
The Gap in Circumventing

the Impossibility of Consensus

Rachid Guerraoui

Distributed Programming Laboratory, EPFL,
CH-1015, Lausanne, Switzerland

tel: +41 21 693 5272, fax: +41 21 693 7570

Petr Kuznetsov ∗

Max Planck Institute for Software Systems,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

tel.: +49 681 9325-697, fax: +49 681 9325-299

Abstract

The impossibility of reaching deterministic consensus in an asynchronous and crash
prone system was established for a weak variant of the problem, usually called weak
consensus, where a set of processes need to decide on a common value in {0, 1},
so that both 0 and 1 are possible decision values. On the other hand, approaches
to circumventing the impossibility focused on a stronger variant of the problem,
called consensus, where the processes need to decide on one of the values they
initially propose (0 or 1). This paper studies the computational gap between the two
problems. We show that any set of deterministic object types that, combined with
registers, implements weak consensus, also implements consensus. Then we exhibit
a non-deterministic type that implements weak consensus, among any number of
processes, but, combined with registers, cannot implement consensus even among
two processes. In modern terminology, this type has consensus power 1 and weak
consensus power ∞.

Key words: Asynchronous distributed system, consensus, weak consensus, FLP
impossibility, atomic objects, determinism

∗ Corresponding author.
Email addresses: rachid.guerraoui@epfl.ch (Rachid Guerraoui),

pkouznet@mpi-sws.mpg.de (Petr Kuznetsov).

Preprint submitted to Elsevier Science 22 October 2007



1 Introduction

Background

A consensus protocol is a distributed algorithm that makes a set of processes

decide on a common value out of two possible values: 0 or 1, where both 0

and 1 are possible decision values. In 1983, it was shown that no deterministic

protocol can solve consensus in a basic distributed system model where no

synchrony assumption is made (i.e., in an asynchronous system), processes can

only communicate by exchanging messages, and at least one process can fail by

crashing [5]. The impossibility was extended later to the shared memory model

where processes could communicate through atomic objects, i.e., registers [6,

11].

Given the importance of consensus in reliable distributed computing, a lot

of work has been devoted to studying abstractions that, when added to the

basic distributed model, circumvent the impossibility. In particular, it was sug-

gested to augment the system model with more sophisticated synchronization

abstractions than message passing channels or registers. More precisely, the

idea was to study object types that should be used, besides registers, to solve

consensus among two or more processes in an asynchronous system assuming

an arbitrary number of possible crashes [6]. Types like queue, test-and-set or

compare-and-swap can indeed be used to do so and they are said to imple-

ment consensus (among a specific number of processes). It was observed that

certain types could implement consensus among k processes but not among

k + 1 processes. For example, instances of type queue and registers make it

possible to solve consensus among 2 processes but not among 3 processes [6].

In a sense, queue is a minimal type to implement consensus among 2 pro-

cesses: 2 is also said to be the consensus power of queue. In comparison, the

consensus power of type register is 1: with registers only, consensus cannot be

solved among 2 processes [4,6,11]. At the other extreme, the consensus power

of type compare-and-swap is ∞ [6]: instances of this type and registers make

it possible to solve consensus among any number of processes. The notion of

consensus power gives rise to a hierarchy, called the consensus hierarchy, with

types that have low consensus power at the bottom and those that have high

2



consensus power at the top.

Motivation

The motivation of this work is the simple observation that the original impos-

sibility of consensus [5,11] was stated for a weak variant of consensus, whereas

abstractions to circumvent the impossibility have been studied with a stronger

consensus variant in mind.

In a weak consensus protocol, the processes can decide any value (0 or 1),

provided that there is an execution of the protocol where 0 is decided and

one where 1 is decided. In the stronger variant of consensus, which is simply

called consensus in the literature, the value decided must be one of the values

proposed. In particular, if all processes initially propose 0 (resp. 1), the decision

value must be 0 (resp. 1).

It is indeed natural to state an impossibility result on the weak variant of

consensus and, when seeking abstractions that circumvent the impossibility, to

consider abstractions that also solve a stronger variant of consensus. However,

determining that some abstraction is, in some sense, minimal to implement

(the strong variant of) consensus does not mean that the abstraction is indeed

minimal to circumvent the impossibility (of weak consensus).

The motivation of this work was to determine whether the gap also exists from

the object type perspective. More precisely, we address the following question:

If a type implements weak consensus, does it also implement consensus? In

particular, is the consensus power of a type the same as its weak consensus

power?

Contributions

To address the first question, we distinguish between deterministic types and

non-deterministic ones. In short, a deterministic type is one such that the

output and the state that result from invoking any operation on an object of

that type, performed in the absence of concurrency and failures, is uniquely

determined by (a) the state of the object just before invoking the operation

and (b) the operation itself.

3



(1) We show that, for any number of processes, any set of deterministic

types that includes register and implements weak consensus, also im-

plements consensus. In a sense, the consensus and weak consensus pow-

ers of a deterministic type are the same. Said differently, the consensus

and weak consensus hierarchies, when restricted to deterministic types,

are the same. To prove this result, we exploit the inherent computation

power of deterministic types. In short, we observe that any protocol that

solves weak consensus using objects of a deterministic type boils down

to reaching a critical state s of some object X, such that, applying dif-

ferent operations to s leads to distinguishable states of X. Since X is

deterministic, there is a protocol that brings X to state s. We use this

observation to derive a protocol that solves another variant of consensus,

named team consensus [14,15], which implies that the protocol also solves

consensus [3, 15].

(2) We show that this is not the case with non-deterministic types. Basically,

we exhibit a new non-deterministic type, which we call rambler, that

implements weak consensus for an arbitrary number of processes, but

cannot implement consensus even among two processes. In other words,

we exhibit a non-deterministic type which has weak consensus power ∞
and consensus power 1. Type rambler is constructed in such a way that,

using any number of its instances, no process can obtain any meaningful

information about other processes: the instances might exhibit the very

same behavior for an arbitrary sequence of invocations. Intuitively, this

means that type rambler cannot implement consensus even among two

processes. On the other hand, the type has some non-trivial agreement

properties, and these make it possible to solve weak consensus among any

number of processes using just one instance of type rambler.

Our results imply that, unlike consensus, the weak consensus abstraction is

not universal [6]: this follows from the existence of a non-deterministic type

that implements weak consensus but not consensus.

Roadmap

In Section 2, we present the system model. In Section 3, we define the consen-

4



sus and the weak consensus problems, as well as another variant of consensus,

team consensus [14, 15], which is a key element of one of our proofs. In Sec-

tion 4, we show that any deterministic type that implements weak consensus

also implements consensus. In Section 5, we show that this is not the case

with non-deterministic types. In Section 6, we conclude the paper with some

general observations about the questions raised in this paper.

2 Model

The model we consider in this paper is the one of [9,10]: a set of asynchronous

processes communicating through atomic shared objects. We recall below the

details of the model which are relevant for our results.

Processes

We consider a set Π of n + 1 processes p0, . . . , pn (n ≥ 1) that communicate

using shared objects. The processes are asynchronous in the sense that we do

not make any assumption about their relative speeds. The processes might fail

by crashing, i.e., stop executing their steps. A process that never crashes is

said to be correct. A process that is not correct is said to be faulty. We do not

make any assumption about the resilience of the system, i.e. on the number

of processes that can fail during the computation.

Objects and types

We assume that processes communicate via applying operations on shared

objects. Every object is an instance of a type which is defined by a tuple

(Q,Q0, O, R, δ). Here Q is a set of states, Q0 ⊆ Q is a set of initial states,

O is a set of operations, R is a set of responses, and δ ⊆ Q × O × Q × R is

a relation, known as the sequential specification of the type. We assume that

every sequential specification δ is total : for each pair (q, o) ∈ Q × O, there

exists a pair (q′, r) ∈ Q×R such that (q, o, q′, r) ∈ δ.

For deterministic types, the set of initial states is a singleton (Q0 = {q0})
and the sequential specification can be seen a function δ : Q × O → Q × R.

5



The sequential specification of a non-deterministic type carries each state and

operation to a non-empty set of response and state pairs.

The deterministic register type is defined as a tuple (Q, {⊥}, O, R, δ) where

Q is the countable set of values that can be stored in a register (⊥ ∈ Q),

O = {read(),write(v) | v ∈ Q}, R = Q∪{ok} and ∀v, v′ ∈ Q, δ(v,write(v′)) =

(v′, ok) and δ(v, read()) = (v, v).

We assume that shared objects are atomic: operations applied on an atomic

object can be seen as taking place instantaneously. A wait-free linearizable

implementation of an object type [1, 6, 8] is one example of an atomic object.

Protocols

A protocol is a distributed deterministic automaton that identifies the se-

quences of events for processes p0, . . . , pn and shared objects. We use a simpli-

fied form of the I/O automaton formalism [12], At any point in a protocol’s

execution, the state of each process is called its local state. The set of local

states together with the states of all shared objects is called the protocol’s

global state. A computation step of a process is defined by the process identi-

fier, an operation on a shared object, and the corresponding response. In an

initial state of a protocol, every object is in an initial state specified by its

type. An execution of a protocol is a sequence of alternating global states and

steps of the processes that begins with an initial state of the protocol and

respects the sequential specifications of the object types. For every local state

of each process, the protocol deterministically identifies the next operation

the process is going to execute. We say that an execution e of P is a pi-solo

execution if pi is the only process that takes steps in e.

Schedules

A schedule is a (finite or infinite) sequence of identifiers of processes in Π. For

a given protocol P and an initial state s, we say that a schedule σ triggers

an execution e of P , if e begins with s and processes appear in e in the order

defined by σ. Clearly, if processes access only deterministic objects, a schedule

and an initial state trigger exactly one execution. On the other hand, if non-

deterministic objects can be accessed, a schedule and an initial state might

6



trigger a number of executions.

3 Variants of consensus

Weak consensus

In a consensus protocol, every process initially has a proposed value in {0, 1}.
The protocol ensures that the processes reach a common decision based on

their initial states [5]. Formally, a consensus protocol ensures:

• Termination: every process that takes an infinite number of computation

steps eventually decides on a value in {0, 1};
• Agreement: no two processes decide on different values.

Clearly, there is a trivial protocol that satisfies only these two properties:

every process always decides 0. To filter out such protocols, the following non-

triviality property was defined [5]:

• Weak validity: there is an execution of the protocol in which 0 is decided

and an execution in which 1 is decided.

A protocol that guarantee termination, agreement and weak validity, is said

to solve weak consensus. (Sometimes, the problem is also called non-trivial

agreement.) It is known that there does not exists a weak consensus protocol

in an asynchronous system in the presence of at least one faulty process [5,11].

Consensus

This impossibility result of [5,11] also holds for a consensus protocol in which,

instead of weak validity, the following property is ensured:

• Validity: any decided value is the initial value of some process.

Weak consensus is trivially reduced to consensus: any solution of consensus

has an execution in which 0 is decided (e.g., when all processes propose 0) and

an execution in which 1 is decided (e.g., when all processes propose 1).

7



Consensus solvability and initial states

A set S of types is said to implement (weak) consensus if there exists a (weak)

consensus protocol P such that in every execution of P , processes access only

objects of types in S.

A state s of a type T is called reachable if, for each initial state x of T , there is a

sequence of operations of T that brings x to s. We use the following observation

about deterministic objects: allowing the protocol designer to initialize shared

objects to any reachable states does not affect the ability of deterministic

objects to solve consensus. Formally, let S be any set of deterministic types.

We denote by S̄ the initial-state closure of S, i.e., the set of all deterministic

types T ′ = (Q, {q′}, O, R, δ) where q′ is a reachable state of some type T =

(Q, {q}, O, R, δ) in S.

Lemma 1 [3] Let S be any set of deterministic types. If S̄ implements con-

sensus, then S implements consensus.

Team consensus

To prove our first result (in Section 4), we use a form of consensus, team-

restricted consensus (or simply team consensus) [14,15]. Formally, a protocol

P solves team consensus if there is a (known a priori) partition of Π into two

non-empty teams A and B such that P solves consensus for processes in Π

provided all processes on the same team propose the same value. Obviously,

team consensus can be solved whenever consensus can be solved. Surprisingly,

the converse is also true [14,15]:

Lemma 2 Let S be any set of types. If S implements team consensus, then

S also implements consensus.

4 Deterministic types

In this section, we show that, with respect to deterministic types, weak consen-

sus is equivalent to consensus: any set of types that implements weak consensus

8



also implements consensus.

Theorem 3 Let S be any set of deterministic types that includes register. If

S implements weak consensus, then S also implements consensus.

Proof: Let P be any protocol that solves weak consensus using objects of

types in S.

Following [5], we use a bivalency argument. A global state that is reachable

by an execution of P (from now on simply a state of P ) is assigned a tag

v ∈ {0, 1} if there is an execution of P passing through that state in which

some process decides v. If a state is assigned both tags 0 and 1, it is called

bivalent. If a state is assigned only one tag v, it is called v-valent. A state is

univalent if it is 0-valent or 1-valent. Termination of weak consensus ensures

that every state of P is either bivalent or v-valent for some v ∈ {0, 1}.

We proceed through the following arguments:

(1) P has a bivalent initial state [5].

(2) There exists a critical state of P , i.e., a bivalent state s such that ev-

ery step of P applied to s results in a univalent state [5]. Suppose, to obtain

a contradiction, that P has no critical state. Thus, starting from the initial

bivalent state and inductively proceeding to a bivalent state reachable from it,

we establish an infinite execution e of P that passes through bivalent states

only. By the Agreement property of weak consensus, no process can decide

in a bivalent state. Hence, no process ever decides in e — contradicting the

Termination property. Thus, a critical state of P exists.

(3) Let s be any critical state of P . Consider any step of P applied to s.

Since protocol P and all objects that we use are deterministic, the resulting

state of P is determined by the identity of the process that takes the step.

We partition the system into two teams Π0 and Π1: Πj (j ∈ {0, 1}) consists

of the processes whose steps applied to s result in a j-valent state. Since s is

bivalent, the two teams are non-empty.

9



Let V be the set of objects used by P . We present a protocol P ′ that solves team

consensus for teams Π0 and Π1 using objects in V initialized to their states

in s and, additionally, two multiple-writer multiple-reader registers, denoted

r0 and r1, initialized to ⊥. For each j ∈ {0, 1}, let team Πj be associated with

register rj.

In P ′, every process pi first writes its input value into its team’s register and

then takes its own steps of P starting from its state in s until pi reaches a

local state of P in which a value j ∈ {0, 1} is decided. (We say that j is the

value pi obtains from P .) At this point, the process reads rj and returns the

value read.

Since processes emulate an execution of P (passing through s), the Termina-

tion property of weak consensus implies that every process that takes suffi-

ciently many steps of P obtains a value j ∈ {0, 1} from P . By the definition

of s, Π0, and Π1, value j can only be obtained if the first step of P applied

to s was taken by some process pk ∈ Πj. By protocol P ′, prior to taking this

step, pk has written its input value in rj: the Validity property follows.

Suppose that all members of the same team propose the same value. Thus,

no two different values can be written in the team’s register, and the Agree-

ment property of weak consensus implies that no two processes return different

values. Hence, P ′ solves team consensus using registers and objects in V ini-

tialized to their states in s. Note that all these initial states are reachable.

Thus P ′ solves consensus using objects in S̄, the initial-state closure of S, i.e.,

assuming that all objects in S are initialized to certain reachable states.

Since team consensus is equivalent to consensus (Lemma 2), P ′ can be trans-

formed into a solution to consensus using objects in S̄. By Lemma 1, S im-

plements consensus. 2

10



5 Non-deterministic types

It turns out that some non-deterministic atomic objects capable of implement-

ing weak consensus are too weak to implement consensus. To illustrate this,

we introduce a new non-deterministic type which we call rambler. Through

accessing objects of type rambler, no process can obtain any meaningful in-

formation about other processes: the objects might exhibit the very same

behavior for an arbitrary sequence of accesses. Intuitively, this means that,

combined with registers, the objects of type rambler cannot solve consensus

even among two processes. On the other hand, the type is strong enough to

solve weak consensus.

More precisely, type rambler is defined by the tuple (Q, {⊥}, O, R, δ), where:

• Q = {⊥, t0, t1, 0, 1} is the set of its states;

• O = {o0, o1} is the set of its operations;

• R = {0, 1} is the set of its responses;

• and δ, its sequential specification, is

δ = {(⊥, oi, tj, j), (⊥, oi, tj, 1− j), (t0, oi, i, i),

(t1, oi, 1− i, 1− i), (j, oi, j, j) | i, j ∈ {0, 1}}

The state transition graph of a rambler object is depicted in Figure 1. The

nodes of the graph define the states of the object and the edges define opera-

tions applied in the states and the corresponding responses.

Note that type rambler is built in such a way that, by accessing only objects

of this type, there is no way for a process to learn anything about steps of

other processes. More precisely, objects of type rambler satisfy the following

property:

Lemma 4 Let P be any protocol that uses atomic objects of types in {rambler,

register}, s0 be any initial state of P , and σ be any schedule. Then there is an

execution e of P triggered by σ and s0 in which every operation (if any) on an

object of type rambler returns 0.

11



⊥

t1t0

0 1

(o1, 0), (o1, 1)
(o0, 0), (o0, 1), (o0, 0), (o0, 1),

(o1, 0), (o1, 1)

(o1, 0)

(o0, 0) (o0, 1)

(o0, 0), (o1, 0) (o0, 1), (o1, 1)

(o1, 1)

Fig. 1. State transition graph of rambler

Proof: An adversary constructs an execution triggered by σ as follows. Pro-

cesses take steps according to σ until an object of type rambler is accessed

for the first time. We assume that the object returns 0 (this is possible for

any invocation) and the adversary does not specify its state until the object

is accessed for the second time. (The objects can be in any state in {t0, t1}.)
Assume that the operation with which the object is accessed for the second

time is oi (i ∈ {0, 1}). Then, after the first invocation, the object has state ti.

By the specification of type rambler, the object returns 0 on the second and

all subsequent invocations.

By repeating the argument for every object of type rambler, the adversary

constructs an execution in which all operations on objects of type rambler

return nothing but 0. 2

Weak consensus with rambler

Despite the weak “synchronization power” of objects of type rambler expressed

by Lemma 4, a single object of the type can implement weak consensus: pi just

invokes o
i mod 2

twice on the object and decides on the last value returned.

After the first operation, the object is brought to a state in {t0, t1} and becomes

deterministic. Assume that the object is in state t0. Now if p0 is the first to

access it with operation o0, then the decision value is 0. If p1 is the first to

access it, then the decision value is 1. The case when the state of the object is

t1 is symmetric. Thus, there exist a 0-valent and a 1-valent execution, so the

12



Weak Validity property is ensured. The protocol returns at most one value in

{0, 1} in any execution, so the Agreement is also ensured.

Impossibility of consensus with rambler

Theorem 5 No protocol can solve consensus among 2 processes with objects

of types in {rambler, register}.

Proof: We proceed by contradiction. Let P be a protocol that solves consen-

sus among 2 processes, p0 and p1, using atomic objects of types in {rambler,

register}. Consider an execution of P in which a process pi decides. We call the

local state of pi just after the decision the final state of pi. Similar to [2,3,7],

we define the decision graph of P [13], denoted by C(P ), as follows. Vertices of

C(P ) represent the final states of processes p0 and p1 resulting from all possible

executions of P (for all possible initial states). Two vertices are connected by

an edge if the corresponding final states can appear in the same state of P .

We establish a contradiction through the following steps.

(1) By Lemma 4, for each schedule σ and each initial state s of P , there exists

an execution eσ,s of P triggered by σ and s in which every operation on

an object of type rambler returns 0. Since the protocol is deterministic,

for each σ and s, there is exactly one such execution eσ,s. Let C ′ be the

subgraph of C(P ) corresponding to all executions eσ,s (for all possible σ

and s).

(2) For all i ∈ {0, 1}, let vi be the vertex of C ′ corresponding to a pi-solo

execution in which pi proposes i and, by the Validity property of consen-

sus, decides i. (There is a unique such vertex, since pi is the only process

to decide.) We show in the following that v0 and v1 belong to the same

connected component of C ′.
Assume, to obtain a contradiction, that v0 and v1 belongs to distinct

components of C ′, C0 and C1, respectively. Then we convert P into a pro-

tocol P ′ that solves consensus among two processes using only registers.

Every process pi (i ∈ {0, 1}) writes its proposed value in register ri and

then takes steps of protocol P (proposing i), except that each time pi is

about to invoke an operation on an object of type rambler, pi updates its

13



state according to P as if the operation returned 0. By Lemma 4, for pi,

every execution of P ′ is indistinguishable from an execution of P in which

every operation on an object of type rambler returns 0. Thus, finally, pi

ends up with a state in C ′. If the state of pi belongs to C0, pi reads r0

and decides on the value read. Otherwise, pi reads r1 and decides on the

value read.

The Termination property of P ′ follows immediately from the Termi-

nation property of P . Final states that correspond to the same execution

of P belong to the same component of C ′, so the Agreement property

of P ′ is also ensured. Note that, by the assumption, for all i ∈ {0, 1},
v1−i /∈ Ci. Thus, in any execution of P ′, no process can reach a state in Ci

unless pi has taken at least one step of P . By the protocol, before taking

a step of P , pi writes its input value in ri. Thus, no process can decide

on a value unless the value was proposed by some process — the Validity

property is ensured.

So two processes solve consensus using only registers, contradicting [5,

11]. Therefore, v0 and v1 belong to the same connected component of C ′.
(3) By the Validity property, p0 decides on 0 in v0 and p1 decides on 1 in v1.

Consider the path connecting v0 and v1 in C ′. Recall that every vertex

of C ′ denotes a final local state of some process. Any two neighbors on

the path correspond to the same execution of P , and, by the Agreement

property, must have the same decision value. But v0 and v1 have different

decision values — a contradiction.

Thus, we conclude that no protocol can solve consensus among two processes

using objects of types in {rambler, register}. 2

6 Concluding notes

The motivation of this work was the observation that the impossibility of

consensus was established for a weak variant of the problem, namely weak

consensus, whereas research on circumventing the impossibility has been per-

formed on the stronger consensus variant.

14



This paper exhibits the computational gap between the two problems. We

show that any set of deterministic object types that, combined with registers,

implements weak consensus, also implements consensus. Then we exhibit a

non-deterministic type that implements weak consensus, among any number

of processes, but, combined with registers, cannot implement consensus even

among two processes. In modern terminology, this type has consensus power

1 and weak consensus power ∞. On the other hand, consensus is universal [6]

and has consensus number ∞. Using consensus and registers, any type can

be implemented.

Acknowledgments

We are grateful to Partha Dutta for an interesting discussion on the subject,

to Eli Gafni for the insightful observation that nondeterminism in the system

model may be the only reason for solving weak consensus but not consensus,

and to Faith Ellen and anonymous reviewers for their helpful comments.

References

[1] H. Attiya, J. L. Welch, Distributed Computing: Fundamentals, Simulations and

Advanced Topics (2nd edition), Wiley, 2004.

[2] O. Biran, S. Moran, S. Zaks, A combinatorial characterization of the distributed

tasks which are solvable in the presence of one faulty processor, in: Proceedings

of the 7th Annual ACM Symposium on Principles of Distributed Computing

(PODC), 1988.

[3] E. Borowsky, E. Gafni, Y. Afek, Consensus power makes (some) sense!, in:

Proceedings of the 13th Annual ACM Symposium on Principles of Distributed

Computing (PODC), 1994.

[4] D. Dolev, C. Dwork, L. J. Stockmeyer, On the minimal synchronism needed for

distributed consensus, Journal of the ACM 34 (1) (1987) 77–97.

[5] M. J. Fischer, N. A. Lynch, M. S. Paterson, Impossibility of distributed

consensus with one faulty process, Journal of the ACM 32(3) (1985) 374–382.

15



[6] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming

Languages and Systems 13 (1) (1991) 124–149.

[7] M. Herlihy, N. Shavit, The asynchronous computability theorem for t-resilient

tasks, in: Proceedings of the 25th ACM Symposium on Theory of Computing

(STOC), 1993.

[8] M. Herlihy, J. M. Wing, Linearizability: a correctness condition for concurrent

objects, ACM Transactions on Programming Languages and Systems 12 (3)

(1990) 463–492.

[9] P. Jayanti, Wait-free computing, in: Proceedings of the 9th International

Workshop on Distributed Algorithms (WDAG’95), vol. 972 of LNCS, Springer

Verlag, 1995.

[10] P. Jayanti, Robust wait-free hierarchies, Journal of the ACM 44 (4) (1997)

592–614.

[11] M. C. Loui, H. H. Abu-Amara, Memory requirements for agreement among

unreliable asynchronous processes, Advances in Computing Research (1987)

163–183.

[12] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, 1996.

[13] S. Moran, Y. Wolfstahl, Extended impossibility results for asynchronous

complete networks, Inf. Process. Lett. 26 (3) (1987) 145–151.

[14] G. Neiger, Failure detectors and the wait-free hierarchy, in: Proceedings of

the 14th Annual ACM Symposium on Principles of Distributed Computing

(PODC), 1995.

[15] E. Ruppert, Determining consensus numbers, SIAM Journal of Computing

30 (4) (2000) 1156–1168.

16


