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Abstract

This paper considers thault-tolerant mutual exclusioproblem in a message-passing asynchronous system and determines the weakest
failure detector to solve the problem, given a majority of correct processes. This failure detector, which wetaatitiggfailure detector,
and which we denote by, is strictly weaker than the perfect failure detectérut strictly stronger than the eventually perfect failure
detectoroZ. The paper shows that a majority of correct processes is necessary to solve the problem WMtreover,.7 is also the
weakest failure detector to solve the fault-tolergraup mutual exclusion problem, given a majority of correct processes.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction Evidently, the problem cannot be solved deterministically
in a crash-prone asynchronous system without any infor-
1.1. Background mation about failures: there is no way to determine that a

process in its CS is crashed or just slow. (We do not con-
This paper addresses the fault-tolerant mutual exclusionsider here probabilistic mutual exclusion algorithfBs3].
problem in a distributed message-passing system whereéWe also do not restrict ourselves to particular scenarios in
channels are reliable and processes can fail by crashing. Thavhich, for instance, no process can crash outside its remain-
mutual exclusion problen{6,13,14,19]involves managing  der section). Clearly, no deterministic algorithm can guar-
access to a single, indivisible resource that can be accessedntee fault-tolerant progress and mutual exclusion simulta-
by at most one process at a timmautual exclusiomprop- neously. In this sense, the problem is related to the famous
erty). The process accessing the resource is said to be in itdmpossibility result that consensus cannot be solved deter-
critical section(CS). In thefault-tolerant mutual exclusion  ministically in an asynchronous system that is subject to
problem, we require that if a correct process (i.e., a processeven a single crash failufé].
that takes an infinite number of steps of an algorithm as-
signed to it) wants to enter its CS, then there eventually will 1.2 Eailure detectors
be somecorrect process in its C$iogressproperty), even
if some process crashes (stops taking steps) while inits CS.  To circumvent the impossibility of consensus, Chandra
and Toueg[4] introduced the notion ofailure detector
“ This work is partially supported by the Swiss National Science Foun- Informally, a failure detector is a distributed oracle that

dation (project number 510-207). gives (possibly incorrect) hints about which processes have
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with a majority of correct processes, and tkat/ can be
implemented using partial synchrony assumptions[3in
it is shown in a precise sense thatV is also necessary
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1.4. Contributions

o We show that/ is indeed the weakest failure detector to

to solve consensus, given a majority of correct processes. solve the problem in a system with a majority of correct

In short, o)V is the weakestfailure detector to solve
consensus.

1.3. Trusting failure detectoy”

A natural question follows: what is thereakestfailure
detector to solve the fault-tolerant mutual exclusion prob-
lem? Traditionally, mutual exclusion algorithms either as-

sume that no process crashes outside its remainder section

[6,13,14,19,15,21]or suppose that (1) every crash is even-

tually detected by every correct process and (2) no correcte®

process is suspect¢d, 18]: the conjunction of (1) and (2) is
equivalent to the assumption of tperfectfailure detector

P [4]. In other words, perfect information about failures is
sufficientto solve the fault-tolerant mutual exclusion prob-
lem. But isP necessary We show that the answer is “no”:
we can solve the problem using ttresting failure detector
T, anew failure detector we introduce here, which is strictly
weaker tharP (but strictly stronger thanP, theeventually
perfectfailure detector of4]).

Roughly speaking, failure detect®r satisfies the follow-
ing properties: (1) there is a time after whightrustsevery
correct process, (2) there is a time after whi€hdoes not
trust any crashed process, and (3) at all timeg] iftops

processes. We show also that the majority is actually nec-

essary for any fault-tolerant mutual exclusion algorithm

using 7.
e Then we address the question: what if we do not make
the assumption of a majority of correct processes? Is
necessary? We show that it is still not: we present a failure
detector7 + S (whereS is thestrongfailure detector of
[4]) which is strictly weaker tha® and which is sufficient
(but possibly not necessary) to solve the problem even
with an arbitrary number of failures.
Finally, we turn our attention to group mutual exclusion
[9,11,12,22] a recent generalization of mutual exclusion
and we show thal is the weakest to solve fault-tolerant
group mutual exclusion (with a majority of correct pro-
cesses). In other words, we show that the problem is equiv-
alent to fault-tolerant mutual exclusion in an asynchronous
system augmented with failure detectors and the assump-
tion of a majority of correct processes. Analogously, fail-
ure detector] + S is sufficient to solve fault-tolerant
group mutual exclusion in an asynchronous system with
an arbitrary number of failures.

1.5. Roadmap

trusting a process, then the process is crashed. Failure de- The rest of the paper is organized as follows. Secfion

tector 7 might however trust temporarily a crashed pro-

overviews the system model. Secti@ndefines the fault-

cess as well as not trust temporarily a correct process. Intu-tolerant mutual exclusion problem. Sectibmtroduces the

itively, 7 can thus make mistakes and algorithms using
are, from a practical point of view, more resilient than those
usingP.

The algorithm we present here to show tfias sufficient

trusting failure detectof/. Sections5 and 6 show that7
is, respectively, necessary and sufficient to solve the prob-
lem. Section7 discusses the bounds on the number of cor-
rect processes necessary to solve the problem Witmd

to solve fault-tolerant mutual exclusion assumes a majority introduces a failure detectéf + S which is sufficient to
of correct processes and is inspired by the well-known Bak- solve the problem without a majority of correct processes.

ery algorithm of Lampor{13,14} a process that wishes to
enter its CS first passes a guard (gets trusteddmecor-

Section8 generalizes our result to the group mutual exclu-
sion problem. Sectio® discusses the performance cost of

rect process), then draws a ticket and is served in the or-the resilience provided by and Sectiorl0 concludes the

der of its ticket number. Failure detectdrguarantees that

paper with some practical remarks.

a crash of the process will be eventually detected by ev-

ery correct process in the system. We show that, in addition

to mutual exclusion and progress, our algorithm guarantees?- 1he model

also a fairness property, ensuring that the only excuse for S N

not granting the access to a CS requested by a correct pro- e consider in this paper the traditional crash-prone asyn-
cess is the permanent stay of some correct process in its C$Nronous message passing system model augmented with
(starvation-freedonproperty). the failure detector abstractiga,3].

We also show theal is weakerthan any failure detectdp
sufficient to solve the probleny{provides at least as much  2.1. System
information about failures &@® ). Intuitively, this stems from
the fact that, if a procesdn its CS does not execute the exit ~ The system consists of a setgfrocessesl = {1, ..., n}
protocol, another process can enter its CS only if it is sure (7 > 1). Every pair of processes is connected by a reliable
thati is crashed. We present an algorithm that extracts the channel. Processes communicate by message passing. To

information provided by7 from any algorithm that solves ~ simplify the presentation of our model, we assume the ex-
fault-tolerant mutual exclusion. istence of a discrete global clock. This is a fictional device:
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the processes have no direct access to it. (More precisely,2.4. Algorithms, configurations, schedules, and runs
the information about global time can coroely from fail-

ure detectors.) We take the range of the clock’s ticks to Following [3,4], we model the asynchronous communi-

be the set of natural numbers andD & {0} U N). cation channels as a message buffer which contains mes-
sages not yet received by their destinations.algorithm

2.2. Failures and failure patterns A'is a collection ofn (possibly infinite state) deterministic

automata, one for each procegdqi) denotes the automa-

Processes are subject¢mashfailures. Afailure pattern ~ ton onwhich processis running algorithmA. Computation
F is a function from the global time rangé to 21, where ~ Proceeds irstepsof A. In each step of A, procesperforms
F () denotes the set of processes that have crashed by timétomically the following three actions: (1)eceives a sin-
t. Once a process crashes, it does not recoveryi.ex, ¢’ : gle message addresseditrom the message buffer, or a
F(t) C F(t'). We definecorrect( F) = I1 — U, F(t), the null message, denoteqd (2) i queries and receives a value
set of correct processes. A process¢ F(t) is said to be from its failure detector module; (3)changes its state and
alive at timet. A process € F(t) is said to becrashedat sends a message to a single process according to the au-
time t. Processes ifil — correct(F) are calledfaultyin F. ~ tomatonA (). Note that the received message is chogam
We do not consider Byzantine failures: a process either cor- deterministicallyfrom the messages in the message buffer
rectly executes the algorithm assigned to it, or crashes angdestined td, or the null message.
stops forever executing any action. An environméris a A configurationdefines the current state of each process
set of possible failure patterns. In this paper, we consider in the system and the set of messages currently in the mes-
environments of the typé; that consists of all failure pat- ~ Sage buffer. Initially, the message buffer is empty. A step
terns in which up td processes can crash. We assume that (- m. d. A) of an algorithmA is uniquely determined by the

0 < f < n: at least one process might crash and at least identity of the processthat takes the step, the message
one process is correct. received byi during the steprfi might be the null message

A), and the failure detector valukseen byi during the step.
We say that a step = (i, m, d, A) is applicableto a con-
figurationC if and only if m = 4 or mis in the message
buffer of C. For a stepe applicable toC, ¢(C) denotes the
unique configuration that results from applyiago C.

A schedule Sf algorithmA is a (finite or infinite) se-
qguence of steps oA. S, denotes the empty schedule. We
say that a schedul§ is applicable to a configuration @
and only if (a)S = S, or (b) S[1] is applicable tcC, S[2]
is applicable taS[1](C), etc. For a finite schedu®applica-
ble toC, S(C) denotes the unique configuration that results
from applyingSto C.

A partial run of algorithm A in an environmest using a
failure detectorD is a tupleR = (F, Hp, I, S, T) where
F € £ is afailure patternHp € D(F) is a failure detector

Among the failure detectors defined [4], we consider history,l is an |n|t|ql conﬁgurgﬂon O.A’ Sis a'fmlte'schedule
of A,andT C T is afinite list of increasing time values

perfect eventually perfecandstrongfailure detectors, each (indicating when each steoccurred) such thas| = |7
one outputs at every process a set of processes that the prox U

cess currentlpuspectso have crashed. These failure detec- Sis applicable td, and for allk < ||, if S[k] = (i, m, d, A)

. o then: (1)i has not crashed by timE[k], i.e.,i ¢ F(T[k])
tors are defined bgompletenesandaccuracyproperties: . : ;
) : and (2)d is the value of the failure detector moduleicdt
Perfect (P): Strong completeness (i.e., every crashed fime T[k], i.e..d = Hp(i. T[k])
process is eventually suspected by every correct process) @ 2 DA o . .
and strong accuracy (i.e., no process is suspected before it A run of algorithm A in an environmest using a failure
9 y (€. P P detectorD is atupleR = (F, Hp, 1, S, T) whereF € £
crashes). ) . . ] )
. is a failure patternHp € D(F) is a failure detector history,
Eventually perfec{¢P): Strong completeness and even- . S ! . i S
. X . ) | is an initial configuration oA, Sis aninfinite schedule of
tual strong accuracy (i.e., there is a time after which no cor- . A . L
. A andT C T is aninfinite list of increasing time values
rect process is ever suspected).

i . indicating when each step occurred. In addition to satis-
Strong(S): Strong completeness and weak accuracy (i.e., . . : :
. fying properties (1) and (2) of a partial run, a rkshould
some correct process is never suspected).

guarantee that (3) every correct procesk takes an infinite
For any failure patter, P(F), ¢P(F) and S(F) de- number of steps i®and eventually receives every message

note the sets oéll histories satisfying the corresponding sent to it (this conveys the reliability of the communication

properties. channels). (In fact, the sufficient part of this paper holds

2.3. Failure detectors

A failure detector history H with rang&® is a function
fromIIx T toR. H(i, t) is the value of the failure detector
module of process$ at timet. A failure detectorD is a
function that maps each failure pattern teset of failure
detector histories (usually defined by a set of requirements
that these histories should satisf§)).(F) denotes the set of
possible failure detector histories with rari§e, permitted
by D for the failure patterifr. Processes use a failure detector
D in the sense that every proceshas a failure detector
moduleD; that provides with information about the failures
in the system. We do not make any assumption a priori on
the range of a failure detector.
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even with a weaker guarantee such as “every correct processvell-formed i.e.,i does not violate the cyclic order of exe-

eventually receives every message sent to it by amyect
process”.)

2.5. Problems and solvability

A problemis a set of runs (usually defined by a set of
properties that these runs should satisfy). An algorithm
solves a problem M in an environmeétusing a failure
detectorD if all the runs of A in £ usingD are inM
(i.e., they satisfy the properties bf). We say that a failure
detectorD solves problem Mn £ if there is an algorithm
A which solvesM in £ usingD.

Let M and M’ be any two problems anél be any en-
vironment. If for any algorithmA’ that solvesM’ in &,
there is a transformation algorithm df into an algorithm
A, Ry _ 4 such thatA solvesM in &£, we say thatM’ is
harder than M in€. If M’ is harder tharM in £ andM is
harder thanM’ in £, we say thaM and M’ are equivalent
in&.

2.6. Weakest failure detector

If, for failure detectorsD and?D’, there is an algorithm
Rp_.p that transformsD’ into D in environment&
(Rp—p , called areductionalgorithm, emulates histories
of D using histories ofD’), we say thatD is weaker than
D' in &, and we writeD <¢ D'. If D<¢ D' but D' £ D,
we say thaD is strictly weaker tharD’ in £, and we write
D <¢ D'. Note thatRp_,p does not need to emulagal
histories of D; it is required that all the failure detector
histories it emulates be histories Df

We say that a failure detectd is the weakest failure
detector to solve a problem M in an environméntif the
following conditions are satisfied: (sufficienc)) solvesM
in £ and (necessity) if a failure detect®¥’ solvesM in &,
thenD is weaker tharD’ in £.

3. The fault-tolerant mutual exclusion problem

In defining thefault-tolerant mutual exclusioproblem
(from now on—FTME) we use the terms {6, Chapter
10]. The FTME problem involves the allocation of a sin-
gle, indivisible, resource amongprocesses. An alive (not

cution: rem;, try;, crit;, exit;, .. .. 1

A mutual exclusion algorithm defines trying protocol
try; and exit protocokxit; for every process. (We do not
restrict the process behavior in the critical and remain-
der sections.) We say that the algorithm solves the FTME
problem if, under the assumption that every process is well-
formed, any run of the algorithm satisfies the following
properties:

Mutual exclusionNo two different processes are in their
CSs at the same time.

Progress (1) If a correct process is in its trying section,
then at some time later some correct process is in its CS.

(2) If a correct process is in its exit section, then at some
time later it enters its remainder section.

We will show in Sections and 6 that, in an environ-
ment with a majority of correct processes, any algorithm
that solves the FTME problem can be transformed into an
algorithm satisfying not only the properties above but also
the following fairness property:

Starvation freedomif no process stays forever in its CS,
then every correct process that reaches its trying section
eventually enters its CS.

Note that mutual exclusion is safety property while
progress and starvation freedom dvenessproperties.

4. The trusting failure detector

This section introduces a new failure detector that we call
thetrustingfailure detector and we denote By, The range
of Tis Ry =2l Let Hr be any history of7. Hy(i, 1)
represents the set of processes that processpectqi.e.,
considers to have crashed) at timé&Ve say that proceds
trusts process j at timeif j ¢ H7 (i, t).

For every failure patternF, 7 (F) is defined by
the set ofall histories Hr that satisfy the following
properties:

Strong completenesBventually, every crashed process is
permanently suspected by every correct process. That is

Vi ¢ correct(F), 3t : V' > t,Vj e correct(F),
i e Hr(j,t).

Eventual strong accuracyventually, no correct process

crashed) process with access to the resource is said to be i suspected by any correct process. That is

its critical section(CS. When a process is not involved in
any way with the resource, it is said to be iniigsnainder
section To gain access to its critical section, a process ex-
ecutes drying protocol and after the process is done with
the resource, it executes axit protocol This procedure can
be repeated, so each procesgclically moves from its re-
mainder sectionrém;) to its trying section(try;), then to

its critical section €rit;), then to itsexit section(exit;), and
then back again teem;. We assume that every proceds

Vi e correct(F),3r: V' > t,Vj € correct F),
i ¢ Hr(j,1).

1An alternative stronger definition of the problem can allow a process
to be initially in its CS. Clearly, the perfect failure detecf®ris necessary
for this problem. We instead follow the original definition [d6] where
the competition between processes for the critical section is “fair”, since
none of them can usurp the CS from the very beginning.
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H(.ty) = {2,3,4}

H(1,t,) = {4} H(1,t3) ={3,4}

3 X
X

Fig. 1. Failure detection scenario fqr.

Trusting accuracyEvery proces$ that is suspected by a
procesd after being trusted byis crashed. That is:

Vi,j,t <t :jé Hr(,t) Aje Hy(i,t') = jeF{).

Fig. 1 depicts a possible scenario of failure detection
with 7. We consider the systefd = {1, 2, 3, 4}. Initially,
the failure detector module at process 1 outp@®s3, 4}:
H(, 1) ={2,3,4},i.e., process 1 trusts only itself. At time
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and at least one process is correct). Consider Ryn=
(Fi. Hy, 1,51, T) of R _p thatoutputs a historyl}, €
P (F1). By the strong completeness property7f 3kg €
N, 3l e T = {j}: Hp(. Tlko)) = {j}.

Consider failure patteri> € £ such thatorrect(F>) =
IT (F; is failure-free) and define a history% such that
Vi e ITandvr € T:

t < T'lkol,
t > Tlkol.

H2(, 1) = { U
Note thatHZ € T (F2), andVt<Tlkol, Vi € I — {j} :
H71—(i, 1) = H72—(i, 1). Consider rumks = (Fo, H72—, 1,8, T)
of R _,p such thatSi[k] = Sa[k], Vk < ko (processes take
the same steps iR; and R> up to time T'[kp]). Let Ry
outputs a histor;H% € P(F>). Since partial runs oR1 and
Ry for 1 <T[ko] are identical, the resulting histori3 is
such thatH2 (l, T[ko]) = {;}, for somel e II — {;}. But
procesg is alive atT [ko] in F>, i.e., the strong accuracy of
‘P is violated—a contradiction.

t2 > 11, processes 2 and 3 also get trusted by process 1: Thys,7 <¢, P. O

H(1, 1) = {4}. Process 3 crashes and at some time later is

not trusted anymore by processvt:>r3, H(1,t) = {3, 4}.
Note that process 1 never trusts process 4.

Now we identify the position of/” in the hierarchy of
failure detector s introduced i@]. We show that, in any
environmen€y with 0 < f < n, oP is strictly weaker than
T, and7T is strictly weaker tharP. The “weaker” parts
of the proofs follow directly form the definition of . The
“strictly” parts of the proofs are done by contradiction: we
assume that a reduction algorithRy- _,p (respectively,
Ro.p 7 ) exists and expose a run of the algorithm that
violates some properties @ (respectively;T).

Proposition 1. 7" <¢g, P, in any environmeng s with 0 <

f <n.

Proof. (a) Clearly,7 <¢ P in any environment: P
satisfies all properties of . Indeed, strong completeness

Proposition 2. ¢P <¢, T, inany environment s with0 <

f <n.

Proof. Clearly,oP <¢ T in any environment: by defi-
nition, every7 satisfies strong completeness and eventual
strong accuracy.

Now we show thaff” is not weaker tharP. Intuitively,
it follows from the fact that7 is allowed to make only a
boundedhumber of mistakes, while the number of mistakes
©P can make is unbounded.

By contradiction, assume that there exists a reduction al-
gorithm R,p _, 7 that, for any failure patter# € £, and
any historyH,p € ¢P(F), constructs a historyfs such
that Hr € T(F).

Consider a failure-free patterfy, € £ (correct(fy) =
M) and take Hl, € oP(F1) such thatVi Vi e T:

H!,(i,1) = §. Consider a rumRy = (F1,Hlp, 1,51, T)

is given for free, eventual strong accuracy is implied by Of Rep 7 that outputs a historydr € T(F1). By the

strong accuracy ofP. Trusting accuracy follows from

eventual strong accuracy property’df ko € N, such that

the fact thatP guarantees that any suspected process is vk >ko andvi € IT: Hz(i, T[k]) = 0.

crashed.

(b) Now we show thaP is not weaker thaff. Intuitively,
it follows from the fact that7 is allowed to make mistakes
about processes (see the scenario of Ejig.

By contradiction, assume that there exists a reduction al-

gorithm Ry _,p that, for any failure patter# < £, and
any historyHs € T (F), constructs a historffp such that
Hp € P(F).

Consider failure patterry € £ such thatF;(0) = {;},
correct(F1) = I1 — {j} (the only faulty process$ is ini-
tially crashed) and take a histoﬂy}r € 7T (F1) such that
H71—(i, t) = {j}, Vi # j,Vt € T (remember that we con-

Now consider a failure patterd, e &y such that
correct Fp) = IT— {;} in whichj crashes at timé& [ko] + 1.
Take a histornyp € ©P(F>) such that for alr € T and
i ell:

1 -
2 o~ _ | HpG 1), 1<Tlkol,
HW“”‘{Q Gl > Tlkol
Now consider a rurR, = (F>, HOZP, 1,8, T)of Rop o7
that outputs a historyiZ € 7 (F2). Assume thatSy[k] =
So[k], Vk <kg. Clearly, for alli € IT, H?r(i, Tlko]) = 4. By
the strong completeness property©f there exists a time

sider an environment where at least one process can crasl; > kg such thatvi # j: H72—(i, Tlk1]) = {j}-
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Now we construct a historﬁfp such thatforalk € T
andi e IT:

H'pG. 1), t<Tlkol,
H2p(i.0) =4 HZ2p(i, 1), Tlkol < t<T[k1l,
@, t > Tlky].

Clearly, H3, € oP(F1).

Finally, consider a runR3 (F1, pr, 1,83, T) of
R.p _7 that outputs a history{73- € T (Fy). Assume that
S3[k] = So[k], Vk <kj. Since partial runs oR, and R3 for
t < Tlk1] are identical, there exisis# j such that:

H3 (i, Tlko)) = 9,
H3 (i, Tlk1]) = {j}.

In other wordsj is suspected by at time T'[k1] after not
being suspected hyat time T [kg] < T [k1]. By the trusting
accuracy property df , j is crashed irFy, which contradicts
the assumption thafy is failure-free.

Thus,oP <g, 7. U

5. The necessary condition for solving FTME

This section shows that the trusting failure detectois
necessary to solve FTME iany environment€. In other
words, we show that if a failure detectbrsolves FTME in
&, thenT <¢ D.

Assume that an algorithi solves FTME in an environ-
ment & using a failure detectoP. A reduction algorithm
Rp _.7 thattransform® into 7 is presented in Fig2. At
any timet € T and for any processe I1, Rp .7 outputs
the set of processes suspected yutput (r).

In the algorithm of Fig2, processes can acceassliffer-
ent critical sectionsCS,, ..., CS, by usingn parallel in-
stances of algorithnf\. Let try;j, crit;;, exit;; and rem;;
denote, respectively, trying, critical, exit and remainder sec-
tions of process$ with respect toCS;. Each processcon-
trols critical sectionCS, i.e., in any run in which is cor-
rect,i eventually gets access@8. As a parallel task, may
request and gain access to a@;. (For brevity, we say
thati requests Cpand that enters C$.) Process requests
CS; (j = 1,...,n) by executing trying protocdiry;;. By
definition, if CS; is used correctly (the processes are well-
formed with respect t€S;), thenA guarantees the properties
of FTME.

The idea of the algorithm is the following. Initially; €
IT: output = II (every process is suspected). Process
first runs the trying protocotry;; in order to enterCS.
Sincei is the only process in the trying section 65, i
eventually either crashes or ent€®§ and then sends the
messagéme, i, i] to all. Every correct process that received
[me, i, i] stops suspectingand executesry;; in order to
enterCS.

In our algorithm, a process can leave its CS only because
of a crash. Thus, the only reason for which a correct process
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1: output; := 11 { Initialization }

: crashed; ==

N

3: start tasks 0,...,n+1
4: task 0:
5 tryy { i requests CS; }
6:  send [me, i, to all { i enters CS; }
{An indication that k entered CSy, is received }
7o task k (k=1,...,n):
8 upon receive [me, k, k| do
9: if k ¢ crashed; then
10: output; := output; — {k} { i stops suspecting k }
11: if &k #i then
12: try;, { @ requests CSy, }
13: send [me, i, k] to all { i enters CS, }
{An indication that j entered CSy is received }
14: task n + 1:
15:  upon receive [me, j, k] with j # k do
16: crashed; :== crashed; U {k}
17: output; := output; U {k} { i starts suspecting k }

Fig. 2. Reduction algorithnRp _, 7 —process.

i can enterCS; (i # j) is the crash of.. In this case,
process sends the messagee, i, j]to all processes. Every
process that receives the messagei, j1 (i # j) starts
suspecting.

As a result, eventually, no correct process is suspected
by any correct process and every crashed process is
permanently suspected by every correct process. More-
over, the only reason to start suspecting a proc¢esiser
trusting it, is the crash of. That is, the output of/
is emulated.

To ensure progress of the failure detector output, the re-
duction algorithm of Fig2 maintains, at every process=
I1, n + 2 parallel tasks:

e taskO in whichi runs the trying protocalry;;;

e task k(k =1, ..., n) in whichi detects thak has entered
CS,, stops suspectingand runs the trying protocaty;,
(lines 9—-10 are executed atomically);

e taskn + 1 in whichi detects failures of other processes
and starts suspecting them.

Lemma 3. The algorithm of Fig. 2 emulates the trusting
failure detector7 .

Proof. According to the algorithm of Fig2, no process
requests twice the same instar€g; or exits. Thus, each
i is well-formed with respect to eadBS;. Note that, once
enteredCS;, i can leaveCS; only if i crashes.

By contradiction, assume that the strong completeness
property of7 is violated. More precisely,

3F, Ji e correct(F), 3j ¢ correct(F) : V¢,3t' > t,
j ¢ output ().
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Initially, output = IT (every process is suspected). By the
algorithm, initially, j € output, and the correct process
removeg from output (line 10 of Fig.2) at most once and
only if (a) the messagpne, j, j] is received (line 8), i.ej,
is in CS; (line 6) and, (b)j ¢ crashed;.

As a result,i runs try;; in order to enterCS; (line
12). By the progressproperty of FTME, at some time
later, some correct processis in CS;. By the algorithm,
m sends[me, m, j] to all. Eventually, process receives
[me, m, j] (j is faulty, thus,m # j). Since lines 9-10
are executed atomically, cannot execute line 16 (while
processindme, m, j]) beforeexecuting line 10 (while pro-
cessing[me, j, j1). As a result of processingne, m, j], i
addsj to output (line 17) andj stays inoutput forever—a
contradiction with.

Thus, strong completeness Bfis satisfied.

By contradiction, assume that trusting accuracy is vio-

lated. More precisely,

aF, 3, 3t >t
3j ¢ F('): (j ¢ output(r) A j € outpug(r)).

By the algorithmj suspects at times’ only if some process
k # j entersCS; at some timeo < ¢ and only if at some
time 11 < 1o ] itself enteredCS;. By the mutual exclusion
property of FTME] had to leaveCS; beforerg. Sincej never

executes the exit protocdl,could leaveCS; only because
of its crash, that is;j € F(t")—a contradiction.

By contradiction, assume now that eventual strong accu-

racy is violated. More precisely,

3dF, Ji € correct(F),
3j € correct(F), Vt,3t' >t : j € output(t’).

Note that the assumption implies thvate T, j € output (¢),
otherwise, trusting accuracy is violated.

Thus,i never stops suspectifgby the algorithmj never
reaches line 10 while processing the receptiofna, j, j].
That is, either (1)i receives[me, k, j] with £k # j and
put j into crashed (lines 15-17), or (2) never receives
[me, j, Jl.

Assume that (1) is true. By the algorithfime, k, j] with
k # j can be only received ik enteredCS; at some time
to and if at some time; < #g j enteredCS;. Sincej never
executes the exit protocol,could leaveCs; only if it is
faulty—a contradiction.

Assume that (2) is true. Since bothand|j are correct,
j never send$me, j, j] (line 6). Thus, no process ever re-
ceives[me, j, j]. By the algorithm, a process executes
the trying protocolry,; only if k received[me, j, j]. Thus,

j is the only correct process that ever requests access ta?3:

CS;. By the progressproperty of FTME,j eventually en-
tersCS; and send$me, j, j] to all—a contradiction. Thus,
the reduction algorithm of FigR guarantees the properties
of 7. O
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As a corollary, we obtain the following result.

Theorem 4. For any environmeng, if a failure detectorD

solves FTME irg, then7T =<¢ D.

6. The sufficient condition for solving FTME

We give in Fig.3 an algorithm that solves FTME using
7 assuming an environmet; with a majority of cor-
rect processesf( < [51). The algorithm uses the fact that
oP =g, T and, as a result, we can implemeatal order
broadcastusing7 in £ [4].

Total order broadcast is defined through the primitives

to-broadcast() andto-deliver() and satisfies the following
properties:

validity: if a correct process to-broadcasts a message
m, theni eventuallyto-delivers m;

agreementif a processo-delivers a messagen, every
correct process eventualtg-delivers m;

integrity: every message te-delivered at most once, and
only if the message was previousty-broadcast;

: ready; = false { Initialization }
ri =0

: trusted; == 0

. start tasks 0,...,n

N

Trying protocol try;:

5: if not ready; then

6:  send [me, 1] to all { Send a trust request Lo all }
7: wait until received LH,/QJ +1 [(1,(‘/"]"5

8 ready; := true

9 rpi=r+1
10: to-broadcast({[i, r;])
11: repeat
12:  wait until the next request [j, k] is to-delivered
13:  if i # j then
14: wait until received [ezit, j, k] or received [crash, j|
15: until i = j
16: { i enters CS }

Exit protocol exit;:
17: send [exit, 1, r,;] to all

{ A crash of process l is detected }

18: task 0:

19:  upon (I € trusted; and ! € 7;) do

20: trusted; := trusted; — {l}

21: send [crash, 1] to all { 1 stops being trusted }

{ A trust request is received from m € II }
22: task m (m=1,...,n):
upon receive [me, m| do

24: wait until m ¢ 7; { Wait until m is trusted }
25: trusted; := trusted; U {m}
26: send [ack] to m

Fig. 3. FTME algorithm usingl” : process.
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total-order. if a process to-delivers a messagen before To ensure therogressproperty of FTME, in addition to
having delivered a messag€, then no procesg can to- the trying and exit protocols (respectively, lines 5-16 and
deliver m’ without havingto-delivered m first.? line 17 of Fig.3), the algorithm maintains, at every process

i €1, n+ 1 parallel tasks:
Note that the total-order property implies that if a process
i to-delivered a messagen and a procespto-delivered a
messager’, then eithem is to-delivered by j beforem’ or
m' is to-delivered by i beforem.
The algorithm of Fig.3 assumes that: Now we prove the correctness of the algorithm through
Lemmas5 and6.

e taskO in whichi detects failures of other processes;
e task m(m = 1,...,n) in whichi takes care of the trust
request of process.

— an algorithm implementing total order broadcast is pro-
vided,;

— every process has access to the output of its trusting
failure detector modulé;;

— every processis well-formed.

Lemma 5. No two different processes are in their CSs at
the same time

Proof. By contradiction, assume thatindj (i # j) are in
In our algorithm of Fig.3, each processmaintains the their CSs at timey. Let, at timerg, r; = k; andr; = k;.

following local variables: In the trying protocol (lines 5-16), every process
broadcasts its request for a CS and no process enters its CS
before having firsto-delivered its request. Thusmust have
to-delivered [i, k;] andj must haveio-delivered [, k;] be-
fore r9. By the ordering property ofo-broadcast, either
bothi andj to-delivered [i, k;] before havingo-delivered
[j, k;1, or the contrary. Assume, without loss of generality,
thatto-deliver([i, k;1) precedeso-deliver([ j, ;1) atj. That
is, at some timey < tg, j passed the “wait” clause in line 14
while processindi, k;]. Thus, one of the following events
occurredbeforer; atj:

(1) j received([exit, i, k;]: by the algorithm,i left the CS
with r; = k; before timer;. Buti is in the CS with
ri = k; attg > r1—a contradiction.

(2) j received[crash i]: by the algorithm, at some process
m, at some timer, < ;1 the following is true:i €
trusted, andi € 7,. Buti can be intrusted, only if
previouslyi ¢ 7, (lines 24-25). That ism stopped
trustingi at timez,. By the trusting accuracy property
of T, iis crashed aty. Buti is in the CS aty > rn—a
contradiction.

(1) a booleaneady, initially falsg indicating whether is
ready to execute the trying protocol;

(2) a settrusted C I, initially empty, of processes cur-
rently trusted byi;

(3) aninteger;, initially 0, indicating the number of times
i has run the trying protocol;

(4) integerg andk indicating the last processed request of
the type[/, k] wherej is the process that issued the
request and is j's request number.

Our algorithm also assumes that every proéessres the
identifiers of all received messages in a buffer, so that, for
a given messagm, the predicate “receivedh” (lines 7 and
14 of Fig. 3) is true if and only ifm has been previously
received byi.

The idea of our algorithm is inspired by the well-known
Bakery algorithm of Lampor{13,14} the processes that
wish to enter their CSs (the candidates) first draw tickets and
then are served in the order of their tickets numbers. Before
drawing a ticket, every candidate asks for a permission to
proceed from someorrect process and waits (line 7) until
the permission is received (it eventually happens due to the Hence, mutual exclusion is guaranteed
assumption of a majority of correct processes in the system).

Then the candidate is put into the Waiting line implemented Lemma 6. If a correct process is in its trying sectipthen
by the total order broadcast mechanism. Total order broad-at some time later some correct process is in its €&

cast guarantees that the requests are eventually delivered igorrect process is in its exit sectipthen at some time later
the same order (line 12), i.e., no candidatan be served it enters its remainder section

unless every candidate in the waiting line beforas been

served and has released the resource, or crashed (line 14proof. Assume that a correct procesi its trying section

If a process crashes in its CS, then at least one correct proat some time, with r: = 7, and no correct process is ever
cess will eventually detect the crash and informs the othersin jts CS afterr.. By the algorithm; never reaches line 16.

(lines 19-21 in Fig3). Thus,i is blocked in a “wait” clause or at the non-terminating
repeat-until loop. The first “wait” clause (line 7 of Fig) is
- not able to block the process, due to eventual strong accuracy
2This definition of the total-order property is slightly stronger than the of T and the fact that at leagt /2| +1 processes are correct.
one proposed irf10]: we require that all correct processes deliver the Thus,f eventually issueSo—broadcast([Z, 71). The second

same sequence of messages, and all faulty processes detfisesof “wait” cl iselv. th tat tin li 12 of
this sequence. This distinction however does not matter for our results, wall” clause (more precisely, the statement In fine 0

since the algorithm given if4] implements the strongest version of total ~ F19- 3) is not blocking neither, because of validity of to-
order broadcast. tal order broadcast: eventually,to-delivers at least one
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message, 7. Further, if the “wait” clause in line 14 is not
blocking, then validity of total order broadcast implies that
[i, 7] is eventuallyto-delivered by i, thusi exits the repeat-
until loop and enters its CS.

Thus,i is blocked in the third “wait” clause (line 14 of
Fig. 3) while processing somig, k] (i # j). Thus,i never
receivesexit, j, k] or [crash j].

By integrity of total order broadcast,has previouslyo-
broadcast [/, k] (line 10 of Fig.3).

Let | be any process that reaches line 10.

We observe first that (Claim J)has been previously put
in trusted, by somecorrect processm. Indeed,j received
ln/2] +1 [ack]'s from processes that trustpdSince at least
ln/2] + 1 processes are corregteceives at least orjack]
from a correct proces® that previously puj in trusted, at
some timerg.

Then we notice that (Claim 2) if is faulty, then, every
correct process eventually receivigsash j]. Indeed, ifj
is faulty, then, by trusting completeness’fand Claim 1,
some correct processeventually and permanently suspects
j: 31 > 10Vt > 1 :j € Ty, Thatis, eventually, the
condition of line 19 is satisfied ah for j (; € trusted, and
Jj € Tm). Thus,msendgcrash j] to all processes and every
correct process eventually receives it.

Hence, procesg should necessarily be correct. Indeed,
if j is faulty, then, by Claim 2, correct processventually
receivesicrash j] and releases from waiting in line 14.

Further, we observe that trusting accuracyjofmplies
that (Claim 3) if a messagferash j] is received, thei is
crashed.

Finally, we show that (Claim 4) if a correct process
passed an entfy, k] in the total order (is not blocked in line
14 while processingj, k]), then no correct process can be
blocked while processing, k]. Indeed, the following cases
are possible:

(@) j = m: j enters its CS (line 16). By the assumption of
the proof, no correct process is in its CS afterthus,
j left its CS beforer, andj sent[exit, j, k] to all (line

17). Thus, every correct process eventually receives the

message and releases.

(b) j # m, andjis faulty. By Claim 2, every correct process
eventually receivefcrash j] and releases.

(c) j # m, andj is correct. By Claim 3m could only
receivelexit, j, k]. Every correct process eventually re-
ceives[exit, j, k] and releases.

Recall that is blocked in line 14 while processing request
[j. k]l (i # j). By Claim 2, is correct, and, by Claim 4,
j should have passed all entries in the total order threts
passed before reachirig, k]. By the algorithm; enters its
CS (line 16). By the assumption of the proof, no correct
process is in its CS after, thus, j left its CS before, and
sentfexit, j, k] to all. i eventually receives the message and
releases—a contradiction.

The second part of the lemma follows directly from the
algorithm: every correct procesthat runsexit; entersem;
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after a finite number of steps. That is, every correct process
in its exit section eventually enters its remainder section.
Thus, progress is guaranteed.]

The following theorem follows directly from Lemmads
andé6:

Theorem 7. The algorithm of Fig. 3 solves FTME usifig
in any environmeng s with f < [5].

Finally, combining Theorem4 and 7, we can state the
following result:

Theorem 8. For any environment, with f < [5], T is
the weakest failure detector to solve FTMESp.

Remark. In fact, the algorithm of Fig3 solves a harder
problem: in addition to mutual exclusion and progress, it
satisfies also the starvation-freedom property.

Indeed, assume that a correct process in its trying
section withr; = k. Eventually, due to the properties of the
total order broadcast, all entitigg, /] precedindi, k] in the
total order are eventually processed: if any process releases
its CS, no process can be blocked in a “wait” clause (see
line 14 in Fig.3). Finally, i eventually reaches its own entry
[, k] in the total order and enters its CS.

From Theorem8 it follows that any algorithm solving
FTME (in & with f < [5]) can be transformed into an
algorithm that solves FTME with the starvation freedom

property.

7. On the number of correct processes

Proposition 9. No algorithm solves FTME using in any
environmen€; where f > [5].

Proof. Assume that an algorithdsolves FTME using in

an environment where a majority of correct processes is not
guaranteed. LeX andY be any two disjoint sets of processes
such thall = X UY and|X| = [5]. Consider two possible
runs ofA:

(1) Rj:no process iiY takes any step i1 (e.g., processes
in Y are initially crashed inR1), and processes iX
always suspect every proces¥imssume that a correct
process € X is the only process in its trying section.
By the progress property of FTME,enters its CS at
some timery.

R>: no process fronX takes any step iR (e.g., pro-
cesses iX are initially crashed irR2), no process iy
takes any step beforg + 1, and processes Walways
suspect every process ¥1 Assume that a correct pro-
cessj € Y is the only process in its trying section. By

)
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the progressproperty of FTMEj enters its CS at some Ry ,s _.p outputs a historw}J € P(F1). By the strong
time zz. Clearly,n; < 7. completeness property &: 3ko € N: HL (I, T[ko]) = {/}.

Consider failure patteri> € £ such thatorrect(F2) =
IT and define historie&’2 and H3 such thati < IT and
Vi e T:

Assume that no process ever runs an exit protocadtiin
and R,. We construct a rumR that is identical toR1 at any
time in [0, 71] and identical taR, at any time in[z1 + 1, £2].
Now assume that every process is corre®,ithe processes 5 . (), t<Tlkol,
in X andY start to trust each othefter 7, (this is a valid Hy(i,1) = { g, t> Tlko]
history of 7), and all messages sent betwe¢mandY are ’ ’
delayed until; + 1. Evidently,R is a valid run ofA. But, 5. I1—{I}, :<Tlkol,
sincei andj never enter their exit section s, at timeboth H5(@, 1) = { @, t> Tlkol.

i andj are in their CSs—a contradiction[]
Clearly, HZ € T(F2) andHZ € S(F3).

Now we consider the extreme case of an environment consider a runR, = (F», (H%, H2),1,8,T) of
Er, wheref = n — 1 and question ourselves whetfris R7 +s »p that outputs a historyd2 e P(F»), where
the weakest failure detector to solve the problent,jn;. Silk] = Solk],Vk<ko. Thus, j taIZ()as no steps inS;
A close look at the correctness proof for the algorithm of (. o, ¢ <T[ko]. Since partial runs ofR; and R, for

Fig. 3 rel\/eaI§ th?t we USE the alss%mptti)on Zf a correct Ma-;  7(4,] are identical, the resulting histo#y2 is such that
jority only to implement the total order broadcast primitive H2(1. Tlkol) = |}. In other words] is suspected before it

Cortect procese that rusts. I & srong fallre detectas  C12SES: and rstiong accuracif P s violated.
: . ; By (a) and (b), we havd + S <¢, P. O

[4] is available, we can overcome both issues even-f1
processes can crash. Indeed, total order broadcast is imple-
mentable inf,_1 usingS [4] and the “wait” clause in line
7 can be substituted by:

Hence, there is a failure detectpr+ S which is strictly
weaker ther? and is sufficient to solve FTME in an envi-
ronment where up te — 1 processes can crash.

wait until receivgack] fromall j ¢ S;.

By the strong completeness property &f eventually all
processes not i; are correct. On the other hand, by the
eventual strong accuracy @f, every correct process is even-
tually trusted by all correct processes. Hence, this
clause is not blocking.

By the weak accuracy property 6f one correct process

8. Group mutual exclusion

.. Group mutual exclusioff,11,12]is a natural generaliza-

Walt” tion of the classical mutual exclusion problééy14], where

a process requests a “session” before entering its critical

) " : section. Processes are allowed to be in their critical sec-
is never suspected. That is, some correct progeiSsnever  iqng simultaneously provided that they have requested the
in &, vi € II. If i crashes while is in its CS,m can same session. Sessions represent resources each of which
detect the crash and inform the other processes. Thus, We.4 pe accessed simultaneously by an arbitrary number of

can implement FTME iig,, using failure detectoV” + . processes, but no two of which can be accessed simultane-
For every failure patter# € £¢ (f < n), 7 4+ S outputs a

X y e ously.
pair of histories(H7, Hs) (Rt4.s = 2'" x 2), such that Formally, the trying protocol of processhas an integer
Ht e T(F) andHs € S(F). parametes. We say that requests sessionisi is running
. _ ] ) the trying protocoltry;(s) or it is in its CS immediately
Proposition 10. 7+§ <g, P, in any environment ; with after runningtry; (s). As with FTME, we assume that every

0< f<n. process is well-formed.

Thus, in addition to the progress properties of FTME,
fault-tolerant group mutual exclusion (FTGME) satisfies the
group mutual exclusion and concurrent entering properties
(we follow the terminology used in Secti@):

Progress (1) If a correct process is in its trying section,
then at some time later some correct process is in its CS.

(2) If a correct process is in its exit section, then at some
time later it enters its remainder section.

Proof. (@)S <g, P [4]andT <¢, P (Propositior2). That
is, both7 andS are weaker tha®. Thus,7 + S =g P.
(b) Now we show thaP is not weaker thaff +S. Indeed,
assume there exists an algoritits- s _.p» that, for any
failure patternF e &£y, constructsdp from Hr € T(F)
andHg € S(F), such thatHp € P(F).
Let j,I € IT and j # [. Consider failure pattery, €

€y such thatF1(0) = {}, correct(fy) = IT — {j}, and Mutual exclusion If two processes are in their critical
ta.ke historiesHz- ElT.(Fl) anq Hg € S(F) such that  gections at the same time, then they request the same session.
Vi € IVt € T: Hz(i,1) = {j} (j is always suspected) Concurrent enteringlf a correct processrequests a ses-

andHL(i, 1) = IT — {1} (I is never suspected). Assume that sion and no other process requests a different session, then
the corresponding rumy = (Fi, (H71. , Hé), 1,81, T) of i eventually enters its CS.
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1: ready; := false { Initialization } trying protocoltry; (sessiop) that handles the request df
A for sessiorsessiop and exit protocogxit; . In the algorithm,
4 ,:l'?b”:a each processmaintains the following local variables:

5: s = —1

6: start tasks 0,...,n

(1) a booleaneady, initially falsg indicating whether is
ready to execute the trying protocol;

Trying protocol try,(session;): (2) an integer;, initially 0, indicating the number of re-
7: if not ready; then , quests for the CS thathas made;
fj :;;ﬁ [I’l’;itl‘l] :;’(P*llied n/2] +1 [ack]’s { Send a trust request } (3) a settrusted, initially empty, of processes currently
10: ready; := true trusted byi;
1 rpe=r+1 (4) an integels;, initially —1 (we assume that requested
ﬁ i‘;'b;ftdcaSt([f="i’SffS‘“i""fi]) session numbers are non-negative), indicating the num-
14 ‘I;)vait until the next request [j, k, s] is to-delivered ber Of currentl_y_ satisfied session; . .
15:  if inCS; # 0 and s # Is; then (5) a setinCS, initially empty, of requests with session
16: wait until inCS; = 0 or received [crash, j] numberls; thati suspects to be currently satisfied,;
1; Z’Cib: inCS; U{(J,k)} (6) integerg, k ands indicate the last processed request of
19: until j — i the type[j, k, s]1 wherej is the process that issued the
20: { i enters its CS } requestkisj’s request number arglis the session that

j requests.

Ezit protocol exit;: ) ) o ]
21: send [exit, i, 7;] to all The algorithm is similar to that of Sectidgh Before re-
questing a session every process waits until it gets trusted

22 task 0: - , by a correct process. The requests are broadcast using to-
23:  upon (j € trusted; and j € T;) do L .
o4 trusted; = trusted; — {7} { A crash of process j is detected } tal order broadcast prlmltlvm-broadcast'(), and delivered
25: send [crash, j] to all { j stops being trusted } throughto-dellver(). If several consecutive requests for the
26: upon ((j.k) € f?TVCSz:var}C}{ ed Ferash ) d same sessiosiare placed in the total order, then the requests
. . (received [exit, j, k] or received [erash, j])) do , are satisfied simultaneously. No request for a new session
27: inCS; == inCS; — {(4,k)} {l4, k, ls;] releases the CS '} ) . T . .
s" # s is satisfied until all processes requested earlier ses-
28: task m (m=1,...,n): sions leave their CSs.
ig upon recetivle [7’?;"] do (4 » | Now we state the correctness of the algorithm through
30: wait until m ) trust request is received from m _
31: trusted; := trusted; U {m} { m is trusted by i } Lemmas11-13
32: send [ack] to m
Lemma 11. If two processes are in their critical sections at
Fig. 4. FTGME algorithm using™ : process. the same timgthen they request the same session

Proof. Assume that processésand]j requesting sessions,
The last property means that, for a given session, a pro-respectivelys; ands; are in their CSs at some timg. Let,
cess that haalreadyentered its CS cannot prevent another at timerg, r; = k; andr; = k;.
process requesting the same session from entering its CS. In the trying protocol (lines 7-20), every process
The property excludes trivial solutions of group mutual ex- broadcasts its request for a CS and no process enters its
clusion using any simple mutual exclusion algorithm. In CS before having firsto-delivered its own request. Thus
contrast t0[9,11,22] we do not make the assumption that i must haveto-delivered [i, k;, s;] and j must haveto-
a process can stay in its CS for a finite time only. This is delivered [j, i, s;] beforesg. By the ordering property of
the reason why we put “eventually” instead of “a bounded to-broadcast, either bothi andj to-delivered [i, k;, s;] be-
number of its own steps” as i9,11,22]in the concurrent  fore havingto-delivered [, k;, s;1, or the contrary. Assume,
entering property. Clearly, if another process is concurrently without loss of generality, thao-deliver([i, k;, s;] precedes
trying to enter a different session, it can enter its CS first. to-deliver([J, k;, s;]) atj.
In this case, the trying procesan prevent another process By the algorithm,j can be in the CS witlsession = s;
from entering its CS. andr; = k; attg only if every entry[j’, k', s'] with s" % s
FTGME is at least as hard as FTME: we can easily im- in the total order precedinfy, k;, s;]1 has passed through
plement FTME from FTGME just associating every process the “if” clause defined in lines 15—-1Beforetime 7. As a
with a unique session number. On the other hand, we showresult, before timey, j has put(, k;) into inCS; and sels;
here that7 solves FTGME in a system with a majority of tos; (lines 17 and 18).
correct processes. Thus, in the sense of failure detection, Sincei is still in its CS withr; = k; at timerg, j could
FTME and FTGME are equivalent. not have receivedexit, i, k;] beforery. Now assume that
In Fig. 4, we present an algorithm that solves FTGME received[crash i] beforery: by the algorithm of Fig4, at
using7 . For each proceds the algorithm of Fig4 defines some procesmy, at some timey < rg the following is true:
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i € trusted, andi ¢ 7, (m stops trusting). By trusting
accuracy of7, i is crashed at;. Buti is in the CS atp >
t1—a contradiction.

Thus,j has not receivegkexit, i, k;] or [crash i] beforerg,
i.e., the condition in line 26 is not satisfiedjdieforerg. As
aresult, at the moment wheno-delivered [/, k;, s;] (line
14), (i, k;) € InCS; andls; = s;. Assume that reaches line
15 while processingj, k;, s;] at some time; < 1o (j is in
its CS atrg). FurthermorejnCS; is non-empty at any e
[t1, o] (it includes at least one entry, k;)), ] never receives
[crash j] (by trusting accuracy of"), andls; = s; at #.
Thus,j can pass lines 15-16 and enter its CS befpoaly if
s; = s;. Hence, group mutual exclusion is guaranteeldl

Lemma 12. If a correct process is in its trying sectipthen
at some time later some correct process is in its €&
correct process is in its exit sectipthen at some time later
it enters its remainder section

Proof. The proof is similar to the one of LemnaAssume
that a correct processs in its trying section at timey, and
no correct process ever enters its CS afjeApplying the
arguments of Lemm@, we observe thatis blocked in line
16 of Fig. 4 because some entKy, k) never leavesnCS
(line 27). Claims 1-4 of Lemme@ are proved similarly. By
Claims 1 and 2 of Lemm&, j must be correct. By Claims
3 and 4 of Lemmd j should have passed all entries in the
total order that precedg, k, 5] and entered its CS. Since
no process is in its CS afte, j executed the exit protocol
beforerg and sentexit, j, k]to all. Thusi eventually receives
[exit, j, k] and releases—a contradiction]

Lemma 13. If a correct process i requests a session and no
other process requests a different sesstben i eventually
enters its CS

Proof. Assume that, at time, a process requests a ses-
sions; with r; = k; and no other process requests a differ-
ent session. Thus, all processes requesting different session
have left their CSs or crashed befage As a result, after
some time, eithemCS = ¢ or Is; = s;. By the algorithm,
eventually,i starts processing its own requéstk;, s; ] with

Is; = s; (lines 14-15) and enters its CS (line 2011

Finally, we can state the following theorem:

Theorem 14. For any environmenfy with f < [5], T is
the weakest failure detector to solve FTGMEEin

Remark. Similar to the FTME algorithm of Fig3, our
FTGME algorithm solves (i€ s with f < [5]) a harder
problem that, in addition to mutual exclusion, progress and
concurrent entering, satisfies also the starvation freedom

property.

Analogously, in case when upte-1 processes can crash,
we can solve FTGME witly” + S, simply by substituting
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line 9 of the algorithm in Fig4 with:

wait until receive[ack] from all j ¢ S;.

9. Cost of resilience

In this section we compare the performance of our algo-
rithm (Fig. 3) with the well-known algorithms of17,20]

(The algorithms of{17,20] were designed for the failure-
free asynchronous model but could be ported into the crash-
prone model assumin@. More details on the compar-
ative analysis of the algorithms dfi7,20] are available

in [21].)

The performance of mutual exclusion algorithms can
be measured through the following metrifal]: (a) the
bootstrapping delaywhich is the time required for a new
process before entering the CS for the first time; (b) the
number of messagetecessary per CS invocation, (c) the
synchronization delgywhich is the time required after a
process leaves the CS and before the next process enters
the CS, and (d) theesponse timewhich is the time in-
terval a requester waits to enter the CS after its request
message have been sent out. We also consider two special
loading conditions:low load and high load In low load
conditions, there is seldom more than one request to enter
the CS at a time in the system. In high load conditions, any
process that leaves the CS immediately executes the trying
protocol again. In discussing performance, we concen-
trate here on the runs where no process crashes (the most
frequent runs in practice), which are usually calleide
runs.

We denote by, the maximum message propagation delay,
ande, the maximum CS execution time. The bootstrapping
delay of our algorithm (Fig3) is bounded by 2: before
processing any request for CS, every process should receive
the acknowledgment from a majority of the processes. The
ﬁlgorithm has a relatively high message complexity: each
request for CS require® (n?) messages per CS invocation.
The synchronization delay is bounded by that is, it re-
quires only one communication step to inform the next wait-
ing process that it can enter the CS. The response time in
low load conditions is defined by the time to deliver a total
order broadcast message~2t high loads, on the average,
all other processes execute their CSs between two succes-
sive executions of the CS: the response time converges to
n(t. + ec).

The results of our comparative analysis are presented in
Fig. 5. The performance degradation due to the uség of
reflects the longer bootstrapping delay which is inherent
to the use of7” and higher message complexity inherited
from using total order broadcast. It would be interesting to
figure out to which extent our algorithm of Fig.could be
optimized, e.g., by breaking the encapsulation of the total
order broadcast box.
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Metrics Maekawa [20] RA [21] T-based
Bootstrapping delay | 0 0 2t
Number of messages | Low Modcrate  High
Sync. delay 2t.. (deadlock-prone) . te
t. (deadlock-free)
Response time
low load 2t. 2t 2t
high load n(2t. + ec) n(te +e.) n(te+ec)

Fig. 5. Comparative performance analysis of mutual exclusion algorithms.

10. Concluding remark

Is it more beneficial in practice to use a mutual exclusion
algorithm based o1V, instead of a traditional algorithm
assumingP? The answer is “yes, to some extent”. Indeed,
if we translate the very fact of not trusting a correct process
into amistake then7 clearly tolerates mistakes where@s
does not. More preciselyT” is allowed to make up ta?
mistakes (up to mistakes for each modulg, i € I1). As a

result, given synchrony assumptions, it is somewhat easier

to implement7 thanP.

For example, in a possible implementationBbf every
process can, starting from 0, gradually increase the timeout
1jj
j until a response from is received. Thus, every sucf
can be flexibly adapted to the current network conditions.
(Clearly, as soon &§  starts trusting a site, it is not allowed
to make mistakes about the site’s operational state.)

In contrast,” does not allow this kind of “fine-tuning”

of the timeouts: they are supposed to be known in advance.

In order to minimize the probability of mistakes, the time-
outs are normally chosen sufficiently large, and the choice is

based on some a priori assumptions about current network

conditions. This might exclude some remote sites from the
group and violate the accuracy properties of the failure de-
tector.

Thus, we can implemerif in a more effective manner
than P, and an algorithm that solves FTME usifg ex-
hibits a smaller probability to violate the requirements of the
problem, than one using, i.e., the use of provides more
resilience. As we have shown in Secti@rthe performance
cost of this resilience reflects thmotstrapping delayi.e.,
the time a new process needs to enter its CS for the first
time, and higher message complexity inherited from using
total order broadcast.
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