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Abstract

This paper considers thefault-tolerant mutual exclusionproblem in a message-passing asynchronous system and determines the weakest
failure detector to solve the problem, given a majority of correct processes. This failure detector, which we call thetrusting failure detector,
and which we denote byT, is strictly weaker than the perfect failure detectorP but strictly stronger than the eventually perfect failure
detector�P. The paper shows that a majority of correct processes is necessary to solve the problem withT. Moreover,T is also the
weakest failure detector to solve the fault-tolerantgroupmutual exclusion problem, given a majority of correct processes.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Background

This paper addresses the fault-tolerant mutual exclusion
problem in a distributed message-passing system where
channels are reliable and processes can fail by crashing. The
mutual exclusion problem[6,13,14,19]involves managing
access to a single, indivisible resource that can be accessed
by at most one process at a time (mutual exclusionprop-
erty). The process accessing the resource is said to be in its
critical section(CS). In thefault-tolerant mutual exclusion
problem, we require that if a correct process (i.e., a process
that takes an infinite number of steps of an algorithm as-
signed to it) wants to enter its CS, then there eventually will
besomecorrect process in its CS (progressproperty), even
if some process crashes (stops taking steps) while in its CS.
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Evidently, the problem cannot be solved deterministically
in a crash-prone asynchronous system without any infor-
mation about failures: there is no way to determine that a
process in its CS is crashed or just slow. (We do not con-
sider here probabilistic mutual exclusion algorithms[5,8].
We also do not restrict ourselves to particular scenarios in
which, for instance, no process can crash outside its remain-
der section). Clearly, no deterministic algorithm can guar-
antee fault-tolerant progress and mutual exclusion simulta-
neously. In this sense, the problem is related to the famous
impossibility result that consensus cannot be solved deter-
ministically in an asynchronous system that is subject to
even a single crash failure[7].

1.2. Failure detectors

To circumvent the impossibility of consensus, Chandra
and Toueg[4] introduced the notion offailure detector.
Informally, a failure detector is a distributed oracle that
gives (possibly incorrect) hints about which processes have
crashed so far. Each process has access to a localfailure de-
tector modulethat monitors other processes in the system.
In [4], it is shown that a rather weak failure detector�W
is sufficient to solve consensus in an asynchronous system
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with a majority of correct processes, and that�W can be
implemented using partial synchrony assumptions. In[3],
it is shown in a precise sense that�W is also necessary
to solve consensus, given a majority of correct processes.
In short, �W is the weakest failure detector to solve
consensus.

1.3. Trusting failure detectorT

A natural question follows: what is theweakestfailure
detector to solve the fault-tolerant mutual exclusion prob-
lem? Traditionally, mutual exclusion algorithms either as-
sume that no process crashes outside its remainder section
[6,13,14,19,15,21], or suppose that (1) every crash is even-
tually detected by every correct process and (2) no correct
process is suspected[1,18]: the conjunction of (1) and (2) is
equivalent to the assumption of theperfect failure detector
P [4]. In other words, perfect information about failures is
sufficientto solve the fault-tolerant mutual exclusion prob-
lem. But isP necessary? We show that the answer is “no”:
we can solve the problem using thetrusting failure detector
T , a new failure detector we introduce here, which is strictly
weaker thanP (but strictly stronger than�P, theeventually
perfectfailure detector of[4]).
Roughly speaking, failure detectorT satisfies the follow-

ing properties: (1) there is a time after whichT trustsevery
correct process, (2) there is a time after whichT does not
trust any crashed process, and (3) at all times, ifT stops
trusting a process, then the process is crashed. Failure de-
tector T might however trust temporarily a crashed pro-
cess as well as not trust temporarily a correct process. Intu-
itively, T can thus make mistakes and algorithms usingT
are, from a practical point of view, more resilient than those
usingP.
The algorithm we present here to show thatT is sufficient

to solve fault-tolerant mutual exclusion assumes a majority
of correct processes and is inspired by the well-known Bak-
ery algorithm of Lamport[13,14]: a process that wishes to
enter its CS first passes a guard (gets trusted bysomecor-
rect process), then draws a ticket and is served in the or-
der of its ticket number. Failure detectorT guarantees that
a crash of the process will be eventually detected by ev-
ery correct process in the system. We show that, in addition
to mutual exclusion and progress, our algorithm guarantees
also a fairness property, ensuring that the only excuse for
not granting the access to a CS requested by a correct pro-
cess is the permanent stay of some correct process in its CS
(starvation-freedomproperty).
We also show thatT isweakerthan any failure detectorD

sufficient to solve the problem (T provides at least as much
information about failures asD ). Intuitively, this stems from
the fact that, if a processi in its CS does not execute the exit
protocol, another process can enter its CS only if it is sure
that i is crashed. We present an algorithm that extracts the
information provided byT from any algorithm that solves
fault-tolerant mutual exclusion.

1.4. Contributions

• We show thatT is indeed the weakest failure detector to
solve the problem in a system with a majority of correct
processes. We show also that the majority is actually nec-
essary for any fault-tolerant mutual exclusion algorithm
usingT .

• Then we address the question: what if we do not make
the assumption of a majority of correct processes? IsP
necessary?We show that it is still not: we present a failure
detectorT + S (whereS is thestrongfailure detector of
[4]) which is strictly weaker thanP and which is sufficient
(but possibly not necessary) to solve the problem even
with an arbitrary number of failures.

• Finally, we turn our attention to group mutual exclusion
[9,11,12,22], a recent generalization of mutual exclusion
and we show thatT is the weakest to solve fault-tolerant
group mutual exclusion (with a majority of correct pro-
cesses). In other words, we show that the problem is equiv-
alent to fault-tolerant mutual exclusion in an asynchronous
system augmented with failure detectors and the assump-
tion of a majority of correct processes. Analogously, fail-
ure detectorT + S is sufficient to solve fault-tolerant
group mutual exclusion in an asynchronous system with
an arbitrary number of failures.

1.5. Roadmap

The rest of the paper is organized as follows. Section2
overviews the system model. Section3 defines the fault-
tolerant mutual exclusion problem. Section4 introduces the
trusting failure detectorT . Sections5 and6 show thatT
is, respectively, necessary and sufficient to solve the prob-
lem. Section7 discusses the bounds on the number of cor-
rect processes necessary to solve the problem withT and
introduces a failure detectorT + S which is sufficient to
solve the problem without a majority of correct processes.
Section8 generalizes our result to the group mutual exclu-
sion problem. Section9 discusses the performance cost of
the resilience provided byT and Section10 concludes the
paper with some practical remarks.

2. The model

We consider in this paper the traditional crash-prone asyn-
chronous message passing system model augmented with
the failure detector abstraction[4,3].

2.1. System

The system consists of a set ofnprocesses� = {1, . . . , n}
(n > 1). Every pair of processes is connected by a reliable
channel. Processes communicate by message passing. To
simplify the presentation of our model, we assume the ex-
istence of a discrete global clock. This is a fictional device:
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the processes have no direct access to it. (More precisely,
the information about global time can comeonly from fail-
ure detectors.) We take the rangeT of the clock’s ticks to
be the set of natural numbers and 0 (T = {0} ∪ N).

2.2. Failures and failure patterns

Processes are subject tocrash failures. A failure pattern
F is a function from the global time rangeT to 2�, where
F(t) denotes the set of processes that have crashed by time
t. Once a process crashes, it does not recover, i.e.,∀t < t ′ :
F(t) ⊆ F(t ′). We definecorrect(F ) = � − ∪t∈T F(t), the
set ofcorrect processes. A processi /∈ F(t) is said to be
alive at time t. A processi ∈ F(t) is said to becrashedat
time t. Processes in� − correct(F ) are calledfaulty in F.
We do not consider Byzantine failures: a process either cor-
rectly executes the algorithm assigned to it, or crashes and
stops forever executing any action. An environmentE is a
set of possible failure patterns. In this paper, we consider
environments of the typeEf that consists of all failure pat-
terns in which up tof processes can crash. We assume that
0 < f < n: at least one process might crash and at least
one process is correct.

2.3. Failure detectors

A failure detector history H with rangeR is a function
from�×T toR.H(i, t) is the value of the failure detector
module of processi at time t. A failure detectorD is a
function that maps each failure pattern to aset of failure
detector histories (usually defined by a set of requirements
that these histories should satisfy).D (F ) denotes the set of
possible failure detector histories with rangeRD permitted
byD for the failure patternF. Processes use a failure detector
D in the sense that every processi has a failure detector
moduleDi that providesi with information about the failures
in the system. We do not make any assumption a priori on
the range of a failure detector.
Among the failure detectors defined in[4], we consider

perfect, eventually perfectandstrongfailure detectors, each
one outputs at every process a set of processes that the pro-
cess currentlysuspectsto have crashed. These failure detec-
tors are defined bycompletenessandaccuracyproperties:
Perfect (P): Strong completeness (i.e., every crashed

process is eventually suspected by every correct process)
and strong accuracy (i.e., no process is suspected before it
crashes).
Eventually perfect(�P): Strong completeness and even-

tual strong accuracy (i.e., there is a time after which no cor-
rect process is ever suspected).
Strong(S): Strong completeness and weak accuracy (i.e.,

some correct process is never suspected).

For any failure patternF, P(F ), �P(F ) andS(F ) de-
note the sets ofall histories satisfying the corresponding
properties.

2.4. Algorithms, configurations, schedules, and runs

Following [3,4], we model the asynchronous communi-
cation channels as a message buffer which contains mes-
sages not yet received by their destinations. Analgorithm
A is a collection ofn (possibly infinite state) deterministic
automata, one for each process.A(i) denotes the automa-
ton on which processi is running algorithmA. Computation
proceeds instepsof A. In each step of A, processi performs
atomically the following three actions: (1)i receives a sin-
gle message addressed toi from the message buffer, or a
null message, denoted�; (2) i queries and receives a value
from its failure detector module; (3)i changes its state and
sends a message to a single process according to the au-
tomatonA(i). Note that the received message is chosennon-
deterministicallyfrom the messages in the message buffer
destined toi, or the null message�.
A configurationdefines the current state of each process

in the system and the set of messages currently in the mes-
sage buffer. Initially, the message buffer is empty. A step
(i,m, d,A) of an algorithmA is uniquely determined by the
identity of the processi that takes the step, the messagem
received byi during the step (mmight be the null message
�), and the failure detector valued seen byi during the step.
We say that a stepe = (i,m, d,A) is applicableto a con-
figurationC if and only if m = � or m is in the message
buffer ofC. For a stepe applicable toC, e(C) denotes the
unique configuration that results from applyinge to C.
A schedule Sof algorithmA is a (finite or infinite) se-

quence of steps ofA. S⊥ denotes the empty schedule. We
say that a scheduleS is applicable to a configuration Cif
and only if (a)S = S⊥, or (b) S[1] is applicable toC, S[2]
is applicable toS[1](C), etc. For a finite scheduleSapplica-
ble toC, S(C) denotes the unique configuration that results
from applyingS to C.
A partial run of algorithm A in an environmentE using a

failure detectorD is a tupleR = 〈F,HD, I, S, T 〉 where
F ∈ E is a failure pattern,HD ∈ D(F ) is a failure detector
history,I is an initial configuration ofA,Sis afiniteschedule
of A, andT ⊆ T is a finite list of increasing time values
(indicating when each stepSoccurred) such that|S| = |T |,
S is applicable toI, and for allk� |S|, if S[k] = (i,m, d,A)

then: (1)i has not crashed by timeT [k], i.e., i /∈ F(T [k])
and (2)d is the value of the failure detector module ofi at
time T [k], i.e.,d = HD(i, T [k]).
A run of algorithm A in an environmentE using a failure

detectorD is a tupleR = 〈F,HD, I, S, T 〉 whereF ∈ E
is a failure pattern,HD ∈ D(F ) is a failure detector history,
I is an initial configuration ofA, S is an infinite schedule of
A, andT ⊆ T is an infinite list of increasing time values
indicating when each stepS occurred. In addition to satis-
fying properties (1) and (2) of a partial run, a runR should
guarantee that (3) every correct process inF takes an infinite
number of steps inSand eventually receives every message
sent to it (this conveys the reliability of the communication
channels). (In fact, the sufficient part of this paper holds
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even with a weaker guarantee such as “every correct process
eventually receives every message sent to it by anycorrect
process”.)

2.5. Problems and solvability

A problem is a set of runs (usually defined by a set of
properties that these runs should satisfy). An algorithmA
solves a problem M in an environmentE using a failure
detectorD if all the runs ofA in E usingD are inM
(i.e., they satisfy the properties ofM). We say that a failure
detectorD solves problem Min E if there is an algorithm
A which solvesM in E usingD.
Let M andM ′ be any two problems andE be any en-

vironment. If for any algorithmA′ that solvesM ′ in E ,
there is a transformation algorithm ofA′ into an algorithm
A, RA′→A such thatA solvesM in E , we say thatM ′ is
harder than M inE . If M ′ is harder thanM in E andM is
harder thanM ′ in E , we say thatM andM ′ areequivalent
in E .

2.6. Weakest failure detector

If, for failure detectorsD andD′, there is an algorithm
RD′→D that transformsD′ into D in environmentE
(RD′→D , called areductionalgorithm, emulates histories
of D using histories ofD′), we say thatD is weaker than
D′ in E , and we writeD �E D′. If D �E D′ but D′ �E D,
we say thatD is strictly weaker thanD′ in E , and we write
D ≺E D′. Note thatRD′→D does not need to emulateall
histories ofD; it is required that all the failure detector
histories it emulates be histories ofD.
We say that a failure detectorD is the weakest failure

detector to solve a problem M in an environmentE if the
following conditions are satisfied: (sufficiency)D solvesM
in E and (necessity) if a failure detectorD′ solvesM in E ,
thenD is weaker thanD′ in E .

3. The fault-tolerant mutual exclusion problem

In defining thefault-tolerant mutual exclusionproblem
(from now on—FTME) we use the terms of[16, Chapter
10]. The FTME problem involves the allocation of a sin-
gle, indivisible, resource amongn processes. An alive (not
crashed) process with access to the resource is said to be in
its critical section(CS). When a process is not involved in
any way with the resource, it is said to be in itsremainder
section. To gain access to its critical section, a process ex-
ecutes atrying protocol, and after the process is done with
the resource, it executes anexit protocol. This procedure can
be repeated, so each processi cyclically moves from its re-
mainder section (remi) to its trying section(tryi), then to
its critical section (criti), then to itsexit section(exiti), and
then back again toremi . We assume that every processi is

well-formed, i.e., i does not violate the cyclic order of exe-
cution: remi , tryi , criti ,exiti , . . . . 1

A mutual exclusion algorithm defines trying protocol
tryi and exit protocolexiti for every processi. (We do not
restrict the process behavior in the critical and remain-
der sections.) We say that the algorithm solves the FTME
problem if, under the assumption that every process is well-
formed, any run of the algorithm satisfies the following
properties:
Mutual exclusion: No two different processes are in their

CSs at the same time.
Progress: (1) If a correct process is in its trying section,

then at some time later some correct process is in its CS.
(2) If a correct process is in its exit section, then at some

time later it enters its remainder section.
We will show in Sections5 and 6 that, in an environ-

ment with a majority of correct processes, any algorithm
that solves the FTME problem can be transformed into an
algorithm satisfying not only the properties above but also
the following fairness property:
Starvation freedom: If no process stays forever in its CS,

then every correct process that reaches its trying section
eventually enters its CS.
Note that mutual exclusion is asafetyproperty while

progress and starvation freedom arelivenessproperties.

4. The trusting failure detector

This section introduces a new failure detector that we call
the trusting failure detector and we denote byT . The range
of T is RT = 2�. LetHT be any history ofT . HT (i, t)
represents the set of processes that processi suspects(i.e.,
considers to have crashed) at timet. We say that processi
trusts process j at time tif j /∈ HT (i, t).
For every failure patternF, T (F ) is defined by

the set of all histories HT that satisfy the following
properties:
Strong completeness: Eventually, every crashed process is

permanently suspected by every correct process. That is

∀ i /∈ correct(F ), ∃t : ∀t ′ > t,∀j ∈ correct(F ),
i ∈ HT (j, t ′).

Eventual strong accuracy: Eventually, no correct process
is suspected by any correct process. That is

∀ i ∈ correct(F ), ∃t : ∀t ′ > t,∀j ∈ correct(F ),
i /∈ HT (j, t ′).

1An alternative stronger definition of the problem can allow a process
to be initially in its CS. Clearly, the perfect failure detectorP is necessary
for this problem. We instead follow the original definition of[16] where
the competition between processes for the critical section is “fair”, since
none of them can usurp the CS from the very beginning.
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H(1,t1) = H(1,t2) = {4} H(1,t3) = {3,4}{2,3,4}

Fig. 1. Failure detection scenario forT .

Trusting accuracy: Every processj that is suspected by a
processi after being trusted byi is crashed. That is:

∀i, j, t < t ′ : j /∈ HT (i, t) ∧ j ∈ HT (i, t ′) ⇒ j ∈ F(t ′).
Fig. 1 depicts a possible scenario of failure detection

with T . We consider the system� = {1,2,3,4}. Initially,
the failure detector module at process 1 outputs{2,3,4}:
H(1, t1) = {2,3,4}, i.e., process 1 trusts only itself. At time
t2 > t1, processes 2 and 3 also get trusted by process 1:
H(1, t2) = {4}. Process 3 crashes and at some time later is
not trusted anymore by process 1:∀t� t3, H(1, t) = {3,4}.
Note that process 1 never trusts process 4.
Now we identify the position ofT in the hierarchy of

failure detector s introduced in[4]. We show that, in any
environmentEf with 0< f < n, �P is strictly weaker than
T , andT is strictly weaker thanP. The “weaker” parts
of the proofs follow directly form the definition ofT . The
“strictly” parts of the proofs are done by contradiction: we
assume that a reduction algorithmRT →P (respectively,
R�P →T ) exists and expose a run of the algorithm that
violates some properties ofP (respectively,T ).

Proposition 1. T ≺Ef P, in any environmentEf with 0<
f < n.

Proof. (a) Clearly,T �E P in any environmentE : P
satisfies all properties ofT . Indeed, strong completeness
is given for free, eventual strong accuracy is implied by
strong accuracy ofP. Trusting accuracy follows from
the fact thatP guarantees that any suspected process is
crashed.
(b) Now we show thatP is not weaker thanT . Intuitively,

it follows from the fact thatT is allowed to make mistakes
about processes (see the scenario of Fig.1).
By contradiction, assume that there exists a reduction al-

gorithmRT →P that, for any failure patternF ∈ Ef and
any historyHT ∈ T (F ), constructs a historyHP such that
HP ∈ P(F ).
Consider failure patternF1 ∈ Ef such thatF1(0) = {j},

correct(F1) = � − {j} (the only faulty processj is ini-
tially crashed) and take a historyH 1

T ∈ T (F1) such that
H 1

T (i, t) = {j}, ∀i �= j,∀t ∈ T (remember that we con-
sider an environment where at least one process can crash

and at least one process is correct). Consider runR1 =
〈F1, H 1

T , I, S1, T 〉 of RT →P that outputs a historyH 1
P ∈

P (F1). By the strong completeness property ofP: ∃k0 ∈
N, ∃l ∈ � − {j}: H 1

P (l, T [k0]) = {j}.
Consider failure patternF2 ∈ Ef such thatcorrect(F2) =

� (F2 is failure-free) and define a historyH 2
T such that

∀i ∈ � and∀t ∈ T:

H 2
T (i, t) =

{ {j}, t�T [k0],
∅, t > T [k0].

Note thatH 2
T ∈ T (F2), and∀t�T [k0], ∀i ∈ � − {j} :

H 1
T (i, t) = H 2

T (i, t). Consider runR2 = 〈F2, H 2
T , I, S2, T 〉

of RT →P such thatS1[k] = S2[k],∀k�k0 (processes take
the same steps inR1 and R2 up to time T [k0]). Let R2
outputs a historyH 2

P ∈ P(F2). Since partial runs ofR1 and
R2 for t�T [k0] are identical, the resulting historyH 2

P is
such thatH 2

P (l, T [k0]) = {j}, for somel ∈ � − {j}. But
processj is alive atT [k0] in F2, i.e., the strong accuracy of
P is violated—a contradiction.
Thus,T ≺Ef P. �

Proposition 2. �P ≺Ef T , in any environmentEf with0<
f < n.

Proof. Clearly,�P �E T in any environmentE : by defi-
nition, everyT satisfies strong completeness and eventual
strong accuracy.
Now we show thatT is not weaker than�P. Intuitively,

it follows from the fact thatT is allowed to make only a
boundednumber of mistakes, while the number of mistakes
�P can make is unbounded.
By contradiction, assume that there exists a reduction al-

gorithmR�P →T that, for any failure patternF ∈ Ef and
any historyH�P ∈ �P(F ), constructs a historyHT such
thatHT ∈ T (F ).
Consider a failure-free patternF1 ∈ Ef (correct(F1) =

�) and takeH 1
�P ∈ �P(F1) such that∀i,∀t ∈ T:

H 1
�P (i, t) = ∅. Consider a runR1 = 〈F1,H 1

�P , I, S1, T 〉
of R�P →T that outputs a historyH 1

T ∈ T (F1). By the
eventual strong accuracy property ofT , ∃k0 ∈ N, such that
∀k�k0 and∀i ∈ �: H 1

T (i, T [k]) = ∅.
Now consider a failure patternF2 ∈ Ef such that

correct(F2) = �−{j} in which j crashes at timeT [k0]+1.
Take a historyH 2

�P ∈ �P(F2) such that for allt ∈ T and
i ∈ �:

H 2
�P (i, t) =

{
H 1

�P (i, t), t�T [k0],
{j}, t > T [k0].

Now consider a runR2 = 〈F2, H 2
�P , I, S2, T 〉 of R�P →T

that outputs a historyH 2
T ∈ T (F2). Assume thatS1[k] =

S2[k], ∀k�k0. Clearly, for alli ∈ �,H 2
T (i, T [k0]) = ∅. By

the strong completeness property ofT , there exists a time
k1 > k0 such that∀i �= j : H 2

T (i, T [k1]) = {j}.
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Now we construct a historyH 3
�P such that for allt ∈ T

andi ∈ �:

H 3
�P (i, t) =



H 1

�P (i, t), t�T [k0],
H 2

�P (i, t), T [k0] < t�T [k1],
∅, t > T [k1].

Clearly,H 3
�P ∈ �P(F1).

Finally, consider a runR3 = 〈F1, H 3
�P , I, S3, T 〉 of

R�P →T that outputs a historyH 3
T ∈ T (F1). Assume that

S3[k] = S2[k], ∀k�k1. Since partial runs ofR2 andR3 for
t�T [k1] are identical, there existsi �= j such that:

H 3
T (i, T [k0]) = ∅,

H 3
T (i, T [k1]) = {j}.

In other words,j is suspected byi at timeT [k1] after not
being suspected byi at timeT [k0] < T [k1]. By the trusting
accuracy property ofT , j is crashed inF1, which contradicts
the assumption thatF1 is failure-free.
Thus,�P ≺Ef T . �

5. The necessary condition for solving FTME

This section shows that the trusting failure detectorT is
necessary to solve FTME inany environmentE . In other
words, we show that if a failure detectorD solves FTME in
E , thenT �E D.
Assume that an algorithmA solves FTME in an environ-

ment E using a failure detectorD. A reduction algorithm
RD →T that transformsD into T is presented in Fig.2. At
any timet ∈ T and for any processi ∈ �,RD →T outputs
the set of processes suspected byi, outputi (t).
In the algorithm of Fig.2, processes can accessn differ-

ent critical sections:CS1, . . . ,CSn by usingn parallel in-
stances of algorithmA. Let tryij , critij , exitij and remij

denote, respectively, trying, critical, exit and remainder sec-
tions of processi with respect toCSj . Each processi con-
trols critical sectionCSi , i.e., in any run in whichi is cor-
rect,i eventually gets access toCSi . As a parallel task,i may
request and gain access to anyCSj . (For brevity, we say
that i requests CSj and thati enters CSj .) Processi requests
CSj (j = 1, . . . , n) by executing trying protocoltryij . By
definition, if CSj is used correctly (the processes are well-
formedwith respect toCSj ), thenAguarantees the properties
of FTME.
The idea of the algorithm is the following. Initially,∀i ∈

�: outputi = � (every process is suspected). Processi
first runs the trying protocoltryii in order to enterCSi .
Since i is the only process in the trying section forCSi , i
eventually either crashes or entersCSi and then sends the
message[me, i, i] to all. Every correct process that received
[me, i, i] stops suspectingi and executestryij in order to
enterCSi .
In our algorithm, a process can leave its CS only because

of a crash. Thus, the only reason for which a correct process

Fig. 2. Reduction algorithmRD →T –processi.

i can enterCSj (i �= j ) is the crash ofj. In this case,
processi sends the message[me, i, j ] to all processes. Every
process that receives the message[m, i, j ] (i �= j ) starts
suspectingj.
As a result, eventually, no correct process is suspected

by any correct process and every crashed process is
permanently suspected by every correct process. More-
over, the only reason to start suspecting a processi after
trusting it, is the crash ofi. That is, the output ofT
is emulated.
To ensure progress of the failure detector output, the re-

duction algorithm of Fig.2 maintains, at every processi ∈
�, n+ 2 parallel tasks:

• task0 in which i runs the trying protocoltryii ;
• task k(k = 1, . . . , n) in which i detects thatk has entered
CSk, stops suspectingk and runs the trying protocoltryik
(lines 9–10 are executed atomically);

• taskn + 1 in which i detects failures of other processes
and starts suspecting them.

Lemma 3. The algorithm of Fig. 2 emulates the trusting
failure detectorT .

Proof. According to the algorithm of Fig.2, no processi
requests twice the same instanceCSj or exits. Thus, each
i is well-formed with respect to eachCSj . Note that, once
enteredCSj , i can leaveCSj only if i crashes.
By contradiction, assume that the strong completeness

property ofT is violated. More precisely,

∃F, ∃i ∈ correct(F ), ∃j /∈ correct(F ) : ∀t, ∃t ′ > t,
j /∈ outputi (t ′).
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Initially, outputi = � (every process is suspected). By the
algorithm, initially, j ∈ outputi , and the correct processi
removesj from outputi (line 10 of Fig.2) at most once and
only if (a) the message[me, j, j ] is received (line 8), i.e.,j
is in CSj (line 6) and, (b)j /∈ crashedi .
As a result, i runs tryij in order to enterCSj (line

12). By the progressproperty of FTME, at some time
later, some correct processm is in CSj . By the algorithm,
m sends[me,m, j ] to all. Eventually, processi receives
[me,m, j ] (j is faulty, thus,m �= j ). Since lines 9–10
are executed atomically,i cannot execute line 16 (while
processing[me,m, j ]) beforeexecuting line 10 (while pro-
cessing[me, j, j ]). As a result of processing[me,m, j ], i
addsj to outputi (line 17) andj stays inoutputi forever—a
contradiction with.
Thus, strong completeness ofT is satisfied.
By contradiction, assume that trusting accuracy is vio-

lated. More precisely,

∃F, ∃i, ∃t ′ > t,
∃j /∈ F(t ′) : (j /∈ outputi (t) ∧ j ∈ outputi (t ′)).

By the algorithm,i suspectsj at timet ′ only if some process
k �= j entersCSj at some timet0 < t ′ and only if at some
time t1 < t0 j itself enteredCSj . By themutual exclusion
property of FTME,j had to leaveCSj beforet0. Sincej never
executes the exit protocol,j could leaveCSj only because
of its crash, that is,j ∈ F(t ′)—a contradiction.
By contradiction, assume now that eventual strong accu-

racy is violated. More precisely,

∃F, ∃i ∈ correct(F ),
∃j ∈ correct(F ),∀t, ∃t ′ > t : j ∈ outputi (t ′).

Note that the assumption implies that∀t ∈ T, j ∈outputi (t),
otherwise, trusting accuracy is violated.
Thus,i never stops suspectingj: by the algorithm,i never

reaches line 10 while processing the reception of[me, j, j ].
That is, either (1)i receives[me, k, j ] with k �= j and
put j into crashedi (lines 15–17), or (2)i never receives
[me, j, j ].
Assume that (1) is true. By the algorithm,[me, k, j ] with

k �= j can be only received ifk enteredCSj at some time
t0 and if at some timet1 < t0 j enteredCSj . Sincej never
executes the exit protocol,j could leaveCSj only if it is
faulty—a contradiction.
Assume that (2) is true. Since bothi and j are correct,

j never sends[me, j, j ] (line 6). Thus, no process ever re-
ceives [me, j, j ]. By the algorithm, a processk executes
the trying protocoltrykj only if k received[me, j, j ]. Thus,
j is the only correct process that ever requests access to
CSj . By the progressproperty of FTME,j eventually en-
tersCSj and sends[me, j, j ] to all—a contradiction. Thus,
the reduction algorithm of Fig.2 guarantees the properties
of T . �

As a corollary, we obtain the following result.

Theorem 4. For any environmentE , if a failure detectorD
solves FTME inE , thenT �E D.

6. The sufficient condition for solving FTME

We give in Fig.3 an algorithm that solves FTME using
T assuming an environmentEf with a majority of cor-
rect processes (f < �n2�). The algorithm uses the fact that
�P �Ef T and, as a result, we can implementtotal order
broadcastusingT in Ef [4].
Total order broadcast is defined through the primitives

to-broadcast() and to-deliver() and satisfies the following
properties:

validity: if a correct processi to-broadcasts a message
m, theni eventuallyto-delivers m;
agreement: if a processto-delivers a messagem, every

correct process eventuallyto-delivers m;
integrity: every message isto-delivered at most once, and

only if the message was previouslyto-broadcast;

Fig. 3. FTME algorithm usingT : processi.
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total-order: if a processi to-delivers a messagembefore
having delivered a messagem′, then no processj can to-
deliver m′ without havingto-delivered m first.2

Note that the total-order property implies that if a process
i to-delivered a messagem and a processj to-delivered a
messagem′, then eitherm is to-delivered by j beforem′ or
m′ is to-delivered by i beforem.
The algorithm of Fig.3 assumes that:

– an algorithm implementing total order broadcast is pro-
vided;

– every processi has access to the output of its trusting
failure detector moduleTi ;

– every processi is well-formed.

In our algorithm of Fig.3, each processi maintains the
following local variables:

(1) a booleanreadyi , initially false, indicating whetheri is
ready to execute the trying protocol;

(2) a settrustedi ⊆ �, initially empty, of processes cur-
rently trusted byi;

(3) an integerri , initially 0, indicating the number of times
i has run the trying protocol;

(4) integersj andk indicating the last processed request of
the type[j, k] where j is the process that issued the
request andk is j’s request number.

Our algorithm also assumes that every processi stores the
identifiers of all received messages in a buffer, so that, for
a given messagem, the predicate “receivedm” (lines 7 and
14 of Fig. 3) is true if and only ifm has been previously
received byi.
The idea of our algorithm is inspired by the well-known

Bakery algorithm of Lamport[13,14]: the processes that
wish to enter their CSs (the candidates) first draw tickets and
then are served in the order of their tickets numbers. Before
drawing a ticket, every candidate asks for a permission to
proceed from somecorrect process and waits (line 7) until
the permission is received (it eventually happens due to the
assumption of a majority of correct processes in the system).
Then the candidate is put into the waiting line implemented
by the total order broadcast mechanism. Total order broad-
cast guarantees that the requests are eventually delivered in
the same order (line 12), i.e., no candidatei can be served
unless every candidate in the waiting line beforei has been
served and has released the resource, or crashed (line 14).
If a process crashes in its CS, then at least one correct pro-
cess will eventually detect the crash and informs the others
(lines 19–21 in Fig.3).

2 This definition of the total-order property is slightly stronger than the
one proposed in[10]: we require that all correct processes deliver the
same sequence of messages, and all faulty processes deliverprefixesof
this sequence. This distinction however does not matter for our results,
since the algorithm given in[4] implements the strongest version of total
order broadcast.

To ensure theprogressproperty of FTME, in addition to
the trying and exit protocols (respectively, lines 5–16 and
line 17 of Fig.3), the algorithm maintains, at every process
i ∈ �, n+ 1 parallel tasks:

• task0 in which i detects failures of other processes;
• task m(m = 1, . . . , n) in which i takes care of the trust
request of processm.

Now we prove the correctness of the algorithm through
Lemmas5 and6.

Lemma 5. No two different processes are in their CSs at
the same time.

Proof. By contradiction, assume thati and j (i �= j ) are in
their CSs at timet0. Let, at timet0, ri = ki andrj = kj .
In the trying protocol (lines 5–16), every processto-

broadcasts its request for a CS and no process enters its CS
before having firstto-delivered its request. Thusi must have
to-delivered [i, ki] andj must haveto-delivered [j, kj ] be-
fore t0. By the ordering property ofto-broadcast, either
both i andj to-delivered [i, ki] before havingto-delivered
[j, kj ], or the contrary. Assume, without loss of generality,
that to-deliver([i, ki]) precedesto-deliver([j, kj ]) at j. That
is, at some timet1 < t0, j passed the “wait” clause in line 14
while processing[i, ki]. Thus, one of the following events
occurredbeforet1 at j:

(1) j received[exit, i, ki]: by the algorithm,i left the CS
with ri = ki before timet1. But i is in the CS with
ri = ki at t0 > t1—a contradiction.

(2) j received[crash, i]: by the algorithm, at some process
m, at some timet2 < t1 the following is true:i ∈
trustedm and i ∈ Tm. But i can be intrustedm only if
previously i /∈ Tm (lines 24–25). That is,m stopped
trusting i at time t2. By the trusting accuracy property
of T , i is crashed att2. But i is in the CS att0 > t2—a
contradiction.

Hence, mutual exclusion is guaranteed.�

Lemma 6. If a correct process is in its trying section, then
at some time later some correct process is in its CS. If a
correct process is in its exit section, then at some time later
it enters its remainder section.

Proof. Assume that a correct processī in its trying section
at some timetc with rī = r̄, and no correct process is ever
in its CS aftertc. By the algorithm,̄i never reaches line 16.
Thus,̄i is blocked in a “wait” clause or at the non-terminating
repeat-until loop. The first “wait” clause (line 7 of Fig.3) is
not able to block the process, due to eventual strong accuracy
of T and the fact that at least!n/2"+1 processes are correct.
Thus, ī eventually issuesto-broadcast([ī, r̄]). The second
“wait” clause (more precisely, the statement in line 12 of
Fig. 3) is not blocking neither, because of validity of to-
tal order broadcast: eventually,i to-delivers at least one



500 C. Delporte-Gallet et al. / J. Parallel Distrib. Comput. 65 (2005) 492–505

message–[ī, r̄]. Further, if the “wait” clause in line 14 is not
blocking, then validity of total order broadcast implies that
[ī, r̄] is eventuallyto-delivered by ī, thusī exits the repeat-
until loop and enters its CS.
Thus, ī is blocked in the third “wait” clause (line 14 of

Fig. 3) while processing some[j̄ , k̄] (ī �= j̄ ). Thus,ī never
receives[exit, j̄ , k̄] or [crash, j̄ ].
By integrity of total order broadcast,̄j has previouslyto-

broadcast [j, k] (line 10 of Fig.3).
Let j be any process that reaches line 10.
We observe first that (Claim 1)j has been previously put

in trustedm by somecorrect processm. Indeed,j received
!n/2"+1 [ack]’s from processes that trustedj. Since at least
!n/2"+1 processes are correct,j receives at least one[ack]
from a correct processm that previously putj in trustedm at
some timet0.
Then we notice that (Claim 2) ifj is faulty, then, every

correct process eventually receives[crash, j ]. Indeed, if j
is faulty, then, by trusting completeness ofT and Claim 1,
some correct processmeventually and permanently suspects
j: ∃t1 > t0 : ∀t > t1 : j ∈ Tm. That is, eventually, the
condition of line 19 is satisfied atm for j (j ∈ trustedm and
j ∈ Tm). Thus,msends[crash, j ] to all processes and every
correct process eventually receives it.
Hence, process̄j should necessarily be correct. Indeed,

if j̄ is faulty, then, by Claim 2, correct processī eventually
receives[crash, j̄ ] and releases from waiting in line 14.
Further, we observe that trusting accuracy ofT implies

that (Claim 3) if a message[crash, j ] is received, thenj is
crashed.
Finally, we show that (Claim 4) if a correct processm

passed an entry[j, k] in the total order (is not blocked in line
14 while processing[j, k]), then no correct process can be
blocked while processing[j, k]. Indeed, the following cases
are possible:

(a) j = m: j enters its CS (line 16). By the assumption of
the proof, no correct process is in its CS aftertc, thus,
j left its CS beforetc and j sent[exit, j, k] to all (line
17). Thus, every correct process eventually receives the
message and releases.

(b) j �= m, andj is faulty. By Claim 2, every correct process
eventually receives[crash, j ] and releases.

(c) j �= m, and j is correct. By Claim 3,m could only
receive[exit, j, k]. Every correct process eventually re-
ceives[exit, j, k] and releases.

Recall that̄i is blocked in line 14 while processing request
[j̄ , k̄] (ī �= j̄ ). By Claim 2, j̄ is correct, and, by Claim 4,
j̄ should have passed all entries in the total order thatī has
passed before reaching[j̄ , k̄]. By the algorithmj̄ enters its
CS (line 16). By the assumption of the proof, no correct
process is in its CS aftertc, thus,j̄ left its CS beforetc and
sent[exit, j̄ , k̄] to all. ī eventually receives the message and
releases—a contradiction.
The second part of the lemma follows directly from the

algorithm: every correct processi that runsexiti entersremi

after a finite number of steps. That is, every correct process
in its exit section eventually enters its remainder section.
Thus, progress is guaranteed.�

The following theorem follows directly from Lemmas5
and6:

Theorem 7. The algorithm of Fig. 3 solves FTME usingT ,
in any environmentEf with f < �n2�.

Finally, combining Theorems4 and7, we can state the
following result:

Theorem 8. For any environmentEf with f < �n2�, T is
the weakest failure detector to solve FTME inEf .

Remark. In fact, the algorithm of Fig.3 solves a harder
problem: in addition to mutual exclusion and progress, it
satisfies also the starvation-freedom property.

Indeed, assume that a correct processi is in its trying
section withri = k. Eventually, due to the properties of the
total order broadcast, all entities[j, l] preceding[i, k] in the
total order are eventually processed: if any process releases
its CS, no process can be blocked in a “wait” clause (see
line 14 in Fig.3). Finally, i eventually reaches its own entry
[i, k] in the total order andi enters its CS.
From Theorem8 it follows that any algorithm solving

FTME (in Ef with f < �n2�) can be transformed into an
algorithm that solves FTME with the starvation freedom
property.

7. On the number of correct processes

Proposition 9. No algorithm solves FTME usingT in any
environmentEf wheref ��n2�.

Proof. Assume that an algorithmA solves FTME usingT in
an environment where a majority of correct processes is not
guaranteed. LetX andYbe any two disjoint sets of processes
such that� = X∪Y and|X| = �n2�. Consider two possible
runs ofA:

(1) R1: no process inY takes any step inR1 (e.g., processes
in Y are initially crashed inR1), and processes inX
always suspect every process inY. Assume that a correct
processi ∈ X is the only process in its trying section.
By the progress property of FTME,i enters its CS at
some timet1.

(2) R2: no process fromX takes any step inR2 (e.g., pro-
cesses inX are initially crashed inR2), no process inY
takes any step beforet1 + 1, and processes inY always
suspect every process inX. Assume that a correct pro-
cessj ∈ Y is the only process in its trying section. By
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theprogressproperty of FTME,j enters its CS at some
time t2. Clearly,t1 < t2.

Assume that no process ever runs an exit protocol inR1
andR2. We construct a runR that is identical toR1 at any
time in [0, t1] and identical toR2 at any time in[t1 + 1, t2].
Now assume that every process is correct inR, the processes
in X andY start to trust each otherafter t2 (this is a valid
history of T ), and all messages sent betweenX andY are
delayed untilt2 + 1. Evidently,R is a valid run ofA. But,
sincei and j never enter their exit section s, at timet2 both
i and j are in their CSs—a contradiction.�

Now we consider the extreme case of an environment
Ef , wheref = n− 1 and question ourselves whetherP is
the weakest failure detector to solve the problem inEn−1.
A close look at the correctness proof for the algorithm of
Fig. 3 reveals that we use the assumption of a correct ma-
jority only to implement the total order broadcast primitive
and to guarantee that for each correct processi, there is a
correct processm that trustsi. If a strong failure detectorS
[4] is available, we can overcome both issues even ifn− 1
processes can crash. Indeed, total order broadcast is imple-
mentable inEn−1 usingS [4] and the “wait” clause in line
7 can be substituted by:

wait until receive[ack] from all j /∈ Si .
By the strong completeness property ofS, eventually all
processes not inSi are correct. On the other hand, by the
eventual strong accuracy ofT , every correct process is even-
tually trusted by all correct processes. Hence, this “wait”
clause is not blocking.
By the weak accuracy property ofS, one correct process

is never suspected. That is, some correct processm is never
in Si , ∀i ∈ �. If i crashes whilei is in its CS,m can
detect the crash and inform the other processes. Thus, we
can implement FTME inEn−1 using failure detectorT +S.
For every failure patternF ∈ Ef (f < n), T + S outputs a
pair of histories(HT , HS) (RT +S = 2� × 2�), such that
HT ∈ T (F ) andHS ∈ S(F ).

Proposition 10. T +S ≺Ef P, in any environmentEf with
0< f < n.

Proof. (a)S ≺Ef P [4] andT ≺Ef P (Proposition2). That
is, bothT andS are weaker thanP. Thus,T + S �Ef P.
(b) Now we show thatP is not weaker thanT +S. Indeed,

assume there exists an algorithmRT +S →P that, for any
failure patternF ∈ Ef , constructsHP from HT ∈ T (F )
andHS ∈ S(F ), such thatHP ∈ P(F ).
Let j, l ∈ � and j �= l. Consider failure patternF1 ∈

Ef such thatF1(0) = {j}, correct(F1) = � − {j}, and
take historiesH 1

T ∈ T (F1) and H 1
S ∈ S(F1) such that

∀i ∈ �,∀t ∈ T: H 1
T (i, t) = {j} (j is always suspected)

andH 1
S(i, t) = � − {l} (l is never suspected). Assume that

the corresponding runR1 = 〈F1, (H 1
T , H 1

S), I, S1, T 〉 of

RT +S →P outputs a historyH 1
P ∈ P(F1). By the strong

completeness property ofP: ∃k0 ∈ N:H 1
P (l, T [k0]) = {j}.

Consider failure patternF2 ∈ Ef such thatcorrect(F2) =
� and define historiesH 2

T andH 2
S such that∀i ∈ � and

∀t ∈ T:

H 2
T (i, t) =

{ {j}, t�T [k0],
∅, t > T [k0],

H 2
S(i, t) =

{
� − {l}, t�T [k0],

∅, t > T [k0].

Clearly,H 2
T ∈ T (F2) andH 2

S ∈ S(F2).
Consider a runR2 = 〈F2, (H 2

T , H
2
S), I, S2, T 〉 of

RT +S →P that outputs a historyH 2
P ∈ P(F2), where

S1[k] = S2[k],∀k�k0. Thus, j takes no steps inS2
for all t�T [k0]. Since partial runs ofR1 and R2 for
t�T [k0] are identical, the resulting historyH 2

P is such that
H 2

P (l, T [k0]) = {j}. In other words,j is suspected before it
crashes, and thestrong accuracyof P is violated.
By (a) and (b), we haveT + S ≺Ef P. �

Hence, there is a failure detectorT + S which is strictly
weaker thenP and is sufficient to solve FTME in an envi-
ronment where up ton− 1 processes can crash.

8. Group mutual exclusion

Group mutual exclusion[9,11,12]is a natural generaliza-
tion of the classical mutual exclusion problem[6,14], where
a process requests a “session” before entering its critical
section. Processes are allowed to be in their critical sec-
tions simultaneously provided that they have requested the
same session. Sessions represent resources each of which
can be accessed simultaneously by an arbitrary number of
processes, but no two of which can be accessed simultane-
ously.
Formally, the trying protocol of processi has an integer

parameters. We say thati requests session sif i is running
the trying protocoltryi (s) or it is in its CS immediately
after runningtryi (s). As with FTME, we assume that every
processi is well-formed.
Thus, in addition to the progress properties of FTME,

fault-tolerant group mutual exclusion (FTGME) satisfies the
group mutual exclusion and concurrent entering properties
(we follow the terminology used in Section3):
Progress: (1) If a correct process is in its trying section,

then at some time later some correct process is in its CS.
(2) If a correct process is in its exit section, then at some

time later it enters its remainder section.
Mutual exclusion: If two processes are in their critical

sections at the same time, then they request the same session.
Concurrent entering: If a correct processi requests a ses-

sion and no other process requests a different session, then
i eventually enters its CS.
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Fig. 4. FTGME algorithm usingT : processi.

The last property means that, for a given session, a pro-
cess that hasalreadyentered its CS cannot prevent another
process requesting the same session from entering its CS.
The property excludes trivial solutions of group mutual ex-
clusion using any simple mutual exclusion algorithm. In
contrast to[9,11,22], we do not make the assumption that
a process can stay in its CS for a finite time only. This is
the reason why we put “eventually” instead of “a bounded
number of its own steps” as in[9,11,22] in the concurrent
entering property. Clearly, if another process is concurrently
trying to enter a different session, it can enter its CS first.
In this case, the trying processcanprevent another process
from entering its CS.
FTGME is at least as hard as FTME: we can easily im-

plement FTME from FTGME just associating every process
with a unique session number. On the other hand, we show
here thatT solves FTGME in a system with a majority of
correct processes. Thus, in the sense of failure detection,
FTME and FTGME are equivalent.
In Fig. 4, we present an algorithm that solves FTGME

usingT . For each processi, the algorithm of Fig.4 defines

trying protocol tryi (sessioni ) that handles the request ofi
for sessionsessioni , and exit protocolexiti . In the algorithm,
each processi maintains the following local variables:

(1) a booleanreadyi , initially false, indicating whetheri is
ready to execute the trying protocol;

(2) an integerri , initially 0, indicating the number of re-
quests for the CS thati has made;

(3) a settrustedi , initially empty, of processes currently
trusted byi;

(4) an integerlsi , initially −1 (we assume that requested
session numbers are non-negative), indicating the num-
ber of currently satisfied session;

(5) a setinCSi , initially empty, of requests with session
numberlsi that i suspects to be currently satisfied;

(6) integersj, k ands indicate the last processed request of
the type[j, k, s] wherej is the process that issued the
request,k is j’s request number ands is the session that
j requests.

The algorithm is similar to that of Section6. Before re-
questing a session every process waits until it gets trusted
by a correct process. The requests are broadcast using to-
tal order broadcast primitiveto-broadcast(), and delivered
throughto-deliver(). If several consecutive requests for the
same sessionsare placed in the total order, then the requests
are satisfied simultaneously. No request for a new session
s′ �= s is satisfied until all processes requested earlier ses-
sions leave their CSs.
Now we state the correctness of the algorithm through

Lemmas11–13.

Lemma 11. If two processes are in their critical sections at
the same time, then they request the same session.

Proof. Assume that processesi and j requesting sessions,
respectively,si andsj are in their CSs at some timet0. Let,
at timet0, ri = ki andrj = kj .
In the trying protocol (lines 7–20), every processto-

broadcasts its request for a CS and no process enters its
CS before having firstto-delivered its own request. Thus
i must haveto-delivered [i, ki, si] and j must haveto-
delivered [j, hj , sj ] beforet0. By the ordering property of
to-broadcast, either bothi andj to-delivered [i, ki, si] be-
fore havingto-delivered [j, kj , sj ], or the contrary.Assume,
without loss of generality, thatto-deliver([i, ki, si] precedes
to-deliver([j, kj , sj ]) at j.
By the algorithm,j can be in the CS withsessionj = sj

andrj = kj at t0 only if every entry[j ′, k′, s′] with s′ �= sj
in the total order preceding[j, kj , sj ] has passed through
the “if” clause defined in lines 15–16beforetime t0. As a
result, before timet0, j has put(i, ki) into inCSj and setlsj
to si (lines 17 and 18).
Since i is still in its CS with ri = ki at time t0, j could

not have received[exit, i, ki] beforet0. Now assume thatj
received[crash, i] beforet0: by the algorithm of Fig.4, at
some processm, at some timet1 < t0 the following is true:
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i ∈ trustedm and i /∈ Tm (m stops trustingi). By trusting
accuracy ofT , i is crashed att1. But i is in the CS att0 >
t1—a contradiction.
Thus,j has not received[exit, i, ki] or [crash, i] beforet0,

i.e., the condition in line 26 is not satisfied atj beforet0. As
a result, at the moment whenj to-delivered [j, kj , sj ] (line
14), (i, ki) ∈ inCSj andlsj = si . Assume thatj reaches line
15 while processing[j, kj , sj ] at some timet1 < t0 (j is in
its CS att0). Furthermore,inCSj is non-empty at anyt ∈
[t1, t0] (it includes at least one entry(i, ki)), j never receives
[crash, j ] (by trusting accuracy ofT ), and lsj = si at t1.
Thus,j can pass lines 15–16 and enter its CS beforet0 only if
sj = si . Hence, group mutual exclusion is guaranteed.�

Lemma 12. If a correct process is in its trying section, then
at some time later some correct process is in its CS. If a
correct process is in its exit section, then at some time later
it enters its remainder section.

Proof. The proof is similar to the one of Lemma6. Assume
that a correct processī is in its trying section at timet0, and
no correct process ever enters its CS aftert0. Applying the
arguments of Lemma6, we observe that̄i is blocked in line
16 of Fig. 4 because some entry(j̄ , k̄) never leavesinCSi
(line 27). Claims 1–4 of Lemma6 are proved similarly. By
Claims 1 and 2 of Lemma6, j̄ must be correct. By Claims
3 and 4 of Lemma6 j̄ should have passed all entries in the
total order that precede[j̄ , k̄, s̄] and entered its CS. Since
no process is in its CS aftert0, j̄ executed the exit protocol
beforet0 and sent[exit, j̄ , k̄] to all. Thus̄i eventually receives
[exit, j̄ , k̄] and releases—a contradiction.�

Lemma 13. If a correct process i requests a session and no
other process requests a different session, then i eventually
enters its CS.

Proof. Assume that, at timet0, a processi requests a ses-
sion si with ri = ki and no other process requests a differ-
ent session. Thus, all processes requesting different sessions
have left their CSs or crashed beforet0. As a result, after
some time, eitherinCSi = ∅ or lsi = si . By the algorithm,
eventually,i starts processing its own request[i, ki, si] with
lsi = si (lines 14–15) and enters its CS (line 20).�

Finally, we can state the following theorem:

Theorem 14. For any environmentEf with f < �n2�, T is
the weakest failure detector to solve FTGME inEf .

Remark. Similar to the FTME algorithm of Fig.3, our
FTGME algorithm solves (inEf with f < �n2�) a harder
problem that, in addition to mutual exclusion, progress and
concurrent entering, satisfies also the starvation freedom
property.

Analogously, in case when up ton−1 processes can crash,
we can solve FTGME withT + S, simply by substituting

line 9 of the algorithm in Fig.4 with:

wait until receive[ack] from all j /∈ Si .

9. Cost of resilience

In this section we compare the performance of our algo-
rithm (Fig. 3) with the well-known algorithms of[17,20].
(The algorithms of[17,20] were designed for the failure-
free asynchronous model but could be ported into the crash-
prone model assumingP. More details on the compar-
ative analysis of the algorithms of[17,20] are available
in [21].)
The performance of mutual exclusion algorithms can

be measured through the following metrics[21]: (a) the
bootstrapping delay, which is the time required for a new
process before entering the CS for the first time; (b) the
number of messagesnecessary per CS invocation, (c) the
synchronization delay, which is the time required after a
process leaves the CS and before the next process enters
the CS, and (d) theresponse time, which is the time in-
terval a requester waits to enter the CS after its request
message have been sent out. We also consider two special
loading conditions:low load and high load. In low load
conditions, there is seldom more than one request to enter
the CS at a time in the system. In high load conditions, any
process that leaves the CS immediately executes the trying
protocol again. In discussing performance, we concen-
trate here on the runs where no process crashes (the most
frequent runs in practice), which are usually callednice
runs.
We denote bytc the maximummessage propagation delay,

andec the maximum CS execution time. The bootstrapping
delay of our algorithm (Fig.3) is bounded by 2tc: before
processing any request for CS, every process should receive
the acknowledgment from a majority of the processes. The
algorithm has a relatively high message complexity: each
request for CS requiresO(n2) messages per CS invocation.
The synchronization delay is bounded bytc: that is, it re-
quires only one communication step to inform the next wait-
ing process that it can enter the CS. The response time in
low load conditions is defined by the time to deliver a total
order broadcast message–2tc. At high loads, on the average,
all other processes execute their CSs between two succes-
sive executions of the CS: the response time converges to
n(tc + ec).
The results of our comparative analysis are presented in

Fig. 5. The performance degradation due to the use ofT
reflects the longer bootstrapping delay which is inherent
to the use ofT and higher message complexity inherited
from using total order broadcast. It would be interesting to
figure out to which extent our algorithm of Fig.3 could be
optimized, e.g., by breaking the encapsulation of the total
order broadcast box.
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Fig. 5. Comparative performance analysis of mutual exclusion algorithms.

10. Concluding remark

Is it more beneficial in practice to use a mutual exclusion
algorithm based onT , instead of a traditional algorithm
assumingP? The answer is “yes, to some extent”. Indeed,
if we translate the very fact of not trusting a correct process
into amistake, thenT clearly tolerates mistakes whereasP
does not. More precisely,T is allowed to make up ton2

mistakes (up tonmistakes for each moduleTi , i ∈ �). As a
result, given synchrony assumptions, it is somewhat easier
to implementT thanP.
For example, in a possible implementation ofT , every

processi can, starting from 0, gradually increase the timeout
tij corresponding to a heart-beat message sent to a process
j until a response fromj is received. Thus, every suchtij
can be flexibly adapted to the current network conditions.
(Clearly, as soon asT starts trusting a site, it is not allowed
to make mistakes about the site’s operational state.)
In contrast,P does not allow this kind of “fine-tuning”

of the timeouts: they are supposed to be known in advance.
In order to minimize the probability of mistakes, the time-
outs are normally chosen sufficiently large, and the choice is
based on some a priori assumptions about current network
conditions. This might exclude some remote sites from the
group and violate the accuracy properties of the failure de-
tector.
Thus, we can implementT in a more effective manner

thanP, and an algorithm that solves FTME usingT ex-
hibits a smaller probability to violate the requirements of the
problem, than one usingP, i.e., the use ofT provides more
resilience. As we have shown in Section9, the performance
cost of this resilience reflects thebootstrapping delay, i.e.,
the time a new process needs to enter its CS for the first
time, and higher message complexity inherited from using
total order broadcast.
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