On the Weakest Failure Detector for
Non-Blocking Atomic Commit *

Rachid Guerraoui  Petr Kouznetsov
Distributed Programming Laboratory

Swiss Federal Institute of Technology in Lausanne

April 24, 2003

Abstract

This paper contributes to the analysis of the Non-Blocking Atomic
Commit (NBAC) problem in an asynchronous model with failure detec-
tors. In particular, we address the question of the weakest failure detec-
tor to solve NBAC in this model. We define the set A of timeless failure
detectors which excludes failure detectors that provide information about
global time but includes most known meaningful failure detectors such as
0S8, OP and P [2]. We show that, within A, the weakest failure detector
for NBAC is 7P + ©8. As a corollary of our results, we state out the
relationship between NBAC and another famous agreement problem in
distributed computing — Consensus.

1 Introduction

Problem. To ensure the atomicity of a distributed transaction, the processes
must agree on a common outcome: commit or abort. Every process that does
not crash during the execution of the algorithm (i.e., a correct process), should
eventually decide on an outcome without waiting for crashed processes to re-
cover.

More precisely, the Non-Blocking Atomic Commit (NBAC)problem [8] con-
sists for a set of processes to reach a common decision, commit or abort, ac-
cording to some initial votes of the processes, yes or no, such that the following
properties are satisfied: (1) Agreement: no two processes decide differently; (2)
Termination: every correct process eventually decides; (8) A-Validity: abort is
the only possible decision if some process votes no; and (4) C-Validity: commit
is the only possible decision if all processes are correct and vote yes. For brevity,
we denote yes and commit by 1, no and abort by 0.

In this paper, we discuss the solvability of the problem in a crash-stop
asynchronous message-passing model of distributed computing. Informally, the
model is one in which processes exchange messages through reliable commu-
nication channels, processes can fail by crashing, and there are no bounds on
message transmission time and relative processor speeds.

*This work is partially supported by the Swiss National Science Foundation (project num-
ber 510-207).



Background. It is well-known that many fundamental agreement problems
in distributed computing, in particular, the well-known Consensus problem,
cannot be] solved deterministically in an asynchronous system that is subject
to even a single crash failure [3]. In Consensus, the processes need to decide
on one out of two values, 0 or 1, based on proposed values, 0 or 1, so that, in
addition to the Agreement and Termination properties of NBAC, the following
Validity property holds: A value decided must be a value proposed.

To circumvent the impossibility of Consensus, Chandra and Toueg [2] intro-
duced the notion of failure detector. Informally, a failure detector is a distributed
oracle that gives (possibly incorrect) hints about the crashes of processes. Each
process has access to a local failure detector module that monitors other pro-
cesses in the system. In [1], it is shown that a rather weak failure detector
OS is sufficient to solve Consensus in an asynchronous system with a majority
of correct processes, and that any failure detector that solves Consensus can
emulate OS: hence OS is the weakest failure detector to solve the problem. In
other words, ¢S encapsulates the exact information about failures needed to
solve Consensus in a system with a majority of correct processes. Informally,
S guarantees that, in any execution, the processes eventually elect a single
correct process.

Like Consensus, NBAC does not admit a deterministic solution in an asyn-
chronous system even in the face of a single failure. In this paper we focus on
the question of the weakest failure detector to solve NBAC.

Conjecture: ?P + ¢S. Guerraoui introduced in [6] the anonymously perfect
failure detector ?P and showed that ?P is necessary to solve NBAC. Each
module of 7P at a given process outputs either the empty set or the identifier of
the process. When the failure detector module of ?P at a process p; outputs p;,
we say that p; detects a crash. 7P satisfies the following properties: Anonymous
Completeness: If some process crashes, then there is a time after which every
correct process permanently detects a crash, and Anonymous Accuracy: No
crash is detected unless some process crashes.

In other words, ?P correctly detects that some process has crashed, but does
not tell which process has actually crashed. Clearly, if at most one process can
crash, then ?P is equivalent to the perfect failure detector P. An algorithm
that transforms Consensus into NBAC using ?P is presented in [6]. Since ¢S
is sufficient to solve Consensus in a system with a majority of correct processes,
7P + OS is sufficient to solve NBAC in this environment. It is also shown in [6]
that 7P 4+ OS is strictly weaker than the Perfect failure detector P.

The conjecture we want to prove is that 7P + ¢S is the weakest failure
detector to solve NBAC (with a majority of correct processes). To show this,
we need to prove that any algorithm that solves NBAC can be used to emulate
OS.

Assumptions. If we consider the overall universe of failure detectors defined
in [2], ©S is not necessary to solve NBAC (i.e., our conjecture is not true).
Indeed, Guerraoui introduced in [6] a stillborn failure detector, denoted by B,
that solves NBAC and cannot be transformed into ?P + ©S8 [6]. More precisely,
B ensures that every initial crash is immediately detected by every process p;,
so that p; can safely decide abort without synchronizing with others processes.



More generally, a failure detector that tells the time when a failure occurred
can solve NBAC without employing Consensus. Consider a failure detector Bla],
such that at each process p;, Bla] outputs a singleton L until some time ;. At
time ¢;, if some process is crashed at time «, the failure detector module outputs
p;. Otherwise, after ¢;, B[a] behaves like P (the perfect failure detector). It can
be easily shown that B[] is not transformable into ¢S, although it solves NBAC
as follows: each process p; decides abort whenever its failure detector module
outputs p; instead of L, otherwise p; runs the 3PC algorithm [8]. However,
Bla] reports the exact time when a failure occurred, which can be provided
only through the global time source. It is interesting to know what happens if
we rule out time-based failure detectors like B[a]: among the remaining failure
detectors, is 7P + <8 indeed the weakest to solve NBAC?

The weakest in 4. This paper shows that the answer is “yes”, i.e., our
conjecture is true under the assumption that failure detectors are timeless.

We define a new class A of timeless failure detectors (restricting the original
universe of failure detectors of [2]) that excludes time-based failure detectors like
B[a], but includes all known failure detectors like P, &S and ?P. Informally, a
timeless failure detector module is not able to provide information about when
exactly (in the sense of the global time) failures have occurred.

We show that in A, OS is necessary to solve NBAC. That is, any failure
detector of A that solves NBAC can emulate ©S. To show this, we extend
the technique used in [1] to prove that ¢S is necessary to solve Consensus [1].
This extension is not trivial. Given that no information about time can be pro-
vided by a timeless failure detector, for any execution scenario, we construct an
1maginary run that helps eventually deduce valuable information about correct
processes in the system and emulate ¢S.

7P + OS8 is shown to be the weakest failure detector in A to solve NBAC
with a majority of correct processes. As a corollary of our result, we show that
in a system equipped with timeless failure detectors, NBAC is strictly harder
than Consensus. Roughly speaking, in the class A of timeless failure detectors,
the difference between the problems is exactly captured by ?P.

Roadmap. Section 2 gives an intuition of our main result. Section 3 defines
our system model. Section 4 presents the class A of timeless failure detectors.
Section 5 gives a brief reminder of the technique of [1] and discusses its ap-
plicability to the NBAC problem. Section 6 proves formally that, within A4 ,
&S is necessary to solve NBAC. Section 7 presents the main result of the paper
that 7P + ©8 is the weakest failure detector to solve the problem. Section 8
concludes the paper by discussing some related work.

2 Intuition: two beer or not two beer

Assume that three guys (Andy, Bob and Clive) want to reach a decision whether
to go or not to go to a bar and they can go only if none of them is bankrupt (they
are collectivists). Assume also that they have no watches, each of them might
reflect over every step arbitrarily long, and that they communicate through a
reliable but arbitrarily slow e-mail service (asynchronous model). In taking their
decisions, they obey the following rules:



(1) If someone does not have enough money, nobody decides to go.
(2) If nobody is bankrupt or éll, everybody decides to go.
(3) No two of them decide differently.

Assume that any of them can get ill. In this case, a nurse (failure detector)
taking care of him, calls his friends to tell them that he cannot go. The nurse
has bad memory with respect to names, she can only say that someone is ill.
Intuitively, this corresponds to the use of failure detector ?P. Assume that
everybody has enough money to go out and consider the following cases:

1. Suppose that the nurse possesses a gift of oracle: she can reliably identify
whether someone is ill from the very beginning (intuitively, this corre-
sponds to the use of the stillborn failure detector B of [6]). Assume that
every guy, before doing anything, queries the nurse and waits for her re-
sponse. If the response is “one of you is initially ill”, the guy independently
decides to skip going out tonight. Otherwise, they communicate with each
other in order to learn everybody’s intention.

However, such a gifted nurse might be difficult to find. Usually, people
are not that wise. In the practical sense, it would be more meaningful to
consider the following case:

2. The nurse is very busy, so the others can be informed about their friend’s
illness arbitrarily late. Assume that Clive is ill, and the nurse decides to
call his friends. It might happen that Andy received a call from the nurse,
while Bob is still in ignorance and he thinks that everybody is able to go
out.

The problem is that in order to reach a common decision they need to
synchronize their knowledge, but they never can do it without communi-
cation. A possible algorithm for any of them, say Bob, can be something
like this:

(1) Bob waits until he receives the wishes of the others or a call from the
nurse that somebody is ill;

(2) If everybody wants to go (no call from the nurse is received), Bob
tries to agree with the others proposing to go. Otherwise, Bob tries
to agree with the others proposing not to go.

As we know from [1], to solve agreement in an asynchronous system, we
need an external source that eventually informs every healthy guy that
some particular one is currently in health (a failure detector that is con-
vertible to ©&). This one will decide for all.

This simple example conveys the intuition that ?P + ©8§ is necessary and suf-
ficient to solve NBAC in a system equipped with timeless failure detectors.
However, some not timeless (time-based) failure detectors allow to make do
without agreement and, thus, without 7P + ©S.



3 Model

We consider in this paper a crash-prone asynchronous message passing model
augmented with the failure detector abstraction. We recall here what in the
model is needed to state and prove our results. More details on the model can
be found in [2].

System. We assume the existence of a global clock to simplify the presenta-
tion. The processes do not have direct access to the clock (timing assumptions
are captured within failure detectors). We take the range 7 of the clock output
values to be the set of natural numbers and the integer 0, ({0} UN). The system
consists of a set of n processes Il = {py, .., pr}(n > 1). Every pair of processes is
connected by a reliable communication channel. The systems is asynchronous:
there is no time bound on message delay, clock drift, or the time necessary to
execute a step [3].

Failures and failure patterns. Processes are subject to crash failures. A
failure pattern F is a function from the global time range 7 to 2!, where
F(t) denotes the set of processes that have crashed by time ¢. Once a process
crashes, it does not recover, i.e., Vt < t' : F(t) C F(t'). We define correct(F) =
IT — UieT F(t) to be the set of correct processes. A process p; ¢ F(t) is said
to be up at time t. A process p; € F(t) is said to be crashed (or incorrect)
at time t. We do not consider Byzantine failures: a process either correctly
executes the algorithm assigned to it, or crashes and stops executing any action
forever. An environment £ is a set of failure patterns. By default, we consider
an environment of the form & that includes all failure patterns in which up
to f processes can fail. We assume that there is at least one correct process:
0 < f < n. We denote by Fy the failure-free failure pattern (correct(Fy) = II).

Failure detectors. A failure detector history H with range R is a function
from II x T to R. H(p;,t) is the output of the failure detector module of process
p; at time t. A failure detector D is a function that maps each failure pattern
F to a set of failure detector histories D(F') with range Rp.

Every process p; has a failure detector module D; that p; queries to obtain
information about the failures in the system. Typically, this information in-
cludes the set of processes that a process currently suspects to have crashed.!
Among the failure detectors defined in [1, 2], we consider the following one:

Perfect (P): the output of every P; is a set of suspected processes satisfying
strong completeness (i.e., every incorrect process is eventually suspected
by every correct process) and strong accuracy (i.e., no process is suspected
before it crashes);

Eventually strong (¢8): the output of every ©S; is a set of suspected processes
satisfying strong completeness and eventual weak accuracy (i.e., there is a
time after which one correct process is never suspected).

n [1], failure detectors can output values from an arbitrary range. In determining the
weakest failure detector for NBAC, we also do not make any assumption a priori on the range
of a failure detector.



Eventual leader (Q): the output of each failure detector module ; is a single
process p;, that p; currently trusts, i.e., that p; considers to be correct
(Rq = II). For every failure pattern, there is a time after which all
correct processes always trust the same correct process. Obviously, 2
provides at least as much information as <¢S8: if every process p; always
suspects IT — {£2;}, the properties of ¢S are guaranteed [1].

We consider also the anonymously perfect failure detector 7P [6], such that each
module of 7P at a given process outputs either 0 or 1 (Rep = {0,1}). When
the failure detector module of ?P at a process p; outputs 1, we say that p;
detects a crash. 7P satisfies the following properties: anonymous completeness
(i.e., if some process crashes, then there is a time after which every correct
process permanently detects a crash), and anonymous accuracy (i.e., no crash
is detected unless some process crashes).

For any failure pattern F', P(F'), OS(F), Q(F) and ?P(F) denote the sets
of all histories satisfying the corresponding properties. Recalling the notion
of failure detector classes introduced in [2], every failure detector above de-
notes here the weakest element in the classes of failure detectors satisfying the
corresponding properties.

Algorithms. We model the set of asynchronous communication channels as a
message buffer which contains messages not yet received by their destinations.
An algorithm A is a collection of n (possibly infinite state) deterministic au-
tomata, one for each of the processes. A(p;) denotes the automaton running
on process p;. In each step of A, process p; performs atomically the following
three actions: (receive phase) p; chooses non-deterministically a single message
addressed to p; from the message buffer, or a null message, denoted A; (failure
detector query phase) p; queries and receives a value from its failure detector
module; (local state update phase) p; changes its state; and (send phase) sends
a message to all processes according to the automaton A(p;), based on its state
at the beginning of the step, the message received in the receive action, and the
value obtained by p; from its failure detector module.?

Configurations, schedules and runs. A configuration defines the current
state of each process in the system and the set of messages currently in the
message buffer. Initially, the message buffer is empty. A step (p;, m,d, A) of an
algorithm A is uniquely determined by the identity of the process p; that takes
the step, the message m received by p; during the step (m might be the null
message A), and the failure detector value d seen by p; during the step. We say
that a step e = (p;, m,d, A) is applicable to the current configuration if and only
if m = X or m is a message from the current message buffer destined to p;. e(C)
denotes the unique configuration that results when e is applied to C. A schedule
S of algorithm A is a (finite or infinite) sequence of steps of A. S| denotes the
empty schedule. We say that a schedule S is applicable to a configuration C
if and only if (a) S = S, or (b) S[1] is applicable to C, S[2] is applicable to
S[1](C), etc. For a finite schedule S applicable to C, S(C) denotes the unique
configuration that results from applying S to C.

2Qur result also applies to weaker models where a step can atomically comprise at most
one phase and where a process can atomically send at most one message to a single process
per step.



A partial run of algorithm A in an environment £ using a failure detector D
is a tuple R = (F,Hp,I,S,T), where F € £ is a failure pattern, Hp € D(F) is
a failure detector history, I is an initial configuration of A, S is a finite schedule
of A, and T C T is a finite list of increasing time values, such that |S| = |T|, S
is applicable to I, and for all ¢ < |S], if S[t] is of the form (p;, m,d, A) then: (1)
p; has not crashed by time T'[t], i.e., p; ¢ F(T[t]) and (2) d is the value of the
failure detector module of p; at time T'[t], i.e., d = Hp(p;, T[t]).

A run of algorithm A in an environment £ using a failure detector D is a
tuple R = (F,Hp,I,S,T), where S is an infinite schedule of A and T C T is an
infinite list of increasing time values indicating when each step of S occurred.
In addition to satisfying the properties (1) and (2) of a partial run, run R should
guarantee that (3) every correct process in F' takes an infinite number of steps
in S and eventually receives every message sent to it (this conveys the reliability
of the communication channels).

Weakest failure detector. A problem (e.g., NBAC or Consensus) is a set of
runs (usually defined by a set of properties that these runs should satisfy). We
say that a failure detector D solves a problem M in an environment £ if there
is an algorithm A, such that all the runs of A in £ using D are in M (i.e., they
satisfy the properties of M).

Let D and D' be any two failure detectors and £ be any environment. If
there is an algorithm Tp_,p that emulates D with D’ in £ (Tpr—p is called
a reduction algorithm), we say that D is weaker than D' in £, or D <¢ D'.
If D <¢ D' but D' A¢ D we say that D is strictly weaker than D' in &, or
D <¢ D'3 Note that T'p—,p does not need to emulate all histories of D; it is
required that all the failure detector histories it emulates be histories of D.

We say that a failure detector D is the weakest failure detector to solve a
problem M in an environment & if two conditions are satisfied: (1) Sufficiency:
D solves M in £, and (2) Necessity: if a failure detector D’ solves M in &£ then
D=<eD.

We say that problem M is harder than problem M' in environment £, if
any failure detector D solving M in £ solves also M’ in £. Respectively, M is
strictly harder than M' in &£, if M is harder than M’ in £ and there exists a
failure detector D' that solves M' (in £) but not M.

4 Timeless failure detectors

This section introduces a new class A of timeless failure detectors. Intuitively, a
timeless failure detector module is not able to provide information about when
exactly (in the sense of the global time) failures have occurred.

We denote by Fy the failure-free failure pattern: Vi € T, Fy(t) = (). For any
F € & and § € T, we introduce the failure pattern Fj, such that, for all t € T

0 if t<§
Fé(t):{F(t—é) if t>6

Thus, for a failure that occurs at time ¢ in F', the corresponding failure in Fj
occurs at t + §, and no failure occurs before time § in Fs. Note that Vé € T :

3Later we omit £ in <¢ and <g when there is no ambiguity on the environment &.



correct(F) = correct(Fs). That is, a process is correct in F' if and only if it is
correct in Fs. Thus, for any f, if F' € &, then F5 € &;.
Formally, the class A consists of all (timeless) failure detectors D, such that:

dH, € D(Fo), VoeT

VF € &, YH € D(F),

dHs € D(Fs) :Vp; € I, Vt € T, (1)
L Ho(p;,t) if t<é

Hs(pi,t) —{ Hpi,t —06) if t>6

It follows from (1) that, for any failure detector D € A and § € T, if a failure
occurred at time o and is reported by a module of D at time ¢;, then a failure
that occurred at tg + d could be reported in the same way at t; + §: the process
does not know when exactly the failure occurred. This captures our idea that
failure detectors of class A provide no information about the time when failures
occur.

From now on, we restrict our scope from the original universe of failure
detectors [2] to A. Note that P, ¢S, @ and ?P are timeless. With ?P, for
instance, a process can detect the very fact that some process has crashed, but
there is no way to acquire the actual time at which the failure occurred.

Examples of histories output by a failure detector D from A are depicted
in Figure 1. The system consists of two processes p; and pa. At any time, D;
outputs a set of processes suspected by p; (i = 1,2). Assume that (a) p» crashes
at time ¢; and p; detects the failure at time ¢5. Then, by the definition of A, if
(b) p2 crashes at time #; +d, then there exists a history of D in which p; detects
the failure at time ¢5 + d.

Figure 1: Examples of timeless failure detector histories.

Consider the failure detector B[a] mentioned in the introduction: each mod-
ule of Bla] outputs L or a subset of the processes in II (Rpq = L U2T).
Formally, Bla] is defined as follows:

VF € &,VH € Blo|(F),

AHp € P(F),
Vp; €e I,3t; €e T,V e T :
1L ift<t
H(p;,t) = pi ift>t; A F(a) #0
Hp(pi,t) ift>t; A Fla)=10

(The Stillborn failure detector B is a particular case of B[a] with a = 0 and
t; = 0,Vp; € I1.) Clearly, Bla] does not belong to A. Indeed, consider a failure
pattern F' in which only one process is crashed at time a. Take a corresponding
history H € B[a](F). For every process p;, there is a time t;, such that, for



any t > t;, H(p;,t) = p;. Now consider a failure pattern Fy in which no process
is crashed at time « (the condition holds for all § > ). Since failure detector
module of p; behaves now like P; (i.e., the perfect failure detector), its own
identity p; is never output. Thus, Bla] ¢ A.

5 Proof technique

Before proving that, in A, Q is necessary to solve NBAC, we briefly recall here
the technique used in [1] to prove that  is necessary to solve Consensus and
we discuss the applicablity of this technique to NBAC.

The weakest failure detector to solve Consensus. Let £ be any environ-
ment, D be any failure detector that solves Consensus in &£, and Consp be any
Consensus algorithm that uses D. The algorithm T'p_,o that transforms D into
Q in £ works as follows.

Fix an arbitrary run of T'p_,q using D, with failure pattern F' € £ and failure
detector history Hp € D(F). All processes periodically query their failure
detector D and exchange information about the values of Hp that they see in
this run. Using this information, the processes construct a directed acyclic graph
(DAG) that represents a “sampling” of failure detector values in Hp and causal
relationships between the values. By periodically sending its current version of
the DAG to all processes, and incorporating all the DAGs that it receives into its
own DAG, every correct process constructs ever increasing finite approximations
of the same infinite limit DAG G.

The DAG G can be used to simulate runs of Consp with failure pattern F
and failure detector history Hp. These runs could have happened if processes
were running Consp instead of Tp_,q. If we simulate all possible runs of Consp
applied to the DAG G with all possible initial configurations I, we obtain a
simulation forest: a tree for each initial configuration.

Thus, the infinite DAG G induces an infinite simulation forest Y of runs of
Consp with failure pattern F and failure detector history Hp € D(F'). From
the properties of the Consensus problem, it follows that T comprises schedules
corresponding to the runs of Consensus in which every correct process decides
0 and runs in which every correct process decides 1. This allows to design a
deterministic algorithm that identifies a process p* that is correct in F'; namely
a process whose step defines which decision is going to be taken by the rest of
correct processes in the descending schedules.

Although the simulation forest Y is infinite and cannot be computed by any
process, there exists a finite subforest of Y that gives sufficient information to
identify p*. Thus, there is a time after which, every correct process running
Tp_.q obtains a reference p*. In other words, Tp_,o emulates ().

NBAC: a hard nut. As we discussed in the introduction, €2 is not necessary
to solve NBAC [6]. Thus, the technique of [1] cannot be directly applied. For
instance, if a module of the stillborn failure detector B outputs L, then there
is an initial failure in the system and NBAC is trivially solved by deciding 0 at
every correct process. There is no way to identify correct processes and, thus,
no algorithm T3_,q is possible.



However, even if we exclude failure detectors like B[a] by considering timeless
failure detectors only (i.e., focusing on class A), we are still not able to apply
the technique of [1]. Indeed, let D be any failure detector that solves NBAC in
an environment £. Consider a run of an NBAC algorithm using D in a failure
pattern F, such that F(0) # 0 (some process is initially crashed). Clearly, no
process can decide 1 (no matter which failure detector history Hp is output by
D). The only decision a correct process can take is 0 (otherwise, the A-Validity
property of NBAC would be violated, since some p € F(0) could have voted 0).
In this case, the corresponding simulation forest T does not bring any valuable
information about failures to identify a correct process (no matter which failure
detector history Hp is output by D).

Fortunately, thanks to the very nature of timeless failure detectors, we can
modify the original DAG G in order to fetch a valuable information about correct
processes of F'. The details are presented in Section 6.

6 Necessary condition

This section shows the necessity of Q to solve NBAC using failure detectors in
class A. To this end, we present a reduction algorithm Tp_,q transforming any
failure detector D € A that solves NBAC into Q. A corollary of our result is
that ©S (which is weaker than Q) is necessary to solve NBAC (using A), and
hence 7P + <©S8 is the weakest failure detector within A to solve NBAC.

Nice runs and nice DAGs. Let D be any failure detector in A and NBACp
be any NBAC algorithm using D. From now on, we denote by e = (p,m,d) a
step of process p executing NBACp.

Let Fy be the failure-free pattern and Hy be the history from D(Fp), such
that the condition (1) in Section 4 for D holds with Hy. Let I be any initial
configuration in which all processes vote 1. Due to the properties of NBAC,
there exists a partial run Ry = (Fo, Ho,I,S0,Tp) of NBACp comprising a
finite number of steps in which every process decides 1.

Taking the nice run Ry as a basis, we can now construct a nice DAG (di-
rected acyclic graph) Go induced by the failure-free pattern Fy. For any step
e = (p;,m,d) in Sp, we create a vertex [p;,d, k] of Go, where k — 1 is the
number of steps of p; in Sy preceding e. For any steps e; = (p;,m,d) and
ez = (pj,m',d’) in Sp, such that e; precedes ey in Sy, we create a correspond-
ing edge in [p;,d, k] — [pj,d', k'] in Go. This means that p; queried its failure
detector for the k'-th time after p; queried its failure detector for the k-th time.

Constructing a DAG. Let F be any failure pattern from £; and H € D(F)
and assume that the same nice DAG Gj is initially available to all processes.
Consider a run R of Tp_,q. Processes periodically query their failure detector
D and exchange information about the values of H € D(F') that they see in the
current run. Using this information, every process p; constructs an imaginary
DAG Gj, in which the real samples of H are assumed to be seen after all the
values of Hy presented in Gy. That is, every time a process p; sees a failure
detector value d, (1) a new vertex [p;, d, k] is added to G;, such that k = ko + kg,
where ko is the number of steps of p; in Sy and kg is the number of times p;
queried its failure detector module so far, and (2) a new edge from every vertex

10



of G; to [p;,d, k] is added. As a result, every correct process p maintains an
ever growing graph G;(t), such that G;(t) = G for some infinite DAG G.
Note that G contains a sampling of the failure detector history H corresponding
to the real failure pattern F' (H € D(F)) as well as of some imaginary history
Hy € D(Fp), where Fp is the failure-free pattern.

Let F be any failure pattern and H be any history in D(F). Let G be an
infinite directed acyclic graph (DAG) defined by the set of vertices V(G) and a
set of directed edges E(G) of the form v — v', where v € V(G) and v’ € V(G),
with the following properties:

(1) The vertices of G are of the form [pi,d, k] where p; € II, d € Rp and
k € N. There is a mapping f : V(G) — T that associates a time with
each vertex of G, such that:

(a) For any v = [pi,d, K] € V/(G), ps ¢ F(f(v)) and d = H(pi, ().
(b) For any edge v = v' € E(G), f(v) < f(v').

2) I [p;,d, k] € V(G),[pi,d', k'] € V(G) and k < ¥ then [p,,d, k] = [ps, d', k'] €
E(G).

(3) G is transitively closed.

(4) Let U C V(G) be a finite set of vertices and p; be any correct process
in F. There is d € Rp and k € N, such that for every vertex v € V,
v — [pi,d, k] is an edge of G.

Then we say that DAG G is a sampling DAG of history H.

It can be easily seen that G\Go, a DAG that includes “real” vertices and
edges only, is a sampling DAG of H. The following lemma, precisely captures
the relationship between the real failure pattern F' and the infinite DAG G-

Lemma 1 There exists § € T and a failure detector history Hs € D(Fs) such
that G is o sampling DAG of Hy.

Proof: Assume that the last step of Sy happened at time to € 7. Take any
d € T, such that § > t9. Let Hy bt the history from D(Fp), such that the
condition (1) in Section 4 for D holds with Hy. Construct Hy as follows:

Vte T, pell,

: 2)
_ Hy(p,t) if t<§
Hs( ’t)_{ Ht—®) it 56

Recall that D € A. By the definition of A, Hs € D(Fs). Now we show that G is
a sampling DAG of Hy, i.e., that the properties 1-5 above are satisfied. Indeed:

1. Define f: V(G) — T as follows. Take v € V(G). If v € V(Gy) represents
a step Solk], then f(v) = Tolk]. If v is a vertex of G\Gy, such that
v = [p;,d, k] and d = H(p;,t), for some t € T, then f(v) = Tplk].

(a) For any v = [p;,d, k] € V(G), pi ¢ Fs(f(v)) and d ="H (p;, f (v))-

(b) Take an edge v — v’ of G, where v = [p;,d, k] and v' = [p;,d', k'],
such that d = Hs(p;, f(v)) and d' = Hs(p;, f(v')). Four cases are
possible:

11



i. f(v) <4, f(v') < d: both vertices belong to Gy. Moreover, the
vertices correspond to some steps e and €' of Sy, and e precedes
e. Due to the definition of Gg, f(v) < f(v').

ii. flv) > 6§, f(v') > &: both vertices belong to G\Gy, that is
d = H(p;, f(v) —6) and d' = H(p;, f(v") — J). Since G\Gp is a
sampling DAG of H, f(v) < f(v').

iii. f(v) <4, f(v') > 6: clearly, f(v) < f(v');

iv. flv) > 6, f(v') < 6: [pi,d, k] € G and [p;,d', k'] € Go. But
by the construction of G, every vertex of GG is seen after every
vertex of Gy, that is [p;,d', k'] — [p;,d, k]: a contradiction with
the initial assumption.

Thus, f(v) < f(v').

2. Let v = [p;, d, k] and v' = [p;, d’, k'] be any vertices of G and k < k'. Four
cases are possible:

(a) v € Gy, v' € Go: by the definition of Gy, v — v’ is an edge of Gy,
and thus of Gy U G

(b) v € G\Gy, v' € G\Gy: by the definition of a sampling DAG, v — v’
is an edge of G\Gy, and thus of Gj

(c) v € Gy, v' € G\Gy: by the construction rule of G, v — v’ is an edge
of G;

(d) v € G\Go, v' € Gg: contradicts the construction rule of G (k must
be greater than k).

Thus, v — v’ is an edge of G.

3. By the construction rule of G and the fact that both Gy and G\Gy are
transitively closed, the resulting DAG G is transitively closed.

4. From the facts that Gy is finite, that, for any v € V(G) and v’ € V(G\Go),
v — v’ is an edge of G, and that G\Gy is a sampling DAG of H, it follows
that, for any finite subset V' of vertices of G and any correct process p;,
there is d € Rp and k € N, such that for every vertex v € V, v — [p;,d, k]
is an edge of G.

Thus, for some § € T, there a failure detector history Hs € D(Fj), such that G
is a sampling DAG of Hy. O

Thus, G represents a sample of a failure detector history Hy that could have
been seen if the failure pattern was Fj5. Note that even if a process p is initially
crashed in F', G contains the samples of its failure detector module output.
However, the number of vertices of the form [p, -, ] € G is finite, thus, p cannot
be considered to be correct in Fs. In other words, a crashed process in F' cannot
appear to be correct in Fj.

Tags and decision gadgets. Lemma 1 allows us to use G to simulate some
of the runs of NBACp in the failure pattern Fs. Take an initial configuration
I of NBACp in which every process votes 1. The set of simulated schedules
of NBACp that are compatible with some path of G and are applicable to I

12



can be organized as a tree Y: paths in this tree represent simulated schedules
of NBACp with initial configuration I. The fact that Go C G guarantees that
there exists a schedule in T in which every process decides 1.

Following [1], we assign a set of tags (abort or commit) to each vertex of
the simulation tree Y induced by G. Vertex S of tree T gets tag k if and only
if it has a descendant S’ (possibly S = S’) such that some correct process has
decided k in S'(I). A vertex of Y is monovalent if it has only one tag, and
bivalent if it has both tags (following the terminology of [3]).

Still following [1], we also introduce the notion of decision gadgets and de-
ciding processes and show that any deciding process in Y is correct. Informally,
a decision gadget is a vertex S of T having exactly two monovalent leaves: one
0-valent and one 1-valent. In turn, a deciding process of S is a process whose
step defines the decision taken by a descendant of S. The following lemma gives
a condition of the existence of at least one decision gadget in T

Lemma 2 If correct(F) # Il (F is not failure-free), then Y has a decision
gadget.

Proof: Let p ¢ correct(F). There exists a finite schedule E in Y containing
only steps of correct processes such that all correct processes have decided in in
E(I) (Lemma 10 of [1]). Since E contains no step of process p, no information
is available about its initial vote, and the decision value must be 0 (otherwise
the A-Validity property is violated). From the way the simulation tree is con-
structed, it follows that T contains a schedule in which 1 is decided. Thus the
initial configuration of Y is bivalent. By Lemma 18 of [1], T has at least one
decision gadget (and hence a deciding process). O

Reduction algorithm. The reduction algorithm T»_,o presented in Figure
2 works as follows. Every process p; periodically updates and tags a simulation
tree T; induced by G; with the initial configuration I in which all processes vote
yes. If there exists a decision gadget in Y;, then Tp_,q outputs the deciding
process of the smallest decision gadget of YT; (since the set of vertices of Y; is
countable, we can easily impose a rule to define the smallest decision gadget
in it), otherwise T'p_,q outputs p;. Note that for any correct process p;, G =
lim; o G;(t) and thus T = lim;_, o, T;(¥).

Theorem 3 There exists a process p* € correct(F), such that, for every correct
process p;, there is a time after which Tp_.q outputs p* at p;, forever.

Proof: Consider § € T and failure pattern Fy, such that G is a sampling DAG
for some Hs; € D(Fs). Note that correct(F) = correct(Fs). Two cases are
possible:

(1) F, and thus Fjy are failure-free. Then all vertices in T are monovalent and
the reduction algorithm forever outputs p; € correct(F).

(2) F,and thus Fj are not failure-free. By Lemma, 2, T has a deciding process.
Let p* be the deciding process of the smallest decision gadget. Since ever
growing simulation trees Y;(t) of all correct processes p; tend to T, there
exists to such that Vi > to,Vp € correct(F), the deciding process of the

13



1: Gi «— Go

2: kK« 0

3: while true do

4:  p; receives m

5 d < output of D

6 k+—k+1

7:  if m is of the form (p;,G;,p;) then

8: Gi; + G; UGy

9 add [p;, d, k] to G; and edges from all other vertices of G; to [p;, d, k]
10:  Y; < simulation tree induced by G; and I

11:  if Y, has no decision gadgets then

12: output; < p1
13:  else
14: output; < deciding process of the smallest decision gadget of T;

15:  p; sends (p,G;,q) to all g € II

Figure 2: Reduction algorithm Tp_,q for process p;.

smallest decision gadget is p*. Thus, V¢ > tg all correct processes p; have
output; = p*. By Lemma 21 of [1], the deciding process is correct in F.

Thus Tp_,q eventually outputs the identity of the same correct process, at every
correct process. O

Theorem 4 For any environment £¢, if a failure detector D € A can be used
to solve NBAC in ¢, then D =¢, Q.

7 The weakest failure detector in A
to solve NBAC

Consider failure detector 7P + OS (Rept+os = Rep X Rgq), such that, for any
failure pattern F' and for any (Hp, Hg) €?P + OS(F), we have Hop €?P(F)
and Hg € Q(F)

From the facts that ?P is necessary to solve NBAC in any environment [6],
Q is weaker than Q [1], and Theorem 4, the following result holds:

Theorem 5 For any environment ¢, if a failure detector D € A solves NBAC
in &, then D =g, 7P + Q.

From the theorem above and [6], we have:

Corollary 6 7P + OS is the weakest timeless failure detector to solve NBAC
in any environment & with f < [F].

Corollary 7 For any environment £; with 0 < f < [§] in a system augmented
with timeless failure detectors, NBAC is strictly harder than Consensus.

Proof: Since (2 is timeless and it is the weakest to solve Consensus (in £¢) in the
whole universe of failure detectors [2], it is also the weakest failure detector to

14



solve Consensus in 4. In turn, ?P + 2 is the weakest from A to solve NBAC in
&. Clearly, Q <¢,7P + Q. However, Q cannot be transformed into 7P + Q (?P
does not make mistakes while 2 is allowed to do so [6]). Hence, Q <¢,?P + Q.

Thus, in &£, any algorithm that solves NBAC using A can be transformed
into an algorithm that solves Consensus, while the converse transformation is
not possible. In other words, NBAC is strictly harder than Consensus in £ with
a majority of correct processes in a system augmented with timeless failure de-
tectors. O

8 Concluding remarks

Sabel and Marzullo showed in [7] that P is the weakest failure detector to solve
the Leader Election problem within a specific class of failure detectors. They
focus on failure detectors that output sets of suspected processes and satisfy
the following symmetry property: if a process detects a failure erroneously,
then any process can detect a failure erroneously an arbitrary number of times.
The requirement is rather strong: for instance, it excludes all failure detectors
that make a finite number of mistakes. The approach is somewhat similar to
ours. We also defined a subset A of the overall universe of failure detectors [2]
in which 7P + Q < P is shown to be the weakest to solve our NBAC problem.
The class of symmetric failure detectors of [7] and our class A of timeless failure
detectors are however incomparable.

Fromentin, Raynal and Tronel stated in [4] that P is the weakest failure
detector to solve NBAC. Guerraoui [6] pointed out that [4] assumes NBAC to
be solved among any subset of the processes in the system and showed that P is
not the weakest failure detector to solve NBAC without that assumption. In
this paper, we make a step further showing that a failure detector 7P + Q < P
is the weakest to solve NBAC in a wide class A of timeless failure detectors
(provided an environment with a majority of correct processes). Thus, in this
environment, NBAC is strictly harder than Consensus (which is not true in
general [5, 6]). The question of the weakest failure detector to solve NBAC
without assuming a majority of correct processes is open for future research.

References

[1] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector
for solving consensus. Journal of the ACM (JACM), 43(4):685-722, July
1996.

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM (JACM), 43(2):225-267, March 1996.

[3] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(3):374—
382, April 1985.

[4] E. Fromentin, M. Raynal, and F. Tronel. On classes of problems in asyn-
chronous distributed systems with process crashes. In Proceedings of the

15



IEEE International Conference on Distributed Systems (ICDCS), pages 470~
477, 1999.

[6] R. Guerraoui. On the hardness of failure-sensitive agreement problems. In-
formation Processing Letters, 79(2):99-104, June 2001.

[6] R. Guerraoui. Non-blocking atomic commit in asynchronous distributed
systems with failure detectors. Distributed Computing, 15:17-25, January
2002.

[7] L.S. Sabel and K. Marzullo. Election vs. consensus in asynchronous systems.
Technical report, Cornell University, Ithaca, NY, TR95-1488, 1995.

[8] D. Skeen. NonBlocking commit protocols. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pages 133—-142.
ACM Press, May 1981.

16



