashed (or incorrect) at time t. We do not consider
Byzantine failures: a process either correctly executes the algorithm assigned to it, or crashes and
stops executing any action forever. An environment £ is a set of failure patterns. E; denotes the set
of all environments that include only failure patterns in which up to f processes can fail. By default,
we consider environments in E; with at least one correct process: 0 < f < n. We denote by Fy the
failure-free failure pattern (correct(Fy) = II).

Failure detectors. A failure detector history H with range R is a function from II x T to R.
H(p;,t) is the output of the failure detector module of process p; at time t. A failure detector D is a
function that maps each failure pattern F' to a set of failure detector histories D(F') with range Rp.

Every process p; has a failure detector module D; that p; queries to obtain information about
the failures in the system. Typically, this information includes the set of processes that a process
currently suspects to have crashed.? Among the failure detectors defined in [1, 2], we consider the
following one:

Perfect (P): the output of every P; is a set of suspected processes satisfying strong completeness (i.e.,
every incorrect process is eventually suspected by every correct process) and strong accuracy
(i.e., no process is suspected before it crashes);

Eventually strong (¢S8): the output of every ©S; is a set of suspected processes satisfying strong
completeness and eventual weak accuracy (i.e., there is a time after which one correct process
is never suspected).

Eventual leader (): the output of each failure detector module €2; is a single process p;, that p;
currently trusts, i.e., that p; considers to be correct (Rq = II). For every failure pattern, there
is a time after which all correct processes always trust the same correct process. Obviously, 2
provides at least as much information as ©S: if every process p; always suspects I — {€;}, the
properties of ©S are guaranteed [1].

We consider also the anonymously perfect failure detector 7P [8], such that each module of 7P at
a given process outputs either 0 or 1 (R2p = {0,1}). When the failure detector module of ?P
at a process p; outputs 1, we say that p; detects a crash. 7P satisfies the following properties:
anonymous completeness (i.e., if some process crashes, then there is a time after which every correct
process permanently detects a crash), and anonymous accuracy (i.e., no crash is detected unless
some process crashes).

For any failure pattern F, P(F), OS(F'), Q(F) and 7P(F’) denote the sets of all histories satisfying
the corresponding properties. Recalling the notion of failure detector classes introduced in [2], every
failure detector above denotes here the weakest element in the classes of failure detectors satisfying
the corresponding properties.

*In [1], failure detectors can output values from an arbitrary range. In determining the weakest failure detector for
NBAC, we also do not make any assumption a priori on the range of a failure detector.

Algorithms. We model the set of asynchronous communication channels as a message buffer which
contains messages not yet received by their destinations. An algorithm A is a collection of n (possibly
infinite state) deterministic automata, one for each of the processes. A(p;) denotes the automaton
running on process p;. In each step of A, process p; performs atomically the following three actions:
(receive phase) p; chooses non-deterministically a single message addressed to p; from the message
buffer, or a null message, denoted A; (failure detector query phase) p; queries and receives a value
from its failure detector module; (local state update phase) p; changes its state; and (send phase)
sends a message to all processes according to the automaton A(p;), based on its state at the beginning
of the step, the message received in the receive action, and the value obtained by p; from its failure
detector module.?

Configurations, schedules and runs. A configuration defines the current state of each process
in the system and the set of messages currently in the message buffer. Initially, the message buffer is
empty. A step (pi,m,d, A) of an algorithm A is uniquely determined by the identity of the process
p; that takes the step, the message m received by p; during the step (m might be the null message
A), and the failure detector value d seen by p; during the step. We say that a step e = (p;,m,d, A)
1s applicable to the current configuration if and only if m = X\ or m is a message from the current
message buffer destined to p;. e(C) denotes the unique configuration that results when e is applied to
C. A schedule S of algorithm A is a (finite or infinite) sequence of steps of A. S| denotes the empty
schedule. We say that a schedule S is applicable to a configuration C if and only if (a) S =S, , or
(b) S[1] is applicable to C, S[2] is applicable to S[1](C), etc. For a finite schedule S applicable to
C, S(C) denotes the unique configuration that results from applying S to C.

A partial run of algorithm A in an environment £ using a failure detector D is a tuple R =
(F,Hp,I,S,T), where F € £ is a failure pattern, Hp € D(F) is a failure detector history, I is an
initial configuration of A, S is a finite schedule of A, and T' C T is a finite list of increasing time
values, such that |S| = |T|, S is applicable to I, and for all ¢t < |S|, if S[t] is of the form (p;, m,d, A)
then: (1) p; has not crashed by time T[t], i.e., p; ¢ F(T[t]) and (2) d is the value of the failure
detector module of p; at time T'[t], i.e., d = Hp(p;, T[t]).

A run of algorithm A in an environment £ using a failure detector D is a tuple R = (F, Hp,I1,S,T),
where S is an infinite schedule of A and 7' C 7T is an infinite list of increasing time values indicating
when each step of S occurred. In addition to satisfying the properties (1) and (2) of a partial run,
run R should guarantee that (3) every correct process in F' takes an infinite number of steps in S
and eventually receives every message sent to it (this conveys the reliability of the communication
channels).

Weakest failure detector. A problem (e.g., NBAC or Consensus) is a set of runs (usually defined
by a set of properties that these runs should satisfy). We say that a failure detector D solves a problem
M in an environment £ if there is an algorithm A, such that all the runs of A in £ using D are in
M (i.e., they satisfy the properties of M).

Let D and D' be any two failure detectors and £ be any environment. If there is an algorithm
Tpr_,p that emulates D with D' in £ (Tpr_,p is called a reduction algorithm), we say that D is
weaker than D' in &, or D =g D'. If D <¢ D' but D’ A¢ D we say that D is strictly weaker than D'
in €, or D <¢ D'.* Note that Tp_,p does not need to emulate all histories of D; it is required that
all the failure detector histories it emulates be histories of D.

We say that a failure detector D is the weakest failure detector to solve a problem M in an

3The necessary part of our result also applies to weaker models where a step can atomically comprise at most one
phase and where a process can atomically send at most one message to a single process per step. The sufficient part
also holds in these models, since the algorithm of Section 3 is still correct there.

4Later we omit £ in <g and <¢ when there is no ambiguity on the environment &.

environment € if two conditions are satisfied: (1) Sufficiency: D solves M in &, and (2) Necessity: if
a failure detector D’ solves M in £ then D <¢ D'.

3 The candidate

Informally, our “XOR” failure detector X works as follows. For any failure pattern F', X eventually
either outputs value 1 at every process or provides a history H' of the failure detector 7P + <S8,
H' € ("P+<©8)(F). When X eventually outputs 1 we say that X' detects a crash. When X eventually
provides H' € (7P + O8)(F), we say that X misses a crash. X guarantees that no crash is detected
unless some process crashes. However, X does not guarantee that every crash failure is detected. If
X does not detect a crash, then X behaves like 7P + OS.

Formally, Ry = {L} U {1} UR?p.0s- Let 1y : TI x T — {1}, be a function, such that Vp; € II,
Vi€ T: 1x(pi,t) = 1. VF € £ and VH € X(F), there exist a function H' € {1x} U (?P + O8)(F)
and a tuple t; € 7,7 = 1..n, such that Vp; e T and t € T

. L if t<t
H(p”t)_{ H'(p;,t) if t>t

If H' = 1y, we say that X detects a crash. Otherwise, we say that X misses a crash. X guarantees
the following accuracy property:

X-accuracy No crash is detected in a failure-free failure pattern: H' = 1y = F # F,.

Lemma 1 X solves NBAC in any £ € Ef with 0 < f <n/2.

Proof: An algorithm that solves NBAC using X is presented in Figure 1. Each process waits until
its failure detector module outputs a value z # L. If 1 is output (X detects a crash), every process
decides 0. Otherwise (X misses a crash and, thus, behaves like 7P 4 <©S8), the process runs the NBAC
algorithm NBAC:p¢s [8] using A instead of 7P + OS.

1: function nbac(v;)
2: wait until &; outputs z # L { Wait until X detects a crash }
{ or misses it }

3: ifzr=1then

4: return(0) { Abort if X detects a crash }
5 else

6: v; < nbacrpios(vi) { Otherwise, run the NBAC?pros algorithm }
T return(v;)

Figure 1: An NBAC algorithm using X for process p;.

To prove the correctness of the algorithm, we consider two cases:

1. X detects a crash: every process either decides 0 or crashes. Thus, termination, agreement
and a-validity are ensured. If X detects a crash, then some process crashes. Thus, c-validity
is ensured.

2. X misses a crash: the correctness follows from the correctness of the NBAC algorithm using
7P + <8 when a majority of processes is correct [8].

In both cases, X provides sufficient information about failures to solve NBAC. O

4 Proof technique

In this section, we slightly generalize the technique used in [1] in order to show the necessity part of
our result.

DAGs. Let £ be any environment. Let F' be any failure pattern in £. Let NBACp be any NBAC
algorithm using a failure detector D, H be any history in D(F’), and I; be any initial configuration
of NBACp in which every process proposes 1.

Let G be an infinite directed acyclic graph (DAG) defined by the set of vertices V(G) and a set
of directed edges E(G) of the form v — v/, where v € V(G) and v' € V(G), with the following
properties:

(1) The vertices of G are of the form [p;, d, k] where p; € II, d € Rp and k € N. There is a mapping
f:V(G) — T that associates a time with each vertex of G, such that:

(a) For any v = [p;,d, k] € V(G), pi ¢ F(f(v)) and d = H(p;, f(v))-
(b) For any edge v — v' € E(G), f(v) < f(v').

(2) If [p;,d, k] € V(G),[pi,d', k'] € V(G) and k < k' then [p;,d, k] — [p;,d', k'] € E(G).
(3) G is transitively closed.

(4) Let U C V(G) be a finite set of vertices and p; be any correct process in F. There is d € Rp
and k € N, such that for every vertex v € V(G), v — [p;,d, k] is an edge of G.

Simulation trees. Let g = [q1,d1, k1], [g2,d2, k2], ... be a path of G. A schedule S is compatible
with g if |S| = |g| and S = (q1,m1,d1), (g2, m2,ds), ..., for some messages m1,mo, We say that S
is compatible with G if S is compatible with some path in G.

The set of all schedules of NBACp that are compatible with G and applicable to I; are modeled
as a tree T, called the simulation tree induced by G, defined as follows. The set of vertices of T is
the set of finite schedules S that are compatible with G and applicable to I;. The root of Y is an
empty schedule Sp,;. There is an edge from vertex S to a vertex S’ if and only if S’ = S - e for a
step e. Thus, for each (finite or infinite) path of T, there is a unique schedule S = ey, e, Every
vertex S of T corresponds to a partial run (F, H,I,S,T) of NBACp.

It can also be easily shown that for any path in T associated with an infinite schedule S, in which
every correct process takes an infinite number of steps and receives every message addressed to it,
there is a sequence of times 7', such that (F, H,I;,S,T) is a run of NBACp (Lemma 6.2.2 of [1]).
Moreover, each vertex S in T has a descendant S’ in T, such that all correct processes have decided
in §'(I) (Lemma 6.2.6 of [1]). Thus, we can assign a non-empty set of tags to each vertex of Y.
Vertex S gets a tag k € {0,1} if and only if it has a descendant S’, such that some correct process
has decided k in S'(I1). A vertex of T is called k-valent if it has only one tag k. Otherwise, it is
called bivalent. A O-valent or 1-valent vertex is called monovalent. We say that the simulation tree
T is bivalent if its root S, is bivalent. Respectively, T is k-valent if S| is k-valent.

Lemma 2 7Y is 1-valent if and only if F = Fy (Fy is the failure-free pattern).’

Proof: Assume that the root of T is 1-valent. Assume, by contradiction, that F' # Fy. Let p; be a
process in IT — correct(F') and Iy be an initial configuration of NBACp in which p; proposes 0 and all
other processes propose 1. By Lemma 6.2.6 of [1], there is a finite schedule S in T containing steps

®Note that the statement is not true for the consensus problem: by the consensus validity, T for consensus is always
1-valent independently of the failure pattern.

of correct processes only, such that some correct process p; has decided in S(I;). By the assumption,
the decision value is 1. Let S corresponds to a partial run R = (F, H,I;,S,T). Since p; does not
take a single step in S, S also corresponds to the run R' = (F, H, Iy, S,T) in which p; proposes 0.
No correct process can distinguish R and R’, thus p; decides 1 in S(Iy), contradicting a-validity of
NBAC.

Assume now, by contradiction, that F' = F and there is a schedule S of T, such that a process p;
decides 0 in S(I;). By Lemma 6.2.2 of [1], there is a partial run (Fy, H,I,,S,T) of NBACp. In R, p;
decides 0 even though every process is correct and proposes 1, contradicting the c-validity property
of NBAC. O

Decision gadgets and deciding processes. We also use the notion of decision gadgets intro-
duced in [1]. A decision gadget is a finite subtree of T rooted at S| . Any decision gadget has exactly
two leaves: one (O-valent and one 1-valent. Any decision gadget has a deciding process that defines
the valence of each descendant of the gadget in Y. (The formal definitions of decision gadgets and
deciding processes are not central for this paper and can be found in [1].) We also make use of the
following lemmas (Lemma 6.4.1 and Lemma 6.5.3 of [1]).

Lemma 3 If T is bivalent, then Y has at least one decision gadget (and hence a deciding process).

Lemma 4 The deciding process of a decision gadget is correct.

Thus, if T is bivalent, it is possible to locate in T a decision gadget and compute a correct process
out of it. This provides a way to design a distributed reduction algorithm Tp_,q that, for every failure
pattern F' and history H € D(F'), for which a bivalent simulation tree can be constructed, eventually
outputs at every correct process the identifier of the same correct process p.. This is sufficient to
emulate 2 and, thus, ¢S [1]. Even though the simulation tree Y is infinite and cannot be computed
in a finite time, there exists a finite subtree of T that gives sufficient information to identify p..

5 Necessary condition: the reduction algorithm

The algorithm NBACp provides a single operation nbac(), that takes as a parameter a value in {0, 1}
and returns a value in {0,1}. We present the algorithm Tp_, y, any run of which emulates an output
of X. First, we describe some general properties of the algorithm.

Each process p; maintains a local variable G;, a finite ever growing DAG, that contains a sample
of failure detector output at the processes in the system as well as temporal relationships between
them. G; is actually a subgraph of some infinite DAG G discussed in Section 4. The variable G; is
attached to every message sent by p;. Let k be any natural number and (p;,m,d) be the k-th step
of process p; in any run of the algorithm Tp_, y. At the beginning of the local state update phase,
p; performs the procedure update;(m,d, k) presented in Figure 2.

Note that the resulting algorithm conforms to our model, where every step atomically comprises
a receive phase, a failure detector query, an update of the local state and a send phase.

Let G;(t) denote the value of G; at the end of the last step of p; before time ¢ € T. There exists a
DAG G and a map f : V(G) — T satistying the properties (1)-(4), such that for any correct process
pi, im0 Gi(t) = G (Lemma 6.6.1.2 and Lemma 6.6.1.4 of [1]).

T; denotes the ever growing finite simulation tree induced by its finite subgraph G;. Clearly,
lim; o Ti(t) = Y. We tag T; by adding a tag k to any S in T; if and only if S has a descendant S’
in Ty, such that p; has decided k in S’(I;). (If p; is correct, then the tagging scheme is equivalent to
the one used to tag T in Section 4; if p; is not correct, then the tagging scheme used by p; does not
matter for emulating X.)

Further, we modify the NBACp algorithm by (a) adding the update;(m) procedure to the end of
the local state update phase of every step and (b) attaching the value of G; to every message sent
by the algorithm. As a result, we obtain an algorithm NBAC/, that, in addition to solving NBAC,
computes at every process p; some finite DAG G;. Denote by nbac’,() the operation provided by

NBAC,.

The reduction algorithm Tp_,y is presented in Figure 3.
maintains a variable output; the value of which is returned each time the failure detector module X

is queried.

procedure update;(m,d, k)
if m # L is a message from a process p; then
G; + DAG extracted from m
Gi + G UGj { Merge vertices and edges of G; and G; }
V(G;) « V(Gi) Ups,d, k] { Add to G; the current value seen by p; }
for all v € V(G:),v # [pi, d, k] do
E(G;) «+ E(Gi)U (v = [pi,d,k]) { Add to G; an edge to [pi,d, k] }

Figure 2: The update;(m,d, k) procedure.

_ e =
@ M2

= e e e

Y
S

© 00 O Ot =W -

output; < L

Gi+ 0

k<1

res < nbacp (1) { Run the NBAC} algorithm maintaining G; }

if res = 0 then

output; + 1

else

while true do
p; Teceives message m { Receive phase }
d <+ D; { Failure detector query phase }
update;(m, d, k) { Local state update phase }
k+—k+1
add [p;,d, k] to G; and edges from all other vertices of G; to [p;, d, k]
T; «+ simulation tree induced by G;
if T; has no decision gadgets then
output; < (0,11 — {p1})
else

pe ¢+ deciding process of the smallest decision gadget of Y;
output; < (1,11 — {p.})

send (p;, Gi) to all p; € 11 { Send phase }

Lemma 5 For any environment &, if a failure detector D solves NBAC in &, then X <¢ D.

Proof: We show that the algorithm of Figure 3 emulates the output of X in any environment.

Figure 3: Reduction algorithm Tp_, » for process p;.

Consider any run R = (F, H, I, S,T) of the algorithm. The following cases are possible:

I. nbac’y(1) returns O (line 4 of Figure 3). The agreement property of NBAC implies that every
process p; either crashes or sets output; to 1. By c-validity, F # Fy, thus, the algorithm emulates a

In the algorithm, every process p;

valid history of X detecting a crash.

IT. nbac/,(1) returns 1 (line 4 of Figure 3). Our construction of the NBAC/, algorithm implies that,
for every process p; that reached line 5 of Figure 3, T; includes at least one 1-valent vertex associated
with the schedule of NBAC/, in which 1 is decided.

If F = Fy, then, by c-validity, the only tag that a vertex of every T; can get is 1. Thus, every
correct p; eventually permanently sets output; to (0,IT — {p;}). No crash is ever detected in F by
the emulated module of 7P: anonymous completeness and anonymous accuracy of ?P are ensured.
Further, p; is correct in Fy. Thus, the algorithm emulates a valid history in X(Fp).

Let F' # Fy. By Lemma 2, T is not 1-valent. It is not 0-valent either, because T; C T and T;
includes a 1-valent vertex. Thus, T is bivalent and, by Lemma 3, has at least one bivalent gadget.

Let € be the first decision gadget in T and p. be the deciding process of € (since the vertexes in
T are countable, we can define a rule to compute the first decision gadget). Eventually, T; of every
correct process p; includes ¢ (¢ is a finite subtree of T). Thus, there is a time after which p; computes
pc as the deciding process of ¢, the first decision gadget of T; (line 18 of of Figure 3). As a result,
every correct p; eventually permanently sets output; to (1,I1—{p.}). Since F' # Fj and the emulated
module of 7P detects a crash, the anonymous completeness and anonymous accuracy properties of
7P are ensured. By Lemma 4, p, is correct. Thus, the algorithm emulates a valid history in X(F').
a

Combining Lemma 1 and Lemma 5 together we obtain our main result:

Theorem 6 X is the weakest failure detector to solve NBAC in any € € Ef with 0 < f < n/2.

References

[1] T.D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. Journal
of the ACM (JACM), 43(4):685-722, July 1996.

[2] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the
ACM (JACM), 43(2):225-267, March 1996.

[3] B. A. Coan and J. L. Welch. Transaction commit in a realistic timing model. Distributed Computing,
4(2):87-103, 1990.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM (JACM), 32(3):374-382, April 1985.

[5] E.Fromentin, M. Raynal, and F. Tronel. On classes of problems in asynchronous distributed systems with
process crashes. In Proceedings of the IEEE International Conference on Distributed Systems (ICDCS),
pages 470-477, 1999.

[6] J. Gray. A comparison of the byzantine agreement problem and the transaction commit problem. In
Proceedings of the Workshop on Fault-Tolerant Distributed Computing, volume 448 of LNCS, pages 10-17.
Springer-Verlag, 1986.

[7] R. Guerraoui. Revisiting the relationship between non-blocking atomic commit and consensus. In Pro-
ceedings of the 9th International Workshop on Distributed Algorithms (WDAG), volume 972 of LNCS,
pages 87-100. Springer Verlag, 1995.

[8] R. Guerraoui. Non-blocking atomic commit in asynchronous distributed systems with failure detectors.
Distributed Computing, 15:17-25, January 2002.

[9] R. Guerraoui and P. Kouznetsov. On the weakest failure detector for non-blocking atomic commit. In
Proceedings of the 2nd IFIP International Conference on Theoretical Computer Science (TCS 2002),
pages 461-473, August 2002.

10

[10] V. Hadzilacos. On the relationship between the atomic commitment and consensus problems. In Pro-

ceedings of the Workshop on Fault-Tolerant Distributed Computing, volume 448 of LNCS, pages 201-208.
Springer-Verlag, 1986.

[11] V. Hadzilacos and S. Toueg. The weakest failure detector to solve quittable consensus and non-blocking
atomic commit. Unpublished manuscript — private communication, May 2003.

[12] D. Skeen. NonBlocking commit protocols. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 133—-142. ACM Press, May 1981.

11

