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Abstract 1. Introduction

Building correct and efficient concurrent algorithms is known to The design of concurrent applications that avoid costly synchro-
be a difficult problem of fundamental importance. To achieve effi- nization patterns is a cardinal programming challenge, requiring
ciency, designers spend significant time trying to remove unneces-consideration of algorithmic concerns and architectural issues, and
sary and costly synchronization. However, not only is this manual has implications to formal testing and verification.
trial-and-error process ad-hoc and error-prone, but it ofterekeav Two common synchronization patterns that frequently arise in
designers pondering the question of: is it inherently impossible to the design of concurrent algorithms amad after write (RAW)
eliminate certain synchronization, or is it that | was unable to elim- andatomic write after readAWAR). The RAW pattern consists of
inate it on this attempt and | should keep trying? a write to some shared variab¥e followed by a read to a different

In this paper we respond to this question. We prove that it is shared variabl®. The AWAR pattern consists of a read of some
impossible to build correct concurrent implementations of classic shared variable followed by a write to the same or a different shared
and ubiquitous specifications such as sets, queues, stacks, mutualariable, where the read and the write are atomic. Examples of
exclusion and read-modify-write operations, that completely elim- the AWAR pattern include read-modify-write operations, such as
inate certain expensive synchronization. successful Compare-and-Swap [27] (CAS) operattons.

More specifically, we prove that one cannot avoid the use of: Unfortunately, on all mainstream processor architectures, the
i) read-after-write (RAW), where a write to shared variable A is RAW and AWAR patterns are associated with expensive instruc-
followed by a read to a different shared variable B or ii) atomic tions. Modern processor architectures use relaxed memory mod-
write-after-read (AWAR), where an atomic operation reads and els, where guaranteeing RAW order among accesses to indepen-
then writes to shared locations. Unfortunately, enforcing any of dent memory locations requires the execution of memory ordering
these two patterns is expensive on virtually all mainstream pro- instructions—often calledhemory fencesr memory barriersthat
cessor architectures today. To enforce RAW, memory ordering— enforce RAW ordef.Also guaranteeing the atomicity of the AWAR
also called fence or barrier—instructions must be used. To enforcepattern requires the use of atomic instructions. Typically, RAW
AWAR, atomic instructions such as compare-and-swap (or equiva- fence and atomic instructions are substantially slower—around 50
lent) are required. However, fences and atomic instructions are typ-times—than regular instructions, even under the most favorable
ically substantially slower—around 50 times—than regular instruc- caching conditions.
tions! Due to these high overheads, designers of concurrent algorithms

Although designers of concurrent algorithms frequently strug- aim to avoid both the RAW and AWAR patterns, if possible. How-
gle to avoid RAW and AWAR, their attempts are often futile. Our ever, such attempts are often very time-consuming and unsuccess-
result explains exactly in which cases avoiding RAW and AWAR is  ful: in many cases, after multiple empirical attempts, it turns out
impossible. Failure to use such synchronization will mean that the that it is impossible to avoid these patterns while ensuring correct-
algorithm is incorrect and there is no need to even attempt to verify ness of the algorithm.
its correctness. On the flip side, our result indicates on which data  This raises an interesting and important practical question: Can
structures designers can focus their efforts on. we discover, formalize and prove the conditions under which at-

1CAS operates on a single shared variable and takes as arguarent
expected value and a new value. It atomically (1) reads theevaf the
variable; (2) compares the read value with the expected yalue (3) if
equal then it writes the new value to the variable. It ret@rBoolean value
that indicates whether or not it succeeded, i.e., whetherobrthe write
occurred.

2RAW order requires the use of explicit fences or atomic irttoms

even on strongly ordered architectures (e.g., X86 and SPARQ) that

automatically guarantee other types of ordering (read edted, write after
[Copyright notice will appear here once "preprint’ option is removed.] read, and write after write).
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tempts by algorithm designers to avoid the RAW and AWAR pat- {S = A} contai ns(k) {ret =ke ANS = A}
terns, while ensuring algorithm correctness, are actually futile?

In this paper, we answer this question in a way that formally {S = A} add(k) {ret =k ¢ ANS = AU{k}}
captures what were previously only empirical observations. We
show that implementations of a wide class of concurrent algorithms  {S = A}  renove(k) {ret=kec AANS=A\{k}}
must involve the expensive RAW or AWAR patterns.

We focus on two fundamental classes sifecificationsthat - 5 -
are heavily used in practice: linearizability and mutual exclusion. Figure 1. Sequential specification of a s&. C N denotes the
Roughly speaking, our results state that it is impossible to build contents of the setet denotes the return value.

a linearizable RAW-AWAR-free concurrent algorithm of a non-

commutative operation. Similarly, it proves that it is impossible to .

build a RAW-AWAR-free correct mutual exclusion algorithm. Both 2. Overview

of these results are stated and elaborated on with formal rigor in theln this section, we first informally explain our result and then

rest of the paper. demonstrate its implications via several well-known concurrent al-
Our results are widely applicable as they talk abspecifica- gorithms. The discussion in this section is mostly informal. Formal

tions, and not of particular implementations. That is, they are ap- details are provided in subsequent sections.

plicable toanyimplementation of the said specifications. Our result focuses on two important practical specifications:

Main Contributions. The main contributions of the paper are the mutual exclusion and linearizability [24].

following: Mutual Exclusion. The first part of the result states that it is im-

e We define the class of specifications that our results apply possible to _design a deadlock-free alg_orithm_ v_vhere all executions
to: deterministic sequential specifications and strongly non- ©f the algorithm are RAW-AWAR-free (i.e. efficient) and the algo-
commutative operations. We prove that it is impossible to build fithm satisfies the mutual exclusion specification [12, 31] i.e. cor-
a linearizable implementation of such specifications, that is fect). By deadlock-free mutual exclusion specification, we mean
RAW-AWAR-free. that there cannot be more than one process inside a critical sec-

Wi h . biui q tion at the same time, and if one or more processes compete for a
* We prove that many common operations on ubiquitous and ciicia| section, at least one of them succeeds.

fundamental abstract data types—such as sets, queues, work-
stealing queues, stacks, a_n_d rt_aad-modify-write objeC_tS—SatiSfy Linearizability. The second part of our result discusses lineariz-
our conditions on the specification and hence are subject to our ability [24]. Given a deterministic sequential specificatifpec,

results. and an unordered strongly non-commutative operatioiof that
e We prove that it is impossible to build an algorithm that satisfies SPecification, it says that we cannot design an algorithm where all
mutual exclusion, is deadlock-free and RAW-AWAR-free. executions of the algorithm are RAW-AWAR-free and the algo-

] - ) o rithm is linearizable with respect to the given sequential specifi-
Practical Implications. Our results have important practical im-  cationSpec.

plications: it guides algorithm designers, suggests targeted im- |ntuitively, an algorithm is linearizable with respect to a given
provements in hardware and can be used in tandem with classicsequential specification if each execution of the algorithm is equiv-
program testing and verification: alent to some sequential execution of the specification, where the

order between the non-overlapping operations is preserved. The
equivalence is defined by comparing the arguments and results of
operations.

Informally, by a deterministic sequential specification we mean

¢ Designers of concurrent algorithms can use our results to de-
termine when looking for a correct RAW-AWAR-free design is
futile. Conversely, our results indicate when avoidance of these
expensive patterns may be possmle: Further, our re_sults Statetha’[ if an operation executes from a given state, it will always
exactly what changes in the semantics of #ipecificationof

the target algorithmic operations may make them amenable for return the same result. By a strongly non-commutative operation,
a correct RAW-AWAR-free design. we mean that in the specification, the operatipn can influence

the result of another operati@p. andop, can influence the result
For processor architects, this result indicates the importance of op;. By unordered we mean that the sajgl andop- operations
of optimizing the performance of atomic operations such as are performed by different processors (but still sequentially).
compare-and-swap, and in particular RAW fence instructions,  Let us illustrate these concepts on a simple example: a Hoare-
which have historically received little attention for optimiza-  style sequential specification of a classic Set, shown in Fig. 1.
tion. First, this simple sequential specification is deterministic: if an
For formal testing and verification of concurrent algorithms, it @dd, renove andcont ai ns execute from a given state, they
is possible to use our result as a filter: if the algorithm does not Will always return the same result.
contain RAW and AWAR (regardless of whether the architec- Second, both operationadd andr enove are strongly non-
ture is sequentially consistent or not), then it is certainly incor- commutative. That_lsthere exist@n execution of the specification
rect and there is no need to even attempt to test it or verify it. SUCh tha@dd can influence the result afdd andr enove can
Otherwise, we proceed as usual with standard testing and veri-influence the result of enove. For example, let us begin with
fication. S = (. Then, if we perform aradd(5), it will return true and

a subsequent secoratld(5) will return false However, if we
The remainder of the paper is organized as follows. We present change the order, and the secarttti( 5) executes first, then it will
an overview of our results with illustrative examples in Section 2. returntrue while the firstadd( 5) will return false That is,add is
In Section 3, we present the formal model for our results. We a strongly non-commutative operation, as there exists another oper-
present our main results for mutual exclusion in Section 4 and for ation (in this case anothadd, but in general as we define later, it
linearizable objects in Section 5. In Section 6, we show that many could be another operation) such that the two operations influence
widely used specifications fall into our class. We discuss related each other’s result. Similar reasoning applies tomove. How-
work in Section 7 and conclude the paper with Section 8. ever,cont ai ns is not a strongly non-commutative operation, as
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its result can be influenced by a precedady orr enove, but its
execution does not influence the result of any other operation.
Third, the specification may allow an operation to be executed

by many processes, or only by a single process. For instance, in
the case of work-stealing queues which we will discuss later, some

operations can only be executed by a single process.

For the Set specification from Fig. 1, our result will state that
any linearizable implementation ohdd andr enove (i.e. the
strongly non-commutative operationsjustuse RAW or AWAR
in some sequentiaxecution of the implementation. However, our
result does not apply to theont ai ns operation which intuitively
makes sense aont ai ns does not modify the shared state and
should not require synchronization.

Implications While our result shows when expensive synchro-
nization cannot be eliminated correctly, it is also helpful in guiding

designers towards cases where they may be successful. In particuq-

lar, a designer may focus on either of the following directions:

e Determinism change the sequential specification, perhaps by
considering non-deterministic specifications.

e Correctnesschange the correctness criteria, perhaps by consid-
ering an alternative to linearizability.

e Commutativity focus on operations that are not strongly non-
commutative, i.econt ai ns instead of aradd.

e Ownership restrict the specification of an operation such that

bool WFCAS(Val ev, Val nv) {

14: if (ev =nv) return WFRead()==ev;
15: Blkb=1L;
© bX=p;

17 if (b.Y) goto 27;

Figure 2. Adapted snippet from Luchagco et al.’s [34] wait-
free CAS algorithm.

while (—-CAS(Lock,FREEBUSY);

Figure 3. A simplified snippet of a test-and-set lock acquire.

flag[me] := true;
2:  while flag[-me] = true {

Figure 4. A simplified snippet from the entry section of
Dekker’s 2-way mutual exclusion algorithm.

case of no contention. Such a linearizable algorithm is presented
by Luchangco et al. [34]. Fig. 2 shows an adapted code snippet of

the operation can only be performed by a single process, instead?he common path of that algorithm. While the algorithm succeeds

of multiple processes.
e Detectors come up with efficient detectors that can identify

in avoiding the AWAR pattern in the common casenifistinclude
the RAW pattern in its common path. The writelioX in line 16
mustprecede the read &f. Y in line 17 or otherwise the algorithm

executions which are known to be commutative and hence can || pe incorrect.

avoid the expensive synchronization in that case.

The first four of these pertain to the specification and the cor-

Both examples confirm our result: AWAR or RAW was neces-
sary. Of course, knowing that RAW and AWAR cannot be avoided

rectness criteria and we illustrate two of them (determinism and inimplementing CAS correctly is important as CAS is a fundamen-
ownership) in the examples that follow. tal building block for many classic concurrent algorithms.

The last one is focused on the implementation. To elaborate on
the implementation point further, observe that our results talk about
executionf operations, and namely those that are strongly non- For mutual exclusion lock implementations, our result proves that
commutative as illustrated in the example with the @ ( 5) s a RAW or AWAR is required for the entry section.
executed sequentially. Suppose however that the sequence of two The test-and-set is the most common lock implementation. Its
add( 5) 's starts from a set that contaifisThen, regardless of the  lock acquire operation boils down to an AWAR pattern, by using
order, bothadds will always returnfalse If a designer is able to  an atomic operation, e.g., CAS, to atomically read a lock variable,
identify such cases (which adds more work on the critical path), check that it represents a free lock, and if so replace it with an
then it might be possible to avoid the synchronizatiosémebut indicator of a busy lock. Fig. 3 shows a simplified version of a test-
not all executions o&dd. In practice however, this is difficult to ~ and-set-lock. Similarly for all other locks that require the use of
realize as one would need to examine the state of the data structuregead-modify-write atomic operations in every lock acquire [2, 19,
non-atomically and be aware of potential overlapping operations. 36].

Next, we illustrate the applicability of our result in practice via On the other hand, a mutual exclusion lock algorithm that avoids
several well-known concurrent algorithms. the AWAR pattern [6, 12, 41], must include the RAW pattern. For

example, Fig. 4 shows a simplified snippet from the entry section of
2.1 Compare and Swap Dekker’s algorithm [12] for 2-process mutual exclusion. A process
We begin with the universal compare-and-swap (CAS) construct, that succeeds in entering its critical section must first raise its own
whose sequential specification is deterministic, and the operation isflag (line 1) and then read the other flag (line 2) to check that the

sequential specification of CA(o, n) says that it first compares ~ RAW pattern. o . o
+v 10 0 and if xv = o, thenn is assigned tw and CAS returns These examples are specific implementations that highlight the

true. Otherwise v is unchanged and CAS returfalse Here we applicability of our result, namely that implementation of algo-
The CAS specification can be implemented trivially with a RAW and AWAR.

linearizable algorithm that uses an atomic hardware instruction

(also called CAS) and in that case, the implementation inherently

2.2 Mutual Exclusion Locks

2.3 Work Stealing Structures

includes the AWAR pattern.

Alternatively, CAS specification can be implemented by a lin-
earizable algorithm using reads, writes, and hardware CAS, with
the goal of avoiding the use of the hardware CAS int¢benmon

Concurrent work stealing algorithms are highly popular in imple-
menting various load balancing framewaorks.

A work stealing structure holds a collection of work items
and it has a single process as its owner. It supports three main
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Workltem take() { Data dequeue() {

1: b :=bottom; 1:  h:=head,;
2:  CircularArray a := activeArray; 2:  t:=tall
3: b:=b-1; 3:  next :=h.next;
4:  bottom :=b; 4: ifhead #hgoto 1;
5. t :=top; 5: if next =null return EMPTY;
6: ifh =t {CAS(tail,t,next) ; goto 1; }
7. d :=nextdata;
- - - 8:  if =CAS(head,h,next) goto 1;

Figure 5. Snippet adapted from theake operation of 9:  returnd:
Chase-Lev’s work stealong algorithm [11]. 1

Workitem take() { Figure 7. Simplified snippet ofdequeue on lock-free
1:  h:=head; FIFO queue [37].
2:  t:=tail
3:  if (h=t) return EMPTY;
4 task :=tasks.array[h%tasks.size]; by Michael et al. [38]. This concept relaxes the semantics of work
5. head:=h+1; stealing to require that each inserted item is eventually extracted
6. return task; at least oncenstead ofexactly onceUnder this notion the authors

} managed to design algorithms for idempotent work stealing that

avoid both the AWAR and RAW patterns in the owner’s operations.

Figure 6. Thet ake operation from Michael et al.’s idem- Our result explains the underlying reason of why elimination
potent work stealing FIFO queue [38]. of RAW and AWAR was possible: because we cannot write a de-

terministic sequential specification for the idempotent structures,
our result now indicates that it may be possible to avoid RAW and
operations:put , t ake, andst eal . Only the owner can insert ~ AWAR which is substantiated by the algorithms in [38]. Fig. 6
work items, usingput , and usingt ake to extract work items. shows thet ake operation of one of the idempotent algorithms
Other processes (thieves) may extract work items usingal . (uses FIFO order). Note the absence of both the AWAR and RAW
The safety requirements of work stealing are that (1) each extract patterns. The shared variablesad, t ai | , andt asks. array[ ]
operation (i.e.t ake or st eal ) that returns a work item (i.e., not  are read before writing thead, and no reads need to be atomic
an empty indicator) must return a valid work item, i.e., one that with the subsequent write.
was previoushput by the owner, and that (2) each inserted item
is eventually extracted exactly once. In Section 6, we provide a 2.4 FIFO Queue Example

formal proof for why the ake andst eal operations are strongly  |n examining concurrent algorithms for multi-consumer FIFO
non-commutative operations. . ) ~_ queues, one notes that either locking or CAS is used in the com-

In designing algorithms for work stealing, the highest priority mon path of nontriviatlequeue operations that return a dequeued
is to optimize the owner’s operations, especially the common paths jtem. However, as we mentioned already, our result proves that mu-
of such operations, as they are expected to be the most frequentiytyal exclusion locking requires each execution of a successful lock
executed parts of the operations. Examining known work stealing acquire to include the AWAR or RAW pattern. All algorithms that
algorithms that avoid the AWAR pattern (i.e., avoid the use of ayoid the use of locking idequeue include a CAS operation in
complex atomic operations) in the common path of the owner's the common path of each nontrividequeue execution. Fig. 7
operations, reveals that they all contain the RAW pattern in the shows the simplified code snippet from tthequeue operation of
common path of ake operation that succeeds in extracting work  the classic Michael and Scott's lock-free FIFO queue [37]. Note
items. ) ) ) that every execution that returns an item must execute CAS.

The work stealing algorithm by Chase and Lev [11] is repre-  \we observe that algorithms fonulti-consumerdequeue in-
sentative of such algorithms [3, 17, 20, 21]. Fig. 5 shows a code c|ude directly or indirectly at least one instance of the AWAR or
snippet adapted from the common path of theke operation of RAW patterns (i.e. use either locking or CAS).
that algorithm, with minor changes for the sake of consistency in o ) .
presentation. The variablé®t t omandt op are shared variables, ~ Restricting Ownership However, our result suggests that if we
andbot t omis written only by the owner but may be read by other Want to eliminate RAW and AWAR correctly, we can focus on re-
processes. Hence, there is no benefit from using single locationStricting the processes that can execute an operation. For instance,

complex atomic operations to operate oot t om The key pat- ~ We can specify thatlequeue be executed by a single process,
tern in this code snippet is the RAW pattern in lines 4 and 5. The instead of multiple processes. Indeed, when we consider single-
order of write tobot t omin line 4 followed by the read dfop in consumer FIFO queues, where no more than one process can exe-
line 5 is necessary for the correctness of the algorithm. cute thedequeue operation, we can obtain a correct implementa-

Indeed, our result captures this fact and also the fact that re- tion of dequeue which does not require RAW and AWAR.
versing the order of these two instructions results in an incorrect ~ Fig. 8 shows a single-consumeequeue operation, adapted

algorithm. from Lamport’s single-producer single-consumer FIFO queuei30]
o o o Note that the code avoids both RAW and AWAR. The variable
From deterministic to non-deterministic specificationsOur re- head is private to the single consumer and its update is done by a

sult dictates that in the standard case where we have the expectedegular write.

deterministic sequential specification of a work-stealing structure, Once again, this example demonstrates a case where we used
it is impossible to avoid RAW and AWAR. However, as men- oyr result to guide the implementation. In particular, by changing

tioned earlier, our result can guide us towards finding practical the specification of an operation of the abstract data type—namely
cases where we can indeed eliminate RAW and AWAR. One such

relaxation is to allow non-deterministic specifications. Such a re- 3The restriction or the lack of restriction on the number of @ament
laxation is exemplified by the idempotent work stealing introduced producers does not affect the algorithm for trejueue operation.
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Data dequeue() {
if (tail =head) return EMPTY;
Data data := Q[head modm];
head :=head +1 modm;
return data;

}

Figure 8. Single-consumer AWAR-RAW-freelequeue
operation adapted from Lamport's FIFO queue [30].

from multi-consumer to single-consumer—it enabled us to create an

implementation of the operation (i.elequeue) where we did not
need RAW and AWAR.

3. Preliminaries

As our work contains results on both linearizable algorithms and
mutual exclusion problems, in this section, we include the formal-

process can take transitions from that state. To avoid formal clutter,
our treatment of atomic sections is semi-formal (it can be modeled
easily by including a field in the state, denoting the process cur-
rently inside an atomic section, but that will introduce more formal
clutter). A program transition represents the intuitive fact that start-
ing from a statesrc(m+,), where no other procegs # proc(msr)

is inside an atomic section, proces®sc(m) can execute the state-
mentstmit () and end up in a staiést (¢ ). We usemloc(mer)

to denote the memory location (variable identifer) that the transi-
tion accesses. If the transition does not read or write (i.e. performs
a conditional) themmloc(m,) returns_L. We say that a transition

- performs a global read (resp. write)rifloc(w..) € Varldsa

and stmt () is a read (resp. write). We say that the transition
performs a local operation if it does not perform a global read or
a write. We also assume the standard programming language se-
mantics where a process cannot modify the local state of other pro-
cesses. Given a state € X, we useenabled, to denote the set

of enabled statements . That is,enabled, is a set of tuples

ization that is common to both problems. Preliminaries that are spe- ©f the form(p, I) such thatpc, (p) = I and there does not exist

cific to one of the results are included in the corresponding section.

3.1
We now define all terms and properties that pertain to implemen-

Implementation

tation, including transitions, executions and equivalence between

states.

3.1.1 Language

For our implementations, we assume a standard sequential imperasigp, is
tive programming language with the usual syntax and semantics,
equipped with only basic constructs for concurrency: an atomic ;

section and process creation. We assume the language does not

q € ProcessIDsq # p, such thay is inside an atomic section in

o. Given a set of procesB C ProcessIDswe usecnabled, | {py

to denote the set of tuples that consist only of tuples of processes in
P.When P is a singleto® = {p}, we writeenabled, |,,.

We assume the transition relation satisfies the property that
all enabled statements from a given state are eventually per-
formed by a transition from that state. ThatVs;, € X.V(p,l) €
enabled,. It, € TR such thatsrc(t,) = o, proc(t.) = p
andlbl(t») = . Finally, we also assume that the transition rela-
deterministic that is,Vt1,t2 € T R.(src(ty) = src(tz) A
(proc(ti) = proc(tz)) A (Ibl(t1) = Ibl(t2)) = t1 = to. That
s, if a statement is executed from a given state by the same pro-
‘ess, the end result will always be a unique destination state (same

low nested atomic sections or process creation inside atomic S€C-ransition)

tions. This language is simple but powerful enough to express all
known practical concurrent algorithms today. Further, if necessary
with the atomic construct, one can implement all other atomic op-
erations such as fetch-and-store, locks, universal construdigsuc
compare-and-swap, etc.

We useVarlds;, to denote the set of process-local variable iden-
tifiers, Varldsz to denote the set of global identifiers (i.e. memory
which can be accessed by each process including global variable
and heap) antdab the set of program labels.

3.1.2 Semantics
A program stater is a tuple(pc, locals, globals) € X, where:
e ¥ = PC X Locals x Globals
e PC = ProcessIDs— Lab
e Locals = ProcessIDsx Varlds;, — Val
e Globals = Varldsg — Val

A state o tracks the program counter for each process,(
a mapping from process local variables to valuegdls), and a
mapping from global identifiers to valuegl¢bals).

Executions An executionr is a (possibly infinite) sequence of
transitionsmo, 71, . . ., such that for every > 0, =, € TR and
Vj > 1. dst(mj—1) = src(mj). An executionr is initial if
sre(mg) € Init. We usefirst(r) as a shortcut fosrc(m), i.e.
the first state in the execution and last(r) to denote the last state
in the executionr, i.e.last(r) = dst(m—1). If a transitiont is

s'performed in an execution thent € = returnstrue, otherwise it

returnsfalse We user; ;) to denote the sequence of all transitions
in 7 occurring between positionsand; (including the transitions
ati andj). For a set of processd3 C ProcessIDsan executionr

is said to beP-soloif it only contains transitions of processesih
thatis,Vi. 0 < i < |x|. proc(m;) € P. Conversely, an execution is
P-freeif contains no transitions of processesinWhenP = {p},

we write p-solo andp-free.

For a program Prog, we ugé’rog] to denote the set of exe-
cutions for that program starting from initial states (e.g. states in
Init). We say that a transition belongs to the program Prog, if
there exists an executione [Prog] such that € .

Next, we define what it means for an executiore [Prog]
to beatomic Intuitively, an execution is atomic if all transitions in

We assume that program statements are labeled with uniquethe execution are preformed by the same process inside an atomic

labels and usetmt(l) as the statement at program lakbeMe
denote the set of initial states &sit C 3.

Transition Relation The behavior of a program is determined by
its transition relatiod" R C X x ProcessIDx Stmt x X2, describing

a set of transitions. For a transitian. € T'R, we denote its source
state bysrc(m:r), its executing process byroc(m.), its destina-
tion state bydst(m:.), its executing statement bytmt(r:,-) and
the unique program label where the statement residéd @s.).

section. That is, no other process can perform a transition from any
state in that execution. More formally:

Definition 3.1 (Atomic Execution) We say that an execution
is executed atomically by a processvhenr is p-solo and either
|m| = 1orVi.1 <i < ||, pisinside an atomic section in each
statesrc(m;).

Note that every atomic execution by process p-solo, but not

For atomic sections, we assume strong atomicity semantics: if a everyp-solo execution is atomic. That is, even if an execution is
process is inside an atomic section in a given state, then no othersolo, for a given process, it could be the case that there is another
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execution by a different process which contains one of the states ofwherep € ProcesslIDsis a process identifiepp € Opld is an

this execution (without the last one).

Given an executionr and a transitionr;, € 7, the maximal
atomic subsequencef transitionmy in 7 is the (unique) subse-
quencern; jy, such thatr(; ;) is an atomic execution of process
proc(mi), wherei < k < j, andproc(ni) is outside an atomic
section in statesrc(mw;) anddst(m;).

Next, we define the notion of equivalent states with respect to
a set of processe®. Intuitively, two states are equivalent with
respect to a set of process@sif the global states of the two states

operation identifiergrg is the argument to the operation and is
the return value of the operation. For an actigwe useproc(a)

to denote the procesgind(a) to denote the kind of the action
(invoke or response)p(a) to denote the name of the operation,
arg(a) to denote the arguments amét(a) to denote the return
value. We usé; to denote the action at positiarin the history,
where0 < ¢ < |H|. For a procesg, H |, is used to denote the
sub-history ofH (which is a sub-sequence &f) that consists only
of the actions of procegs

are identical and the local states of each process in both states is An invocation(p, invoke m arg) is said to bependingin a

identical. More formally:

Definition 3.2 (State Equivalence)Given a set of processds C
ProcessIDstwo statesc and o’ are said to be equivalent with
respect toP, denoted ag £ o if:

e globals, = globals,

* Vp € P. pco(p) = pcor (p)

¢ Y(p,var) € dom(localsy). localss (p, var) = locals, (p, var).
e enableds | (py= enabled, | (py.

For convenience, whel is a singletonP = {p}, we write
o R
Next, we define read-after-write executions. Intuitively, these

history H if it has no matching response, thatis, 0 < i < |H|
such thaproc(H;) = p, kind(H;) = invoke, op(H;) = m and
Vj. i < j < |H|, proc(H;) # p or kind(H;) # response.

A history H is said to becompleteif it has no pending calls.
We usecomplet¢ ) to denote the set of histories resulting after
extendingH with matching responses to a subset of invocations
that are pending i{ and then removing the remaining pending
invocations. ( A historyH is sequentialif H is empty H = ¢)

or H starts with an invocation action, i.&ind(Hy) = invoke
and invocations and responses alternate. Thatiisp < i <
|H| — 1, kind(H;) # kind(H;+1) and each response is matched
by an invocation that occurs immediately before itini.e.Vi. 1 <

i < |H|, if kind(H;) = response thenkind(H;_1) = invoke

are executions where a process writes to global memory location@ndproc(H;) = proc(Hi-1). A complete sequential historsf
A and then, sometimes later, reads a global memory location thatWhere|H| = 2 is said to be @omplete invocationf an operatiom

is different fromA.

Definition 3.3 (Read After Write Execution)We say that a process
p performs aread-after-writén executionr, if 3i,7. 0 < i < j <
|| such that:

e 7; performs a global write by procegs
e 7; performs a global read by procegs
e mloc(m;) # mloc(r;) (the memory locations are different).

We introduce the predical®AW, p) which evaluates torue
if p performs aread-after-writein = and tofalse otherwise. Note

iff op(Ho) = oandop(H1) = o. Inthe case where H is a complete
sequential invocation, we usev(H ) to denote the invoke action
in H andresp(H ) to denote the response actionfih A history
H is well-formedif for each proces® € ProcessIDs H |, is
sequential. In this work, we consider only well-formed histories.

3.2.2 Histories and Executions

For a transitiont, if stmt(t) = (kind op arg) wherekind €
{invoke,response}, thent |(,uoke,response} (@bbreviated as

that in this definition there is no restriction on how the accesses ¢ |;-) denotes the actiofp, kind op arg) wherep = proc(t) .

are performed, atomically or not, it talks only about ordering of
operations.
Next, we define atomic write-after-read executions. Intuitively,

Otherwise/t |;» returnse (the empty sequence). Accordingly, we
can define a history (7) of an executionr in the obvious way:
w |~ denotes the sequence of invocations and responses occurring

these are executions where a process first reads from a globalin 7.

memory location and then, sometimes later, writes to a global

memory location and these two transitions occur atomically, that is,

For a program Prog, we define its corresponding set of histories
as[Prog)u = {7 lir| ™ € [Prog]}. We us€][ Prog] s to denote

in-between these two transitions, no other process can perform anythe sequential histories [fProg] z. When clear from the context,
transitions. Note that unlike read-after-write executions, here, the we also sometimes use|,, to denote projection onto invocations

global read and write neetbt access different memory locations.

Definition 3.4 (Atomic Write After Read Execution)We say that
a procesgp performs anatomic write-after-reaéh executionr, if
3i,5.0 < i < j < |n| such that:

e 7, performs a global read by proceps

e 7; performs a global write by procegs

e ;5 IS an atomic execution of process

We introduce the predica®\AR(r, p) which evaluates ttrue
if processp performs an atomic write-after-read inand tofalse
otherwise.

3.2 Specification
3.2.1 Histories

A history H is defined as a finite sequence of actions, He =
1;1)...;1, where an action is an invocation or a response of an
operation by a given process, that is:

¥ = (p, invoke op arg) | (p, response op ret)

and responses of a specific operatign

Given an executionr, we say that a transition € 7 has a
matching invocation inr, if there exists a transitiof, ., € T
such thattyrey |ir#Z €, kind(tprev Lir) = invoke, proc(t) =
proc(tprev), tprev Precedest in m and there does not exist a
matching response actiontg..,, |- that is performed in-between
tprev @ndt in w. Note thatt,., may be the same as

Definition 3.5 (Well-formed Execution) We say that an execution
= is well-formed if its historyr |;,- is well-formed, every transition
int € m has a matching invocation and for any transitiore =
wheret |;,-# €, proc(t) is outside of an atomic section imc(t).

We say thatr is acomplete sequential executiofhan operation
op by proces9, if = is a well-formed execution, all transition in
are performed by andop is a complete invocation in the history
w | i Dy procesg.

A program iswell-formedif it generates only well-formed exe-
cutions. In this paper, we only consider well-formed programs.

2010/7/16



4. Synchronization in Mutual Exclusion

In this section, we consider implementations that provide mutually the first global transition inr,,. .

exclusive access to a critical section among a set of processes. We Further, 5'”0?”0 contalr;s no global V_V”te&/q e_ ProcessIDs
show that every deadlock-free mutual exclusion implementation Whereq # p, first(mo) ~ last(mo). SinceProg is deadlock-
incurs RAW and AWAR patterns in certain executions. free, there exists an executiofase - mo - m, such thatm, is p-

A mutual exclusion implementation exports four kinds of ex- frée and it contains a complete trying section of some progess
ternal actions: an invocvatiomy and a matching responsater, The assumptiolRAW(m,, p) = falseimplies that no global read
and an invocatioexitand a matching responsam We strengthen ~ OPeration ofp in m,, - 7, accesses a variable other thatoc(t., ).
the notion of well-formedness and say that a histéfyis well- _Note that the_z first action of,, overwrites the only Ioca_tlon that
formed if, for every process, H |, is a prefix of the cyclic IS réad byp in 7, - 71. Thus, there exists an executian =
sequencery, enter, exit rem . . .. Respectively an execution is 7o - mq -7, -1 IN [Prog] such thap does not distinguishust ()
well-formed if it generates a well-formed history. We only consider andlast(w). Therefore, the last action of in . is alsoenter
well-formed executions here. while ¢ is in its critical section—a contradiction.

At the end of a finite execution, a proces is said to be in Thus, eitheRAW(,, p) = true or AWAR(r,,, p) = true.
its trying sectionif its last external action imr is try, in its critical
sectionif its last external action ignter, in its exit sectionif its
last external action isxit, and in itsremainder sectiomtherwise.
Therefore, a process in a mutual exclusion algorithm is in its re-

mainder section initially, and then cyclically goes through trying, giates that strongly non-commutative operations must use certain
critical, exit, and remainder sections. A process is calletiveif it kinds of synchronization: either by containing some inherent order
is inits trying or exit section, and only active processes are allowed peqyeen reads and writes (i.e. the RAW pattern) or by making parts
to take steps in an execution. _ of the execution atomic (i.e. the AWAR pattern). The impact of
For the purpose of our lower bound, we assume the following thjs result in practice is that in order to enforce these patterns,
weak formulation of the mutual exclusion problem [12, 31]. In  gypensive synchronization is required. For instance, to enforce the

addition to the classical mutual exclusion requirement, we only paw pattern when the program is running on a weak memory
require that the implementation éeadlock-fregi.e., if a number model, one must use an expensive store-load fence.

of active processes concurrently compete for the critical section, at

AWAR(7,,, p) = falseandt,, is the first write transition inr,, ., is

O

5. Synchronization in Linearizable Algorithms

In this section, we state and prove a new result that affects the
design of practical concurrent algorithms. Informally, our result

least one of them succeeds.

Definition 4.1 (Mutual Exclusion) A deadlock-free mutual exclu-
sion implementation guarantees:

¢ (Safety) There is no executiansuch that two processes are in
their critical sections at the end af.

e (Liveness) In every execution in which every active process

takes sufficiently many steps:
= |f at least one process is in its trying section and no process
is in its critical section, then at some point later some
process enters its critical section.
= If at least one process is in its exit section, then at some
point later some process enters its remainder section.

We say thatr is a complete trying sectionf a proces if
7 |ir= try - enter

Theorem 4.2(RAW and AWAR in Mutual Exclusion) Let Prog be
a deadlock-free mutual exclusion implementation for two or more
processes. Then for every complgisolo trying sectionr,:

® RAW(7,,, p) = true, or
o AWAR(7p, p) = true

Proof. Let mpase - mp be an execution iffProg] such thatr, is a
completep-solo trying section. By contradiction, assume that
does not contain a global write. Consider an executige - 74
such thatr, is p-free and it contains complete trying section of
a process; # p. SinceProg is deadlock-free, such an execution
exists. Assume that the last actigin 4 is enter(q is in its critical

section right afterr,). Butlast(mbase ~ last(mpase: Tp) and, thus,
there exists an executiofase- 7, - 7, at the end of which botjp
andq are in their critical sections—a contradiction.

Thus, 7, contains a global write transition, an let, is the
first global write transition inr,. Let 7, = mo - my - ™1, Where
™ 1S the maximal atomic subsequencengfthat containg,, (if
t,, does not belong to an atomic construct, then = t,,). We
proceed by contradiction and assume tR&W,,p) = false
and AWAR(7p, p) = false Immediately, we observe that since

Before we state and prove our result, we first define lineariz-
ability, deterministic sequential specifications and strongly non-
commutative operations.

5.1 Linearizability

Next, following [22, 24] we define linearizable histories. A history
H induces an irreflexive partial ordery on actions in the history:
a <g bif kind(a) response and kind(b) = invoke and
30 < i < j < |H|such thatH; = a andH; = b. That is,
response action precedes invocation actidnin H. A history H

is said to bdinearizablewith respect to a sequential histofyif
there exists a historyl’ € complet¢ H) such that:

1. Vp € ProcessIDsH' |,= S|,
2. <pC<s.

We can naturally extend this definition to a set of histories. Let
Spec be asequential specificatiora prefix-closed set of complete
sequential histories (that is, i is a sequential history ibpec,
then any prefix ok is also inSpec). Then, given a set of histories
Impl, we say thaffmpl is linearizable with respect t6pec if for
any historyH € I'mpl there exists a histong € Spec such that
H is linearizable with respect t6.

We say that a program Prog is linearizable with respect to
a deterministic sequential specificatidipec when [Prog]u is
linearizable with respect tEpec.

5.2 Deterministic Sequential Specifications

In this paper, similarly to [9], we define deterministic sequen-
tial specifications. Given two sequential historigsand s, let
maxpr ef i X(s1, s2) denote the longest common prefix of the two
historiess; andsa.

Definition 5.1 (Deterministic Sequential Specificationsp\ se-
quential specificationSpec is deterministic, if for allSy, 5S> €
Spec, S1 # S2 andS = maxpr ef i x(S1,52), we haveS = e or
kind(S g _,) # invoke.

That is, a specification is deterministic, if we cannot find two
different histories whose longest common prefix ends with an in-
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vocation. If we can find such a prefix, then that would mean that
there was a point in the execution of the two historsgsand S

up to which they behaved identically, but after they both performed
the same invocation, they produced different results (or one had no
continuation).

5.3 Strongly Non-Commutative Operation

Next, we define the notion of atrongly non-commutativep-
eration. This notion strengthens the traditional notion of non-

commutative operations and weakens the notion of a non-idempoterfX€cu

operation.

Definition 5.2 (Strongly Non-Commutative Operation)et Spec

be a sequential specification of complete sequential histories. We
say that an operatiomp; is strongly non-commutativan Spec if

there exists an operatiosp, (possibly equal tep;) such that:

[EEY

. base is a complete sequential histeryspec.
. s1 and sy are complete invocations op; .
. s2 and ss are complete invocations ops-.
.arg(inv(s1)) = arg(inv(sa)).
.arg(inv(s2)) = arg(inv(ss)).

base s € Spec.

. base s2 € Spec.

. base s; - s3 € Spec.

. base s3 - s4 € Spec.

.ret(resp(s1)) # ret(resp(sa)).
.ret(resp(s2)) # ret(resp(ss)).

In other words, the operatiam, is strongly non-commutative if
there is another operatiam, and a historybasein Spec such that
we can distinguish whetherp, is applied right aftebaseor right
afterops (which is applied aftebaseg. Similarly we can distinguish
whetherop. is applied right aftebaseor right afterop, (which is
applied afterbasg. Note thatop. may be the same operation as
op1.

We defineop; as astrongly non-commutative unorderexgp-
eration if in addition to the requirements in Definition 5.2,
proc(inv(s1)) = proc(inv(ss)) , proc(inv(sz2)) = proc(inv(ss))
andproc(inv(s1)) # proc(inv(sz)).

©ONDUAWN

el
[N

Non-ldempotent Operation vs. Strong Non-Commutative Opera-
tion Note that if we selecbp. to be the same operation ag;
then we reach a special case which amountsotoidempotentop-
erations. Thatis, givebase if we applyop; twice in a row, the sec-
ond invocation will return a different result than the first. Consider
again the Set specification in Fig. 1. The operataid is non-

commutative if there exists an operation which is strongly non-
commutative irSpec.

5.4 RAW and AWAR Cannot be Eliminated

We begin with stating that if we perform a complete sequential op-
eration from two equivalent states, then in both cases the operation
will return the same results (i.e. the same history).

Lemma 5.4(Equivalent Histories) Letw be a complete sequential

tion ofbp by proces and leto be a state such that £
first(m). Then, there exists a complete sequential execuytiaf
op, Wheresrc(qi) = o and |ir = qi Lir.

This validity of this lemma follows directly from the fact that
the transition relation is deterministic, that enabled transitions are
taken, and that a process cannot access the local variables of an-
other process.

In this work we focus on programs where the specificaipac
can be determined by the sequential executions of the program.

Definition 5.5. Given a sequential specificatidfpec and a pro-
gram Prog, we say that the program determines the specification
when the sequential histories are the same as the specification
Spec, thatis,[Prog]us = Spec.

With minor exceptions, this property holds for all practical
algorithms that we are aware of. From here on, we assume that
all sequential specification$pec are determined.

Next, we prove that if an operation is strongly non-commutative,
then there must exist an execution of this operation that will write
to global memory. The result is intuitive, as if the operation does
not write to global memory, there will be no observable change to
the state and hence the operation will not be non-commutative.

Lemma 5.6(Global Write) Letop; be a strongly non-commutative
unordered operation in a deterministic sequential specification
Spec and let Prog be a linearizable implementation dfpec.
Then, there exists a complete sequential executipmf op; in
[Prog] by proces® € ProcessIDsuch thatt,, € m,, wheret,,
performs a global write.

Proof. From the premise thaip, is a strongly non-commutative
unordered operation, it means that there exists an operagigon
with the properties as described in Definition 5.2. ket m,
andm. be the complete sequential executiongfrog] such that

$1 = Ta lir, S2 = 7 lir andsz = 7. |ir. The executions
ma, T andm. are guaranteed to exist due to Definition 5.5. Let
p = proc(m,) andg = proc(my). As opy is unordered, we know

idempotent. As discussed in the example in Section 2, we can startthatp 7 q-

with S = @ and saybase = ¢. Then, if perform twoadd(5) in
a row, eactadd( 5) will return a different result. Non-idempotent
operations are strongly non-commutative, but not vice versa.

Classic Non-Commutativity vs. Strong Non-Commutativityn

the classic notion of non-commutativity (e.g. [45]), it is enough
for one of the operations to not commute with the other, while
here, it is required that both operations do not commute from the
sameprefix history. That is, if two operations do not commute, it
does not mean that either of them is a strongly non-commutative
operation. However, if an operation is strongly non-commutative,
there exists another operation with which it does not commute (by
definition). Consider again the Set specification in Fig. 1. Although
add andcont ai ns do not commute;ont ai ns is not a strongly
non-commutative operation. That &dd influences the result of
cont ai ns, butcont ai ns doesnotinfluence the result cidd.

Definition 5.3 (Strongly Non-Commutative Sequential Specifica-
tion). We say that a sequential specificatiSpec is strongly non-

Let us assume the executiary does not contain a transition
that performs a global write. Thefirst(,) < last(r, ). However,
by the premise we know thdast(r,) = first(x.) and hence
first(ma) 2 first(mc). Then, following Lemma 5.4 |i»= ¢ |ir-
Hence,ss = s3, which contradicts premise 11 in Definition 5.2.
Therefore, there must exist a transitiormipnthat performs a global
write. O

Next, we prove that RAW and AWAR cannot be avoided in a
wide class of linearizable implementations.

Theorem 5.7(RAW or AWAR in Linearizable Implementations)
Let op1 be a strongly non-commutative unordered operation in
a deterministic sequential specificatidipec and let Prog be a
linearizable implementation dfpec. Then, there exists a complete
sequential execution, of op, by proces® in [Prog] such that:

® RAWm,,p) = true, or
o AWAR(7,,p) = true
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6. Strongly Non-Commutative Objects

In this section we provide a few examples of well-known objects
whose sequential specification is strongly non-commutative as de-
fined in Definition 5.2

Proof. From the premise thaip, is a strongly non-commutative
unordered operation, it means that there exists a histasgand
operationop, with the properties described in Definition 5.2. Let
Thases Tay Th, Te ANdTq be the complete sequential executions in
[Prog] such thathase = mpase lir, 1 = Ta lir, S2 = T Lir,
83 = ¢ |ir @Ndsy = 74 |ir. The executionEpase, Ta, b, Te, Td
are guaranteed to exist due to Definition 5.5. et proc(m,)
andq = proc(m). As op1 is unordered, we know that q.

Let us proceed by contradiction and assume the conclusion is
false i.e. RAWm,,p) = false and AWAR(7r,,p) = false By
Lemma 5.6, we know there exists a write transition € m,

6.1 Stacks

Definition 6.1 (Stack Sequential Specificationp stack object S
supports two operations: push and pop. The state of a stack is a
sequence of itemS = (vo,...,vx). The stack is initially empty.
The push and pop operations induce the following state transitions

that writes to global memory. Let, = 7y - m - me, Wheret,,
is thefirst global write transition inr, andm,, is the maximal
atomic subsequence of in m, (if ¢,, does not belong to an atomic
construct, thernr,, = t,). SinceAWAR(m,,p) = falseandt,, is
the first global write transition imr,, it follows that there can be
no global read transitions in,, that occur before,, (otherwise we
would contradictAWAR(7,, p) = false. This means that, is the
first global (read or write) transition ifr,,.

From Definition 3.5, we know that in staférst(ms) proces®
is outside an atomic section and from the fact thatis a maximal
atomic subsequence we know that in stat€ (7 ¢), p is also out-
side an atomic section. Asy contains only transitions by process
which are not global writes, it follows thaltirst (7 ;) < last(my).
From the premise, we know thgirst(m,) = first(my). There-
fore, we know thatfirst(m,) ~ last(ns). From the fact that a
complete sequential execution, by processy exists, and from
first(m) ~ last(ny), we know that procesgcan begin aj-solo
execution ofop, from last(wy) (transition relation requireg to
execute a transition froust(7¢)). Then, as the transition relation

of the sequencé = (vo, . . ., vi), with appropriate return values:

® push@nrew): changes S to beuwo, ..., vk, vnew) and returns
responseck
¢ pop(): if S is non-empty, changes S to(be, ..., vx—1) and re-

turnswy. If S is empty, returns empty and S remains unchanged.
We letSpecs denote the sequential specification of a stack object

as defined above.

Lemma 6.2(Pop Strongly Non-Commutative)Thepop stack op-
eration is strongly non-commutative.

Proof. Let base€ Specs be a complete history after whick =
(v) for somew. Let p and ¢ be two processes, let and s be
complete invocations gbop by p, and letss ands; be complete
invocations ofpop by ¢q. From Definition 6.1,{base- s, base-
s2,base si - s3,base ss - sa} C Specs, ret(s1) = ret(s2) = v,
andret(ss) = ret(sa) = empty The claim now follows from
Definition 5.2. O

It follows from Lemma 6.2 and Definition 5.3 th&tpec; is

is deterministic, inductively, we can build a complete sequential ex- strongly non-commutative. Also from Definition 5.8ushopera-

ecutionr;, by process;, where after any transitiohperformed by

processy, we know thatdst(t') ~ dst(t), wheret' is the transi-
tion in 7, residing at the same position asesides inr;,. That is,

m, mirrors the executiorr, and hence according to Lemma 5.4,

7 Lir= Ty Lir. Transitively,m) ;= so.

As 7, is ag-solo well-formed complete sequential execution,

it follows that enabledlast(,rg) lp="enablediqsi(r;) lp, that is,
enabledlast(wg) |p= enabledyirsi(r,) lp- Similarly, we can build
thep-solo executionr,, - 7, such thatr!, - 7, contains the same se-
guence of statements as - .. At any state inr,, - 7, p is enabled
to perform a transition and since we assumed BRAW(,, p) and
AWAR(7r,, p) arefalse it implies thatr,, - ¢, and correspondingly

., - T do not contain a read transition which reads a global loca-

tion other thanmloc(t.,). As p overwrites in its first global write
transition inx,, the only location that it reads afterwardssf) - 77,
it follows thatr,, - m, and~,, - 7, are indistinguishable tp, and,

thus the result ofp; returned inr,, - 7, is the same as the result of

op1 in 7,. Thatis, in the executioncone = ¢ - 7, - Ty, - m, Which
we just showed exists ifProg], Tconc Lop, = S1-

Given that the implementation is linearizable with respect to
a deterministic sequential specification, we know that the only

tions are not strongly non-commutative. Moreoy®p operations

applied to an empty stack are not necessarily required to execute

neither RAW nor AWAR.

6.2 Work Stealing
As we now prove, the (non-idempotent) work stealing object, dis-

cussed in section 2.2, is an example of an object for which two

different operations are strongly non-commutative.
Definition 6.3 (Work Stealing Sequential Specificationi work

stealing object WS supports 3 operations: put, take, and steal. The

state of each processis a sequence of iten@; = (vg, ..., vy, )-
All queues are initially empty. The put and take operations are
performed by each processn its local queu&); and induce on it
the following state transitions, with appropriate return values:

® PUt(Unew): ChangesQ; to be (vnew,v), ..., vi,) and returns
responseck

» take(): if Q; is non-empty, it changeg; to be(vi, ..., vj,,) and
returns vg. If Q; is empty, it returns empty an@; remains
unchanged.

possible valid linearizations of the two overlapping operations in Thestealoperation is performed by each processn some queue

Thase * Teone Ar€: a)DASE: Teone lopy 4, Lir OF b) base: i, |ir

“Teone Lop, - L€t US proceed by considering each of these two cases: pe <vg7

In case a) when the linearizationbiase meonc Lop, 7 |ir, DE-
cause the specification is deterministic, it follows that.c |op, =
sy andmw, |;.= s3. However, we know thatr, |;.= s2, which
contradicts condition 11 in Definition 5.2.

In case b) when the linearization b@se- 7} |ir “Teone Lopy
because the specification is deterministic, it follows tHa;,. = s2
and Teone lop, = s4. However, we know thatrcone lop, = s1,
which contradicts condition 10 in Definition 5.2.

Therefore RAW,,, p) = true or AWAR(7q, p) = true. O

Q; = (v}, ...,vij) for j # 4. if Q; is non-empty, it changeg, to
...,v,ij,l) and returnSz;ij. If Q; is empty, it returns empty
and@; remains unchanged.

We letSpec,,s denote the sequential specification of a work steal-
ing object as defined above.

Lemma 6.4(Take & Steal Strongly Non-Commutativelhetake
and stealoperations are strongly non-commutative.

Proof. Let base € Spec,s be a complete history after which
Q; = (v) for some valuev and procesg. Leti # j be some
process other thaf let s; andss be complete invocations steal
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by process on @;, and lets, andss be complete invocations of
takeby process. From Definition 6.3{base: s1, base- s2, base-
s1 - s3,base- sy - sa} C Specs, ret(si) = ret(s2) = v,
andret(ss) = ret(sa) = empty The claim now follows from
Definition 5.2. O

It follows from Lemma 6.4 and Definition 5.3 th&tpec,,s is
strongly non-commutative. It is easily shown tltateus, hash-
tables andses are strongly non-commutative. The proofs are es-
sentially identical to the proofs of Lemmas 6.2 and 6.4 and are
therefore omitted.

6.3 Compare-and-Swap (CAS)
We now prove tha€ASis strongly non-commutative.

Definition 6.5 (Compare-and-swap Sequential Specificatiof)
compare-and-swap object C supports a single operation called
CAS and stores a scalar value over some domaimhe operation
CAS(exp,new), forezp,new € V, induces the following state
transition of the compare-and-swap object. If C's value is exp, C's
value is changed to new and the operation returns true; otherwise,
C’s value remains unchanged and the operation returns false.

We let Specc denote the sequential specification of a compare-
and-swap object as defined above.

Lemma 6.6 (CAS Strongly Non-Commutative)The CAS opera-
tion is strongly non-commutative.

Proof. Let base € Specc be a complete history after which C's
value isv, leti andj be two processes, let andss be complete
invocations of CAS(,v’) by process, for somev # v' € V, and let
s andss be complete invocations of CAG(’) by procesg. From
Definition 6.5,{base s, base s,,base s, - s3,base sz -s4} C
Specc, ret(s1) = ret(s2) = true, andret(ss) = ret(ss) =
false The claim now follows from Definition 5.2. O

It follows from Lemma 6.6 and Definition 5.3 th&pecc is
strongly non-commutative. It also follows from lemma 6.6 that any
software implementation of CAS is required to use either AWAR
or RAW. Proving a similar result for all non-trivial read-modify-

[42] programs that run on these models. Our result is complemen-
tary to this direction: it states that we may need to enforce certain
order, i.e. RAW, regardless of what weak memory model is used.
Further, our result can be used in tandem with program testing and
verification: if RAW and AWAR is completely missing from a pro-
gram that claims to satisfy certain specifications, then that program
is certainly incorrect and there is no need to attempt to test it or
verify it.

Kawash’s PhD thesis [29] (also in papers [25, 26]) investigates
the ability ofweak consistencsnodels to solve mutual exclusion,
with only read and write operations. This work shows that many
weak models (Coherence, Causal consistency, P-RAM, Weak Or-
dering, SPARC consistency and Java Consistency) cannot solve
mutual exclusion. Processor consistency [18] can solve mutual ex-
clusion, but it requires multi-write registers; for two processes,
solving mutual exclusion requires at least three variables, one of
which is multi-writer. In contrast, we show that particular orders
of operations or certain atomicity constraints must be enforced, re-
gardless of the memory model; moreover, our results apply beyond
mutual exclusion and hold for a large class of important objects.

Boehm [7] studies when memory operations can be reordered
with respect to PThread-style locks, and shows that it is not safe to
move memory operations into a locked region by delaying them
past a lock call. On the other hand, memory operations can be
moved into such a region by advancing them to be before an
unlock call. Boehm also provides detailed evaluation of the cost
of using fences. However, Boehm’s paper does not address the
central subject of our paper, namely, the necessity that certain
ordering patterns (RAW or AWAR) must be presergidethe lock
operations themselves.

Our proof technique employs theovering technique, origi-
nally used by Burns and Lynch [10] to prove a lower bound on
the number of registers needed for solving mutual exclusion. This
technique had many applications, both with read / write opera-
tions [4, 5, 13, 14, 28, 39], and with non-trivial atomic operations,
such as compare&swap [15, 16]. Some steps of our proofs can be
seen as a formalization of the arguments Lamport uses to derive a
fast mutual exclusion algorithm [32].

write operations (such as fetch-and-add, swap, test-and-set and

load-link/store-conditional) is equally straightforward.

7. Related Work

8. Conclusion and Future Work
We presented an important result which states that it is impossi-

Numerous papers present implementations of concurrent datable to build a wide range of concurrent algorithms that are both
structures, several of these are cited in Section 2. We refer thecorrect and do not use expensive synchronization. Our resukés hav
reader to Herlihy and Shavit’s book [23] for many other examples. powerful implications for concurrent algorithm construction, hard-
Contemporary architectures often execute instructions issued byware design, testing and verification. We focused on two common
a single process in an out-of-order manner, and profedeeor synchronization idioms: read-after-write (RAW) and atomic write
barrier instructions to order the execution (cf. [1, 33]). There is a after read (AWAR). We proved that mutual exclusion algorithms
plethora of fence and barrier instructions (see [35]). For example, must contain either RAW or AWAR patterns in their entry sections.
DEC Alpha provides two different fence instructions, a memory Similarly, we proved that linearizable implementations of strongly
barrier (MB) and a write memory barrier (WMB). PowerPC pro- non-commutative operations must use RAW or AWAR. Finally, we
vides a lightweightl(wsync) and a heavyweights{ync) mem- proved that our result applies to many classic specifications such
ory ordering fence instructions, whesg/nc is full fence, while as stacks, sets, hash tables, queues, work-stealing structures and
I wsync giuarantees only RAR, WAR, and WAW ordering but compare-and-swap operations. We believe that our result is practi-
not RAW. SPARC V9 RMO provides several flavors of fence in- cally useful as a guideline for algorithm writers and further, sug-

structions, through a MEMBAR instruction that can be customized
(via four-bit encoding) to order a combination of previous read and
write operations with respect to future read and write operations.

gests targeted improvements in hardware design: in particular, op-
timizing the cost of store-load fences and compare-and-swap oper-
ations.

Pentium 4 supports load fencef(ence), store fencegf ence) An interesting direction for future work is strengthening our

and memory fence (mfence) instructions. THeence instruction result by considering not only a read after a write (or a write after

can be used for implementing the RAW order. a read), but also longer sequences of reads and writes. Another
Recently, there has been a renewed interest in formalizing mem- interesting direction is formulating a useful class of operations for

ory models (cf. [40, 43, 44]), model checking [8], and verifying which we do not need to use RAW and AWAR.
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