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Abstract
Building correct and efficient concurrent algorithms is known to
be a difficult problem of fundamental importance. To achieve effi-
ciency, designers spend significant time trying to remove unneces-
sary and costly synchronization. However, not only is this manual
trial-and-error process ad-hoc and error-prone, but it often leaves
designers pondering the question of: is it inherently impossible to
eliminate certain synchronization, or is it that I was unable to elim-
inate it on this attempt and I should keep trying?

In this paper we respond to this question. We prove that it is
impossible to build correct concurrent implementations of classic
and ubiquitous specifications such as sets, queues, stacks, mutual
exclusion and read-modify-write operations, that completely elim-
inate certain expensive synchronization.

More specifically, we prove that one cannot avoid the use of:
i) read-after-write (RAW), where a write to shared variable A is
followed by a read to a different shared variable B or ii) atomic
write-after-read (AWAR), where an atomic operation reads and
then writes to shared locations. Unfortunately, enforcing any of
these two patterns is expensive on virtually all mainstream pro-
cessor architectures today. To enforce RAW, memory ordering–
also called fence or barrier–instructions must be used. To enforce
AWAR, atomic instructions such as compare-and-swap (or equiva-
lent) are required. However, fences and atomic instructions are typ-
ically substantially slower–around 50 times–than regular instruc-
tions!

Although designers of concurrent algorithms frequently strug-
gle to avoid RAW and AWAR, their attempts are often futile. Our
result explains exactly in which cases avoiding RAW and AWAR is
impossible. Failure to use such synchronization will mean that the
algorithm is incorrect and there is no need to even attempt to verify
its correctness. On the flip side, our result indicates on which data
structures designers can focus their efforts on.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
The design of concurrent applications that avoid costly synchro-
nization patterns is a cardinal programming challenge, requiring
consideration of algorithmic concerns and architectural issues, and
has implications to formal testing and verification.

Two common synchronization patterns that frequently arise in
the design of concurrent algorithms areread after write(RAW)
andatomic write after read(AWAR). The RAW pattern consists of
a write to some shared variableA, followed by a read to a different
shared variableB. The AWAR pattern consists of a read of some
shared variable followed by a write to the same or a different shared
variable, where the read and the write are atomic. Examples of
the AWAR pattern include read-modify-write operations, such as
successful Compare-and-Swap [27] (CAS) operations.1

Unfortunately, on all mainstream processor architectures, the
RAW and AWAR patterns are associated with expensive instruc-
tions. Modern processor architectures use relaxed memory mod-
els, where guaranteeing RAW order among accesses to indepen-
dent memory locations requires the execution of memory ordering
instructions–often calledmemory fencesor memory barriers–that
enforce RAW order.2 Also guaranteeing the atomicity of the AWAR
pattern requires the use of atomic instructions. Typically, RAW
fence and atomic instructions are substantially slower–around 50
times–than regular instructions, even under the most favorable
caching conditions.

Due to these high overheads, designers of concurrent algorithms
aim to avoid both the RAW and AWAR patterns, if possible. How-
ever, such attempts are often very time-consuming and unsuccess-
ful: in many cases, after multiple empirical attempts, it turns out
that it is impossible to avoid these patterns while ensuring correct-
ness of the algorithm.

This raises an interesting and important practical question: Can
we discover, formalize and prove the conditions under which at-

1 CAS operates on a single shared variable and takes as arguments an
expected value and a new value. It atomically (1) reads the value of the
variable; (2) compares the read value with the expected value; and (3) if
equal then it writes the new value to the variable. It returnsa Boolean value
that indicates whether or not it succeeded, i.e., whether ornot the write
occurred.
2 RAW order requires the use of explicit fences or atomic instructions
even on strongly ordered architectures (e.g., X86 and SPARCTSO) that
automatically guarantee other types of ordering (read afterread, write after
read, and write after write).
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tempts by algorithm designers to avoid the RAW and AWAR pat-
terns, while ensuring algorithm correctness, are actually futile?

In this paper, we answer this question in a way that formally
captures what were previously only empirical observations. We
show that implementations of a wide class of concurrent algorithms
must involve the expensive RAW or AWAR patterns.

We focus on two fundamental classes ofspecificationsthat
are heavily used in practice: linearizability and mutual exclusion.
Roughly speaking, our results state that it is impossible to build
a linearizable RAW-AWAR-free concurrent algorithm of a non-
commutative operation. Similarly, it proves that it is impossible to
build a RAW-AWAR-free correct mutual exclusion algorithm. Both
of these results are stated and elaborated on with formal rigor in the
rest of the paper.

Our results are widely applicable as they talk aboutspecifica-
tions, and not of particular implementations. That is, they are ap-
plicable toany implementation of the said specifications.

Main Contributions. The main contributions of the paper are the
following:

• We define the class of specifications that our results apply
to: deterministic sequential specifications and strongly non-
commutative operations. We prove that it is impossible to build
a linearizable implementation of such specifications, that is
RAW-AWAR-free.

• We prove that many common operations on ubiquitous and
fundamental abstract data types–such as sets, queues, work-
stealing queues, stacks, and read-modify-write objects–satisfy
our conditions on the specification and hence are subject to our
results.

• We prove that it is impossible to build an algorithm that satisfies
mutual exclusion, is deadlock-free and RAW-AWAR-free.

Practical Implications. Our results have important practical im-
plications: it guides algorithm designers, suggests targeted im-
provements in hardware and can be used in tandem with classic
program testing and verification:

• Designers of concurrent algorithms can use our results to de-
termine when looking for a correct RAW-AWAR-free design is
futile. Conversely, our results indicate when avoidance of these
expensive patterns may be possible. Further, our results state
exactly what changes in the semantics of thespecificationof
the target algorithmic operations may make them amenable for
a correct RAW-AWAR-free design.

• For processor architects, this result indicates the importance
of optimizing the performance of atomic operations such as
compare-and-swap, and in particular RAW fence instructions,
which have historically received little attention for optimiza-
tion.

• For formal testing and verification of concurrent algorithms, it
is possible to use our result as a filter: if the algorithm does not
contain RAW and AWAR (regardless of whether the architec-
ture is sequentially consistent or not), then it is certainly incor-
rect and there is no need to even attempt to test it or verify it.
Otherwise, we proceed as usual with standard testing and veri-
fication.

The remainder of the paper is organized as follows. We present
an overview of our results with illustrative examples in Section 2.
In Section 3, we present the formal model for our results. We
present our main results for mutual exclusion in Section 4 and for
linearizable objects in Section 5. In Section 6, we show that many
widely used specifications fall into our class. We discuss related
work in Section 7 and conclude the paper with Section 8.

{S = A} contains(k) {ret = k ∈ A ∧ S = A}

{S = A} add(k) {ret = k 6∈ A ∧ S = A ∪ {k}}

{S = A} remove(k) {ret = k ∈ A ∧ S = A \ {k}}

Figure 1. Sequential specification of a set.S ⊂ N denotes the
contents of the set.ret denotes the return value.

2. Overview
In this section, we first informally explain our result and then
demonstrate its implications via several well-known concurrent al-
gorithms. The discussion in this section is mostly informal. Formal
details are provided in subsequent sections.

Our result focuses on two important practical specifications:
mutual exclusion and linearizability [24].

Mutual Exclusion. The first part of the result states that it is im-
possible to design a deadlock-free algorithm where all executions
of the algorithm are RAW-AWAR-free (i.e. efficient) and the algo-
rithm satisfies the mutual exclusion specification [12, 31] (i.e. cor-
rect). By deadlock-free mutual exclusion specification, we mean
that there cannot be more than one process inside a critical sec-
tion at the same time, and if one or more processes compete for a
criticial section, at least one of them succeeds.

Linearizability. The second part of our result discusses lineariz-
ability [24]. Given a deterministic sequential specificationSpec,
and an unordered strongly non-commutative operationop of that
specification, it says that we cannot design an algorithm where all
executions of the algorithm are RAW-AWAR-free and the algo-
rithm is linearizable with respect to the given sequential specifi-
cationSpec.

Intuitively, an algorithm is linearizable with respect to a given
sequential specification if each execution of the algorithm is equiv-
alent to some sequential execution of the specification, where the
order between the non-overlapping operations is preserved. The
equivalence is defined by comparing the arguments and results of
operations.

Informally, by a deterministic sequential specification we mean
that if an operation executes from a given state, it will always
return the same result. By a strongly non-commutative operation,
we mean that in the specification, the operationop1 can influence
the result of another operationop2 andop2 can influence the result
of op1. By unordered we mean that the saidop1 andop2 operations
are performed by different processors (but still sequentially).

Let us illustrate these concepts on a simple example: a Hoare-
style sequential specification of a classic Set, shown in Fig. 1.

First, this simple sequential specification is deterministic: if an
add, remove andcontains execute from a given state, they
will always return the same result.

Second, both operations,add andremove are strongly non-
commutative. That is,there existsan execution of the specification
such thatadd can influence the result ofadd andremove can
influence the result ofremove. For example, let us begin with
S = ∅. Then, if we perform anadd(5), it will return true and
a subsequent secondadd(5) will return false. However, if we
change the order, and the secondadd(5) executes first, then it will
returntruewhile the firstadd(5) will return false. That is,add is
a strongly non-commutative operation, as there exists another oper-
ation (in this case anotheradd, but in general as we define later, it
could be another operation) such that the two operations influence
each other’s result. Similar reasoning applies toremove. How-
ever,contains is not a strongly non-commutative operation, as
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its result can be influenced by a precedingadd or remove, but its
execution does not influence the result of any other operation.

Third, the specification may allow an operation to be executed
by many processes, or only by a single process. For instance, in
the case of work-stealing queues which we will discuss later, some
operations can only be executed by a single process.

For the Set specification from Fig. 1, our result will state that
any linearizable implementation ofadd and remove (i.e. the
strongly non-commutative operations)mustuse RAW or AWAR
in some sequentialexecution of the implementation. However, our
result does not apply to thecontains operation which intuitively
makes sense ascontains does not modify the shared state and
should not require synchronization.

Implications While our result shows when expensive synchro-
nization cannot be eliminated correctly, it is also helpful in guiding
designers towards cases where they may be successful. In particu-
lar, a designer may focus on either of the following directions:

• Determinism: change the sequential specification, perhaps by
considering non-deterministic specifications.

• Correctness: change the correctness criteria, perhaps by consid-
ering an alternative to linearizability.

• Commutativity: focus on operations that are not strongly non-
commutative, i.e.contains instead of anadd.

• Ownership: restrict the specification of an operation such that
the operation can only be performed by a single process, instead
of multiple processes.

• Detectors: come up with efficient detectors that can identify
executions which are known to be commutative and hence can
avoid the expensive synchronization in that case.

The first four of these pertain to the specification and the cor-
rectness criteria and we illustrate two of them (determinism and
ownership) in the examples that follow.

The last one is focused on the implementation. To elaborate on
the implementation point further, observe that our results talk about
executionsof operations, and namely those that are strongly non-
commutative as illustrated in the example with the twoadd(5)’s
executed sequentially. Suppose however that the sequence of two
add(5)’s starts from a set that contains5. Then, regardless of the
order, bothadds will always returnfalse. If a designer is able to
identify such cases (which adds more work on the critical path),
then it might be possible to avoid the synchronization insomebut
not all executions ofadd. In practice however, this is difficult to
realize as one would need to examine the state of the data structure
non-atomically and be aware of potential overlapping operations.

Next, we illustrate the applicability of our result in practice via
several well-known concurrent algorithms.

2.1 Compare and Swap

We begin with the universal compare-and-swap (CAS) construct,
whose sequential specification is deterministic, and the operation is
strongly non-commutative (for a formal proof, see Section 6). The
sequential specification of CAS(v, o, n) says that it first compares
∗v to o and if ∗v = o, thenn is assigned tov and CAS returns
true. Otherwise,∗v is unchanged and CAS returnsfalse. Here we
use the∗ operator to denoted address dereference.

The CAS specification can be implemented trivially with a
linearizable algorithm that uses an atomic hardware instruction
(also called CAS) and in that case, the implementation inherently
includes the AWAR pattern.

Alternatively, CAS specification can be implemented by a lin-
earizable algorithm using reads, writes, and hardware CAS, with
the goal of avoiding the use of the hardware CAS in thecommon

bool WFCAS(Val ev, Val nv) {
14: if (ev = nv) return WFRead()==ev;
15: Blk b = L;
16: b.X = p;
17: if (b.Y) goto 27;

...

Figure 2. Adapted snippet from Luchagco et al.’s [34] wait-
free CAS algorithm.

while (¬CAS(Lock,FREE,BUSY);

Figure 3. A simplified snippet of a test-and-set lock acquire.

1: flag[me] := true;
2: while flag[¬me] = true {

...

Figure 4. A simplified snippet from the entry section of
Dekker’s 2-way mutual exclusion algorithm.

case of no contention. Such a linearizable algorithm is presented
by Luchangco et al. [34]. Fig. 2 shows an adapted code snippet of
the common path of that algorithm. While the algorithm succeeds
in avoiding the AWAR pattern in the common case, itmustinclude
the RAW pattern in its common path. The write tob.X in line 16
mustprecede the read ofb.Y in line 17 or otherwise the algorithm
will be incorrect.

Both examples confirm our result: AWAR or RAW was neces-
sary. Of course, knowing that RAW and AWAR cannot be avoided
in implementing CAS correctly is important as CAS is a fundamen-
tal building block for many classic concurrent algorithms.

2.2 Mutual Exclusion Locks

For mutual exclusion lock implementations, our result proves that
a RAW or AWAR is required for the entry section.

The test-and-set is the most common lock implementation. Its
lock acquire operation boils down to an AWAR pattern, by using
an atomic operation, e.g., CAS, to atomically read a lock variable,
check that it represents a free lock, and if so replace it with an
indicator of a busy lock. Fig. 3 shows a simplified version of a test-
and-set-lock. Similarly for all other locks that require the use of
read-modify-write atomic operations in every lock acquire [2, 19,
36].

On the other hand, a mutual exclusion lock algorithm that avoids
the AWAR pattern [6, 12, 41], must include the RAW pattern. For
example, Fig. 4 shows a simplified snippet from the entry section of
Dekker’s algorithm [12] for 2-process mutual exclusion. A process
that succeeds in entering its critical section must first raise its own
flag (line 1) and then read the other flag (line 2) to check that the
other process’s flag is not raised. Thus, the entry section involves a
RAW pattern.

These examples are specific implementations that highlight the
applicability of our result, namely that implementation of algo-
rithms that satisfy the mutual exclusion specification cannot avoid
RAW and AWAR.

2.3 Work Stealing Structures

Concurrent work stealing algorithms are highly popular in imple-
menting various load balancing frameworks.

A work stealing structure holds a collection of work items
and it has a single process as its owner. It supports three main
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WorkItem take() {
1: b := bottom;
2: CircularArray a := activeArray;
3: b := b - 1;
4: bottom := b;
5: t := top;

...

Figure 5. Snippet adapted from thetake operation of
Chase-Lev’s work stealong algorithm [11].

WorkItem take() {
1: h := head;
2: t := tail;
3: if (h = t) return EMPTY;
4: task := tasks.array[h%tasks.size];
5: head := h+1;
6: return task;

}

Figure 6. Thetake operation from Michael et al.’s idem-
potent work stealing FIFO queue [38].

operations:put, take, andsteal. Only the owner can insert
work items, usingput, and usingtake to extract work items.
Other processes (thieves) may extract work items usingsteal.
The safety requirements of work stealing are that (1) each extract
operation (i.e.,take or steal) that returns a work item (i.e., not
an empty indicator) must return a valid work item, i.e., one that
was previouslyput by the owner, and that (2) each inserted item
is eventually extracted exactly once. In Section 6, we provide a
formal proof for why thetake andsteal operations are strongly
non-commutative operations.

In designing algorithms for work stealing, the highest priority
is to optimize the owner’s operations, especially the common paths
of such operations, as they are expected to be the most frequently
executed parts of the operations. Examining known work stealing
algorithms that avoid the AWAR pattern (i.e., avoid the use of
complex atomic operations) in the common path of the owner’s
operations, reveals that they all contain the RAW pattern in the
common path oftake operation that succeeds in extracting work
items.

The work stealing algorithm by Chase and Lev [11] is repre-
sentative of such algorithms [3, 17, 20, 21]. Fig. 5 shows a code
snippet adapted from the common path of thetake operation of
that algorithm, with minor changes for the sake of consistency in
presentation. The variablesbottom andtop are shared variables,
andbottom is written only by the owner but may be read by other
processes. Hence, there is no benefit from using single location
complex atomic operations to operate onbottom. The key pat-
tern in this code snippet is the RAW pattern in lines 4 and 5. The
order of write tobottom in line 4 followed by the read oftop in
line 5 is necessary for the correctness of the algorithm.

Indeed, our result captures this fact and also the fact that re-
versing the order of these two instructions results in an incorrect
algorithm.

From deterministic to non-deterministic specificationsOur re-
sult dictates that in the standard case where we have the expected
deterministic sequential specification of a work-stealing structure,
it is impossible to avoid RAW and AWAR. However, as men-
tioned earlier, our result can guide us towards finding practical
cases where we can indeed eliminate RAW and AWAR. One such
relaxation is to allow non-deterministic specifications. Such a re-
laxation is exemplified by the idempotent work stealing introduced

Data dequeue() {
1: h := head;
2: t := tail;
3: next := h.next;
4: if head 6= h goto 1;
5: if next = null return EMPTY;
6: if h = t {CAS(tail,t,next) ; goto 1; }
7: d := next.data;
8: if ¬CAS(head,h,next) goto 1;
9: return d;

}

Figure 7. Simplified snippet ofdequeue on lock-free
FIFO queue [37].

by Michael et al. [38]. This concept relaxes the semantics of work
stealing to require that each inserted item is eventually extracted
at least onceinstead ofexactly once. Under this notion the authors
managed to design algorithms for idempotent work stealing that
avoid both the AWAR and RAW patterns in the owner’s operations.

Our result explains the underlying reason of why elimination
of RAW and AWAR was possible: because we cannot write a de-
terministic sequential specification for the idempotent structures,
our result now indicates that it may be possible to avoid RAW and
AWAR which is substantiated by the algorithms in [38]. Fig. 6
shows thetake operation of one of the idempotent algorithms
(uses FIFO order). Note the absence of both the AWAR and RAW
patterns. The shared variableshead,tail, andtasks.array[]
are read before writing tohead, and no reads need to be atomic
with the subsequent write.

2.4 FIFO Queue Example

In examining concurrent algorithms for multi-consumer FIFO
queues, one notes that either locking or CAS is used in the com-
mon path of nontrivialdequeue operations that return a dequeued
item. However, as we mentioned already, our result proves that mu-
tual exclusion locking requires each execution of a successful lock
acquire to include the AWAR or RAW pattern. All algorithms that
avoid the use of locking indequeue include a CAS operation in
the common path of each nontrivialdequeue execution. Fig. 7
shows the simplified code snippet from thedequeue operation of
the classic Michael and Scott’s lock-free FIFO queue [37]. Note
that every execution that returns an item must execute CAS.

We observe that algorithms formulti-consumerdequeue in-
clude directly or indirectly at least one instance of the AWAR or
RAW patterns (i.e. use either locking or CAS).

Restricting Ownership However, our result suggests that if we
want to eliminate RAW and AWAR correctly, we can focus on re-
stricting the processes that can execute an operation. For instance,
we can specify thatdequeue be executed by a single process,
instead of multiple processes. Indeed, when we consider single-
consumer FIFO queues, where no more than one process can exe-
cute thedequeue operation, we can obtain a correct implementa-
tion of dequeue which does not require RAW and AWAR.

Fig. 8 shows a single-consumerdequeue operation, adapted
from Lamport’s single-producer single-consumer FIFO queue [30].3

Note that the code avoids both RAW and AWAR. The variable
head is private to the single consumer and its update is done by a
regular write.

Once again, this example demonstrates a case where we used
our result to guide the implementation. In particular, by changing
the specification of an operation of the abstract data type–namely

3 The restriction or the lack of restriction on the number of concurrent
producers does not affect the algorithm for thedequeue operation.
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Data dequeue() {
1: if (tail = head) return EMPTY;
2: Data data := Q[head modm];
3: head := head +1 modm;
4: return data;

}

Figure 8. Single-consumer AWAR-RAW-freedequeue
operation adapted from Lamport’s FIFO queue [30].

from multi-consumer to single-consumer–it enabled us to create an
implementation of the operation (i.e.,dequeue) where we did not
need RAW and AWAR.

3. Preliminaries
As our work contains results on both linearizable algorithms and
mutual exclusion problems, in this section, we include the formal-
ization that is common to both problems. Preliminaries that are spe-
cific to one of the results are included in the corresponding section.

3.1 Implementation

We now define all terms and properties that pertain to implemen-
tation, including transitions, executions and equivalence between
states.

3.1.1 Language

For our implementations, we assume a standard sequential impera-
tive programming language with the usual syntax and semantics,
equipped with only basic constructs for concurrency: an atomic
section and process creation. We assume the language does not al-
low nested atomic sections or process creation inside atomic sec-
tions. This language is simple but powerful enough to express all
known practical concurrent algorithms today. Further, if necessary,
with the atomic construct, one can implement all other atomic op-
erations such as fetch-and-store, locks, universal constructs such as
compare-and-swap, etc.

We useVarIdsL to denote the set of process-local variable iden-
tifiers, VarIdsG to denote the set of global identifiers (i.e. memory
which can be accessed by each process including global variables
and heap) andLab the set of program labels.

3.1.2 Semantics

A program stateσ is a tuple〈pc, locals, globals〉 ∈ Σ, where:

• Σ = PC × Locals×Globals

• PC = ProcessIDs⇀ Lab

• Locals = ProcessIDs× VarIdsL ⇀ Val

• Globals = VarIdsG ⇀ Val

A stateσ tracks the program counter for each process (pc),
a mapping from process local variables to values (locals), and a
mapping from global identifiers to values (globals).

We assume that program statements are labeled with unique
labels and usestmt(l) as the statement at program labell. We
denote the set of initial states asInit ⊆ Σ.

Transition Relation The behavior of a program is determined by
its transition relationTR ⊆ Σ×ProcessIDs×Stmt×Σ, describing
a set of transitions. For a transitionπtr ∈ TR, we denote its source
state bysrc(πtr), its executing process byproc(πtr), its destina-
tion state bydst(πtr), its executing statement bystmt(πtr) and
the unique program label where the statement resides aslbl(πtr).
For atomic sections, we assume strong atomicity semantics: if a
process is inside an atomic section in a given state, then no other

process can take transitions from that state. To avoid formal clutter,
our treatment of atomic sections is semi-formal (it can be modeled
easily by including a field in the state, denoting the process cur-
rently inside an atomic section, but that will introduce more formal
clutter). A program transition represents the intuitive fact that start-
ing from a statesrc(πtr), where no other processpo 6= proc(πtr)
is inside an atomic section, processproc(πtr) can execute the state-
mentstmt(πtr) and end up in a statedst(πtr). We usemloc(πtr)
to denote the memory location (variable identifer) that the transi-
tion accesses. If the transition does not read or write (i.e. performs
a conditional) thenmloc(πtr) returns⊥. We say that a transition
πtr performs a global read (resp. write) ifmloc(πtr) ∈ VarIdsG
and stmt(πtr) is a read (resp. write). We say that the transition
performs a local operation if it does not perform a global read or
a write. We also assume the standard programming language se-
mantics where a process cannot modify the local state of other pro-
cesses. Given a stateσ ∈ Σ, we useenabledσ to denote the set
of enabled statements inσ. That is,enabledσ is a set of tuples
of the form 〈p, l〉 such thatpcσ(p) = l and there does not exist
q ∈ ProcessIDs, q 6= p, such thatq is inside an atomic section in
σ. Given a set of processP ⊆ ProcessIDs, we useenabledσ ⇂{P}

to denote the set of tuples that consist only of tuples of processes in
P . When P is a singletonP = {p}, we writeenabledσ ⇂p.

We assume the transition relation satisfies the property that
all enabled statements from a given state are eventually per-
formed by a transition from that state. That is,∀σ ∈ Σ.∀〈p, l〉 ∈
enabledσ. ∃tr ∈ TR such thatsrc(tr) = σ, proc(tr) = p
and lbl(tr) = l. Finally, we also assume that the transition rela-
tion is deterministic, that is,∀t1, t2 ∈ TR.(src(t1) = src(t2) ∧
(proc(t1) = proc(t2)) ∧ (lbl(t1) = lbl(t2)) ⇒ t1 = t2. That
is, if a statement is executed from a given state by the same pro-
cess, the end result will always be a unique destination state (same
transition).

Executions An executionπ is a (possibly infinite) sequence of
transitionsπ0, π1, . . ., such that for everyi ≥ 0, πi ∈ TR and
∀j ≥ 1. dst(πj−1) = src(πj). An executionπ is initial if
src(π0) ∈ Init. We usefirst(π) as a shortcut forsrc(π0), i.e.
the first state in the executionπ, and,last(π) to denote the last state
in the executionπ, i.e. last(π) = dst(π|π|−1). If a transitiont is
performed in an executionπ thent ∈ π returnstrue, otherwise it
returnsfalse. We useπ(i,j) to denote the sequence of all transitions
in π occurring between positionsi andj (including the transitions
at i andj). For a set of processesP ⊆ ProcessIDs, an executionπ
is said to beP -soloif it only contains transitions of processes inP ,
that is,∀i. 0 ≤ i < |π|. proc(πi) ∈ P . Conversely, an execution is
P -freeif contains no transitions of processes inP . WhenP = {p},
we writep-solo andp-free.

For a program Prog, we use[[Prog]] to denote the set of exe-
cutions for that program starting from initial states (e.g. states in
Init). We say that a transitiont belongs to the program Prog, if
there exists an executionπ ∈ [[Prog]] such thatt ∈ π.

Next, we define what it means for an executionπ ∈ [[Prog]]
to beatomic. Intuitively, an execution is atomic if all transitions in
the execution are preformed by the same process inside an atomic
section. That is, no other process can perform a transition from any
state in that execution. More formally:

Definition 3.1 (Atomic Execution). We say that an executionπ
is executed atomically by a processp whenπ is p-solo and either
|π| = 1 or ∀i. 1 ≤ i < |π|, p is inside an atomic section in each
statesrc(πi).

Note that every atomic execution by processp is p-solo, but not
everyp-solo execution is atomic. That is, even if an execution is
solo, for a given process, it could be the case that there is another
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execution by a different process which contains one of the states of
this execution (without the last one).

Given an executionπ and a transitionπk ∈ π, the maximal
atomic subsequenceof transitionπk in π is the (unique) subse-
quenceπ(i,j), such thatπ(i,j) is an atomic execution of process
proc(πk), wherei ≤ k ≤ j, andproc(πk) is outside an atomic
section in statessrc(πi) anddst(πj).

Next, we define the notion of equivalent states with respect to
a set of processesP . Intuitively, two states are equivalent with
respect to a set of processesP , if the global states of the two states
are identical and the local states of each process in both states is
identical. More formally:

Definition 3.2 (State Equivalence). Given a set of processesP ⊆
ProcessIDs, two statesσ and σ′ are said to be equivalent with

respect toP , denoted asσ
P
∼ σ′ if:

• globalsσ = globalsσ′

• ∀p ∈ P. pcσ(p) = pcσ′(p)
• ∀(p, var) ∈ dom(localsσ). localsσ(p, var) = localsσ′(p, var).
• enabledσ ⇂{P}= enabledσ′ ⇂{P}.

For convenience, whenP is a singletonP = {p}, we write
σ

p
∼ σ′.
Next, we define read-after-write executions. Intuitively, these

are executions where a process writes to global memory location
A and then, sometimes later, reads a global memory location that
is different fromA.

Definition 3.3 (Read After Write Execution). We say that a process
p performs aread-after-writein executionπ, if ∃i, j. 0 ≤ i < j <
|π| such that:

• πi performs a global write by processp.
• πj performs a global read by processp.
• mloc(πi) 6= mloc(πj) (the memory locations are different).

We introduce the predicateRAW(π, p) which evaluates totrue
if p performs aread-after-writein π and tofalseotherwise. Note
that in this definition there is no restriction on how the accesses
are performed, atomically or not, it talks only about ordering of
operations.

Next, we define atomic write-after-read executions. Intuitively,
these are executions where a process first reads from a global
memory location and then, sometimes later, writes to a global
memory location and these two transitions occur atomically, that is,
in-between these two transitions, no other process can perform any
transitions. Note that unlike read-after-write executions, here, the
global read and write neednot access different memory locations.

Definition 3.4 (Atomic Write After Read Execution). We say that
a processp performs anatomic write-after-readin executionπ, if
∃i, j. 0 ≤ i < j < |π| such that:

• πi performs a global read by processp
• πj performs a global write by processp
• π(i,j) is an atomic execution of processp

We introduce the predicateAWAR(π, p) which evaluates totrue
if processp performs an atomic write-after-read inπ and tofalse
otherwise.

3.2 Specification

3.2.1 Histories

A history H is defined as a finite sequence of actions, i.e.H =
ψ;ψ...;ψ, where an action is an invocation or a response of an
operation by a given process, that is:

ψ = (p, invoke op arg) | (p, response op ret)

wherep ∈ ProcessIDsis a process identifier,op ∈ OpId is an
operation identifier,arg is the argument to the operation andret is
the return value of the operation. For an actiona, we useproc(a)
to denote the process,kind(a) to denote the kind of the action
(invoke or response),op(a) to denote the name of the operation,
arg(a) to denote the arguments andret(a) to denote the return
value. We useHi to denote the action at positioni in the history,
where0 ≤ i < |H|. For a processp, H ⇂p is used to denote the
sub-history ofH (which is a sub-sequence ofH) that consists only
of the actions of processp.

An invocation(p, invoke m arg) is said to bependingin a
historyH if it has no matching response, that is,∃i. 0 ≤ i < |H|
such thatproc(Hi) = p, kind(Hi) = invoke, op(Hi) = m and
∀j. i < j < |H|, proc(Hj) 6= p or kind(Hj) 6= response.
A history H is said to becompleteif it has no pending calls.
We usecomplete(H) to denote the set of histories resulting after
extendingH with matching responses to a subset of invocations
that are pending inH and then removing the remaining pending
invocations. ( A historyH is sequentialif H is empty (H = ǫ)
or H starts with an invocation action, i.e.kind(H0) = invoke
and invocations and responses alternate. That is,∀i. 0 ≤ i <
|H| − 1, kind(Hi) 6= kind(Hi+1) and each response is matched
by an invocation that occurs immediately before it inH, i.e.∀i. 1 ≤
i < |H|, if kind(Hi) = response thenkind(Hi−1) = invoke
andproc(Hi) = proc(Hi−1). A complete sequential historyH
where|H| = 2 is said to be acomplete invocationof an operationo
iff op(H0) = o andop(H1) = o. In the case where H is a complete
sequential invocation, we useinv(H) to denote the invoke action
in H andresp(H) to denote the response action inH. A history
H is well-formed if for each processp ∈ ProcessIDs, H ⇂p is
sequential. In this work, we consider only well-formed histories.

3.2.2 Histories and Executions

For a transitiont, if stmt(t) = (kind op arg) wherekind ∈
{invoke, response}, then t ⇂{invoke,response} (abbreviated as
t ⇂ir) denotes the action(p, kind op arg) wherep = proc(t) .
Otherwise,t ⇂ir returnsǫ (the empty sequence). Accordingly, we
can define a historyH(π) of an executionπ in the obvious way:
π ⇂ir denotes the sequence of invocations and responses occurring
in π.

For a program Prog, we define its corresponding set of histories
as[[Prog]]H = {π ⇂ir| π ∈ [[Prog]]}. We use[[Prog]]HS to denote
the sequential histories in[[Prog]]H . When clear from the context,
we also sometimes useπ ⇂op to denote projection onto invocations
and responses of a specific operationop.

Given an executionπ, we say that a transitiont ∈ π has a
matching invocation inπ, if there exists a transitiontprev ∈ π
such thattprev ⇂ir 6= ǫ, kind(tprev ⇂ir) = invoke, proc(t) =
proc(tprev), tprev precedest in π and there does not exist a
matching response action totprev ⇂ir that is performed in-between
tprev andt in π. Note thattprev may be the same ast.

Definition 3.5 (Well-formed Execution). We say that an execution
π is well-formed if its historyπ ⇂ir is well-formed, every transition
in t ∈ π has a matching invocation and for any transitiont ∈ π
wheret⇂ir 6= ǫ, proc(t) is outside of an atomic section insrc(t).

We say thatπ is acomplete sequential executionof an operation
op by processp, if π is a well-formed execution, all transition inπ
are performed byp andop is a complete invocation in the history
π ⇂ir by processp.

A program iswell-formedif it generates only well-formed exe-
cutions. In this paper, we only consider well-formed programs.
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4. Synchronization in Mutual Exclusion
In this section, we consider implementations that provide mutually
exclusive access to a critical section among a set of processes. We
show that every deadlock-free mutual exclusion implementation
incurs RAW and AWAR patterns in certain executions.

A mutual exclusion implementation exports four kinds of ex-
ternal actions: an invocvationtry and a matching responseenter,
and an invocationexitand a matching responserem. We strengthen
the notion of well-formedness and say that a historyH is well-
formed if, for every processp, H ⇂p is a prefix of the cyclic
sequencetry, enter, exit, rem, . . . . Respectively an executionπ is
well-formed if it generates a well-formed history. We only consider
well-formed executions here.

At the end of a finite executionπ, a processp is said to be in
its trying sectionif its last external action inπ is try, in its critical
sectionif its last external action isenter, in its exit sectionif its
last external action isexit, and in itsremainder sectionotherwise.
Therefore, a process in a mutual exclusion algorithm is in its re-
mainder section initially, and then cyclically goes through trying,
critical, exit, and remainder sections. A process is calledactiveif it
is in its trying or exit section, and only active processes are allowed
to take steps in an execution.

For the purpose of our lower bound, we assume the following
weak formulation of the mutual exclusion problem [12, 31]. In
addition to the classical mutual exclusion requirement, we only
require that the implementation isdeadlock-free, i.e., if a number
of active processes concurrently compete for the critical section, at
least one of them succeeds.

Definition 4.1 (Mutual Exclusion). A deadlock-free mutual exclu-
sion implementation guarantees:

• (Safety) There is no executionπ such that two processes are in
their critical sections at the end ofπ.

• (Liveness) In every execution in which every active process
takes sufficiently many steps:

If at least one process is in its trying section and no process
is in its critical section, then at some point later some
process enters its critical section.
If at least one process is in its exit section, then at some
point later some process enters its remainder section.

We say thatπ is a complete trying sectionof a processp if
π ⇂ir= try · enter.

Theorem 4.2(RAW and AWAR in Mutual Exclusion). Let Prog be
a deadlock-free mutual exclusion implementation for two or more
processes. Then for every completep-solo trying sectionπp:

• RAW(πp, p) = true, or
• AWAR(πp, p) = true

Proof. Let πbase · πp be an execution in[[Prog]] such thatπp is a
completep-solo trying section. By contradiction, assume thatπp

does not contain a global write. Consider an executionπbase · πq

such thatπq is p-free and it contains complete trying section of
a processq 6= p. SinceProg is deadlock-free, such an execution
exists. Assume that the last actionq in πq is enter(q is in its critical
section right afterπq). But last(πbase)

q
∼ last(πbase·πp) and, thus,

there exists an executionπbase· πp · π′
q at the end of which bothp

andq are in their critical sections—a contradiction.
Thus, πp contains a global write transition, an lettw is the

first global write transition inπp. Let πp = π0 · πw · π1, where
πw is the maximal atomic subsequence ofπp that containstw (if
tw does not belong to an atomic construct, thenπw = tw). We
proceed by contradiction and assume thatRAW(πp, p) = false
and AWAR(πp, p) = false. Immediately, we observe that since

AWAR(πp, p) = falseandtw is the first write transition inπp, tw is
the first global transition inπw.

Further, sinceπ0 contains no global writes,∀q ∈ ProcessIDs
whereq 6= p, first(π0)

q
∼ last(π0). SinceProg is deadlock-

free, there exists an executionπbase · π0 · πq such thatπq is p-
free and it contains a complete trying section of some processq.
The assumptionRAW(πp, p) = false implies that no global read
operation ofp in πw · π1 accesses a variable other thanmloc(tw).
Note that the first action ofπw overwrites the only location that
is read byp in πw · π1. Thus, there exists an executionπc =
π0 ·πq ·π

′
w ·π′

1 in [[Prog]] such thatp does not distinguishlast(π1)
and last(π′

1). Therefore, the last action ofp in πc is alsoenter,
while q is in its critical section—a contradiction.

Thus, eitherRAW(πp, p) = trueor AWAR(πp, p) = true.

5. Synchronization in Linearizable Algorithms
In this section, we state and prove a new result that affects the
design of practical concurrent algorithms. Informally, our result
states that strongly non-commutative operations must use certain
kinds of synchronization: either by containing some inherent order
between reads and writes (i.e. the RAW pattern) or by making parts
of the execution atomic (i.e. the AWAR pattern). The impact of
this result in practice is that in order to enforce these patterns,
expensive synchronization is required. For instance, to enforce the
RAW pattern when the program is running on a weak memory
model, one must use an expensive store-load fence.

Before we state and prove our result, we first define lineariz-
ability, deterministic sequential specifications and strongly non-
commutative operations.

5.1 Linearizability

Next, following [22, 24] we define linearizable histories. A history
H induces an irreflexive partial order<H on actions in the history:
a <H b if kind(a) = response and kind(b) = invoke and
∃0 ≤ i < j < |H| such thatHi = a andHj = b. That is,
response actiona precedes invocation actionb in H. A historyH
is said to belinearizablewith respect to a sequential historyS if
there exists a historyH ′ ∈ complete(H) such that:

1. ∀p ∈ ProcessIDs, H ′ ⇂p= S ⇂p

2. <H⊆<S .

We can naturally extend this definition to a set of histories. Let
Spec be asequential specification, a prefix-closed set of complete
sequential histories (that is, ifs is a sequential history inSpec,
then any prefix ofs is also inSpec). Then, given a set of histories
Impl, we say thatImpl is linearizable with respect toSpec if for
any historyH ∈ Impl there exists a historyS ∈ Spec such that
H is linearizable with respect toS.

We say that a program Prog is linearizable with respect to
a deterministic sequential specificationSpec when [[Prog]]H is
linearizable with respect toSpec.

5.2 Deterministic Sequential Specifications

In this paper, similarly to [9], we define deterministic sequen-
tial specifications. Given two sequential historiess1 and s2, let
maxprefix(s1, s2) denote the longest common prefix of the two
historiess1 ands2.

Definition 5.1 (Deterministic Sequential Specifications). A se-
quential specificationSpec is deterministic, if for allS1, S2 ∈
Spec, S1 6= S2 andŜ = maxprefix(S1, S2), we haveŜ = ǫ or
kind(Ŝ|Ŝ|−1) 6= invoke.

That is, a specification is deterministic, if we cannot find two
different histories whose longest common prefix ends with an in-

7 2010/7/16



vocation. If we can find such a prefix, then that would mean that
there was a point in the execution of the two historiesS1 andS2

up to which they behaved identically, but after they both performed
the same invocation, they produced different results (or one had no
continuation).

5.3 Strongly Non-Commutative Operation

Next, we define the notion of astrongly non-commutativeop-
eration. This notion strengthens the traditional notion of non-
commutative operations and weakens the notion of a non-idempotent
operation.

Definition 5.2 (Strongly Non-Commutative Operation). LetSpec
be a sequential specification of complete sequential histories. We
say that an operationop1 is strongly non-commutativein Spec if
there exists an operationop2 (possibly equal toop1) such that:

1. base is a complete sequential history∈ Spec.
2. s1 ands4 are complete invocations ofop1.
3. s2 ands3 are complete invocations ofop2.
4. arg(inv(s1)) = arg(inv(s4)).
5. arg(inv(s2)) = arg(inv(s3)).
6. base· s1 ∈ Spec.
7. base· s2 ∈ Spec.
8. base· s1 · s3 ∈ Spec.
9. base· s2 · s4 ∈ Spec.

10. ret(resp(s1)) 6= ret(resp(s4)).
11. ret(resp(s2)) 6= ret(resp(s3)).

In other words, the operationop1 is strongly non-commutative if
there is another operationop2 and a historybasein Spec such that
we can distinguish whetherop1 is applied right afterbaseor right
afterop2 (which is applied afterbase). Similarly we can distinguish
whetherop2 is applied right afterbaseor right afterop1 (which is
applied afterbase). Note thatop2 may be the same operation as
op1.

We defineop1 as astrongly non-commutative unorderedop-
eration if in addition to the requirements in Definition 5.2,
proc(inv(s1)) = proc(inv(s4)) , proc(inv(s2)) = proc(inv(s3))
andproc(inv(s1)) 6= proc(inv(s2)).

Non-Idempotent Operation vs. Strong Non-Commutative Opera-
tion Note that if we selectop2 to be the same operation asop1

then we reach a special case which amounts tonon-idempotentop-
erations. That is, givenbase, if we applyop1 twice in a row, the sec-
ond invocation will return a different result than the first. Consider
again the Set specification in Fig. 1. The operationadd is non-
idempotent. As discussed in the example in Section 2, we can start
with S = ∅ and saybase = ǫ. Then, if perform twoadd(5) in
a row, eachadd(5) will return a different result. Non-idempotent
operations are strongly non-commutative, but not vice versa.

Classic Non-Commutativity vs. Strong Non-CommutativityIn
the classic notion of non-commutativity (e.g. [45]), it is enough
for one of the operations to not commute with the other, while
here, it is required that both operations do not commute from the
sameprefix history. That is, if two operations do not commute, it
does not mean that either of them is a strongly non-commutative
operation. However, if an operation is strongly non-commutative,
there exists another operation with which it does not commute (by
definition). Consider again the Set specification in Fig. 1. Although
add andcontains do not commute,contains is not a strongly
non-commutative operation. That is,add influences the result of
contains, butcontains doesnot influence the result ofadd.

Definition 5.3 (Strongly Non-Commutative Sequential Specifica-
tion). We say that a sequential specificationSpec is strongly non-

commutative if there exists an operation which is strongly non-
commutative inSpec.

5.4 RAW and AWAR Cannot be Eliminated

We begin with stating that if we perform a complete sequential op-
eration from two equivalent states, then in both cases the operation
will return the same results (i.e. the same history).

Lemma 5.4(Equivalent Histories). Letπ be a complete sequential
execution ofop by processp and letσ be a state such thatσ

p
∼

first(π). Then, there exists a complete sequential executionqi of
op, wheresrc(qi) = σ andπ ⇂ir = qi⇂ir.

This validity of this lemma follows directly from the fact that
the transition relation is deterministic, that enabled transitions are
taken, and that a process cannot access the local variables of an-
other process.

In this work we focus on programs where the specificationSpec
can be determined by the sequential executions of the program.

Definition 5.5. Given a sequential specificationSpec and a pro-
gram Prog, we say that the program determines the specification
when the sequential histories are the same as the specification
Spec, that is,[[Prog]]HS = Spec.

With minor exceptions, this property holds for all practical
algorithms that we are aware of. From here on, we assume that
all sequential specificationsSpec are determined.

Next, we prove that if an operation is strongly non-commutative,
then there must exist an execution of this operation that will write
to global memory. The result is intuitive, as if the operation does
not write to global memory, there will be no observable change to
the state and hence the operation will not be non-commutative.

Lemma 5.6(Global Write). Letop1 be a strongly non-commutative
unordered operation in a deterministic sequential specification
Spec and let Prog be a linearizable implementation ofSpec.
Then, there exists a complete sequential executionπa of op1 in
[[Prog]] by processp ∈ ProcessIDssuch thattw ∈ πa, wheretw
performs a global write.

Proof. From the premise thatop1 is a strongly non-commutative
unordered operation, it means that there exists an operationop2

with the properties as described in Definition 5.2. Letπa, πb

andπc be the complete sequential executions in[[Prog]] such that
s1 = πa ⇂ir, s2 = πb ⇂ir and s3 = πc ⇂ir. The executions
πa, πb andπc are guaranteed to exist due to Definition 5.5. Let
p = proc(πa) andq = proc(πb). As op1 is unordered, we know
thatp 6= q.

Let us assume the executionπa does not contain a transition
that performs a global write. Then,first(πa)

q
∼ last(πa). However,

by the premise we know thatlast(πa) = first(πc) and hence
first(πa)

q
∼ first(πc). Then, following Lemma 5.4,πb ⇂ir= πc ⇂ir.

Hence,s2 = s3, which contradicts premise 11 in Definition 5.2.
Therefore, there must exist a transition inπa that performs a global
write.

Next, we prove that RAW and AWAR cannot be avoided in a
wide class of linearizable implementations.

Theorem 5.7(RAW or AWAR in Linearizable Implementations).
Let op1 be a strongly non-commutative unordered operation in
a deterministic sequential specificationSpec and letProg be a
linearizable implementation ofSpec. Then, there exists a complete
sequential executionπa of op1 by processp in [[Prog]] such that:

• RAW(πa, p) = true, or
• AWAR(πa, p) = true
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Proof. From the premise thatop1 is a strongly non-commutative
unordered operation, it means that there exists a historybaseand
operationop2 with the properties described in Definition 5.2. Let
πbase, πa, πb, πc andπd be the complete sequential executions in
[[Prog]] such thatbase = πbase ⇂ir, s1 = πa ⇂ir, s2 = πb ⇂ir,
s3 = πc ⇂ir ands4 = πd ⇂ir. The executionsπbase, πa, πb, πc, πd

are guaranteed to exist due to Definition 5.5. Letp = proc(πa)
andq = proc(πb). As op1 is unordered, we know thatp 6= q.

Let us proceed by contradiction and assume the conclusion is
false, i.e. RAW(πa, p) = false and AWAR(πa, p) = false. By
Lemma 5.6, we know there exists a write transitiontw ∈ πa

that writes to global memory. Letπa = πf · πw · πℓ, wheretw
is the first global write transition inπa and πw is the maximal
atomic subsequence oftw in πa (if tw does not belong to an atomic
construct, thenπw = tw). SinceAWAR(πa, p) = falseandtw is
the first global write transition inπa, it follows that there can be
no global read transitions inπw that occur beforetw (otherwise we
would contradictAWAR(πa, p) = false). This means thattw is the
first global (read or write) transition inπw.

From Definition 3.5, we know that in statefirst(πf ) processp
is outside an atomic section and from the fact thatπw is a maximal
atomic subsequence we know that in statelast(πf ), p is also out-
side an atomic section. Asπf contains only transitions by processp
which are not global writes, it follows thatfirst(πf )

q
∼ last(πf ).

From the premise, we know thatfirst(πb) = first(πf ). There-
fore, we know thatfirst(πb)

q
∼ last(πf ). From the fact that a

complete sequential executionπb by processq exists, and from
first(πb)

q
∼ last(πf ), we know that processq can begin aq-solo

execution ofop2 from last(πf ) (transition relation requiresq to
execute a transition fromlast(πf )). Then, as the transition relation
is deterministic, inductively, we can build a complete sequential ex-
ecutionπ′

b by processq, where after any transitiont performed by
processq, we know thatdst(t′)

q
∼ dst(t), wheret′ is the transi-

tion in π′
b residing at the same position ast resides inπb. That is,

π′
b mirrors the executionπb and hence according to Lemma 5.4,
π′

b ⇂ir= πb ⇂ir. Transitively,π′
b ⇂ir= s2.

As π′
b is a q-solo well-formed complete sequential execution,

it follows that enabledlast(π′

b
) ⇂p= enabledlast(πf ) ⇂p, that is,

enabledlast(π′

b
) ⇂p= enabledfirst(πw) ⇂p. Similarly, we can build

thep-solo executionπ′
w ·π′

ℓ such thatπ′
w ·π′

ℓ contains the same se-
quence of statements asπw ·πℓ. At any state inπ′

w ·π′
ℓ, p is enabled

to perform a transition and since we assumed thatRAW(πa, p) and
AWAR(πa, p) arefalse, it implies thatπw · πℓ and correspondingly
π′

w · π′
ℓ do not contain a read transition which reads a global loca-

tion other thanmloc(tw). As p overwrites in its first global write
transition inπ′

w the only location that it reads afterwards inπ′
w ·π′

ℓ,
it follows thatπw · πℓ andπ′

w · π′
ℓ are indistinguishable top, and,

thus the result ofop1 returned inπ′
w ·π′

ℓ is the same as the result of
op1 in πa. That is, in the executionπconc = πf ·π′

b ·π
′
w ·π′

ℓ which
we just showed exists in[[Prog]], πconc ⇂op1

= s1.
Given that the implementation is linearizable with respect to

a deterministic sequential specification, we know that the only
possible valid linearizations of the two overlapping operations in
πbase · πconc are: a)base· πconc ⇂op1

·π′
b ⇂ir or b) base· π′

b ⇂ir

·πconc ⇂op1
. Let us proceed by considering each of these two cases:

In case a) when the linearization isbase· πconc ⇂op1
·π′

b ⇂ir, be-
cause the specification is deterministic, it follows thatπconc ⇂opa=
s1 andπ′

b ⇂ir= s3. However, we know thatπ′
b ⇂ir= s2, which

contradicts condition 11 in Definition 5.2.
In case b) when the linearization isbase· π′

b ⇂ir ·πconc ⇂op1
,

because the specification is deterministic, it follows thatπ′
b ⇂ir= s2

and πconc ⇂op1
= s4. However, we know thatπconc ⇂op1

= s1,
which contradicts condition 10 in Definition 5.2.

Therefore,RAW(πa, p) = trueor AWAR(πa, p) = true.

6. Strongly Non-Commutative Objects
In this section we provide a few examples of well-known objects
whose sequential specification is strongly non-commutative as de-
fined in Definition 5.2

6.1 Stacks

Definition 6.1 (Stack Sequential Specification). A stack object S
supports two operations: push and pop. The state of a stack is a
sequence of itemsS = 〈v0, ..., vk〉. The stack is initially empty.
The push and pop operations induce the following state transitions
of the sequenceS = 〈v0, . . . , vk〉, with appropriate return values:

• push(vnew): changes S to be〈v0, ..., vk, vnew〉 and returns
responseack.

• pop(): if S is non-empty, changes S to be〈v0, ..., vk−1〉 and re-
turnsvk. If S is empty, returns empty and S remains unchanged.

We letSpecs denote the sequential specification of a stack object
as defined above.

Lemma 6.2(Pop Strongly Non-Commutative). Thepopstack op-
eration is strongly non-commutative.

Proof. Let base∈ Specs be a complete history after whichS =
〈v〉 for somev. Let p and q be two processes, lets1 and s4 be
complete invocations ofpop by p, and lets2 ands3 be complete
invocations ofpop by q. From Definition 6.1,{base· s1, base·
s2, base· s1 · s3, base· s2 · s4} ⊂ Specs, ret(s1) = ret(s2) = v,
and ret(s3) = ret(s4) = empty. The claim now follows from
Definition 5.2.

It follows from Lemma 6.2 and Definition 5.3 thatSpecs is
strongly non-commutative. Also from Definition 5.2,pushopera-
tions are not strongly non-commutative. Moreover,popoperations
applied to an empty stack are not necessarily required to execute
neither RAW nor AWAR.

6.2 Work Stealing

As we now prove, the (non-idempotent) work stealing object, dis-
cussed in section 2.2, is an example of an object for which two
different operations are strongly non-commutative.

Definition 6.3 (Work Stealing Sequential Specification). A work
stealing object WS supports 3 operations: put, take, and steal. The
state of each processi is a sequence of itemsQi = 〈vi

0, ..., v
i
ki
〉.

All queues are initially empty. The put and take operations are
performed by each processi on its local queueQi and induce on it
the following state transitions, with appropriate return values:

• put(vnew): changesQi to be 〈vnew, v
i
0, ..., v

i
ki
〉 and returns

responseack.
• take(): ifQi is non-empty, it changesQi to be〈vi

1, ..., v
i
ki
〉 and

returns vi
0. If Qi is empty, it returns empty andQi remains

unchanged.

Thestealoperation is performed by each processi on some queue
Qj = 〈vj

0, ..., v
j

kj
〉 for j 6= i. if Qj is non-empty, it changesQj to

be〈vj
0, ..., v

i
kj−1〉 and returnsvj

kj
. If Qj is empty, it returns empty

andQj remains unchanged.
We letSpecws denote the sequential specification of a work steal-
ing object as defined above.

Lemma 6.4(Take & Steal Strongly Non-Commutative). Thetake
andstealoperations are strongly non-commutative.

Proof. Let base ∈ Specws be a complete history after which
Qj = 〈v〉 for some valuev and processj. Let i 6= j be some
process other thanj, let s1 ands4 be complete invocations ofsteal
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by processi onQj , and lets2 ands3 be complete invocations of
takeby processi. From Definition 6.3,{base· s1, base· s2, base·
s1 · s3, base· s2 · s4} ⊂ Specs, ret(s1) = ret(s2) = v,
and ret(s3) = ret(s4) = empty. The claim now follows from
Definition 5.2.

It follows from Lemma 6.4 and Definition 5.3 thatSpecws is
strongly non-commutative. It is easily shown thatqueues, hash-
tables andsets are strongly non-commutative. The proofs are es-
sentially identical to the proofs of Lemmas 6.2 and 6.4 and are
therefore omitted.

6.3 Compare-and-Swap (CAS)

We now prove thatCASis strongly non-commutative.

Definition 6.5 (Compare-and-swap Sequential Specification). A
compare-and-swap object C supports a single operation called
CAS and stores a scalar value over some domainV. The operation
CAS(exp,new), forexp, new ∈ V, induces the following state
transition of the compare-and-swap object. If C’s value is exp, C’s
value is changed to new and the operation returns true; otherwise,
C’s value remains unchanged and the operation returns false.
We letSpecC denote the sequential specification of a compare-
and-swap object as defined above.

Lemma 6.6 (CAS Strongly Non-Commutative). The CAS opera-
tion is strongly non-commutative.

Proof. Let base∈ SpecC be a complete history after which C’s
value isv, let i andj be two processes, lets1 ands4 be complete
invocations of CAS(v,v’) by processi, for somev 6= v′ ∈ V, and let
s2 ands3 be complete invocations of CAS(v,v’) by processj. From
Definition 6.5,{base· s1, base· s2, base· s1 · s3, base· s2 · s4} ⊂
SpecC , ret(s1) = ret(s2) = true, andret(s3) = ret(s4) =
false. The claim now follows from Definition 5.2.

It follows from Lemma 6.6 and Definition 5.3 thatSpecC is
strongly non-commutative. It also follows from lemma 6.6 that any
software implementation of CAS is required to use either AWAR
or RAW. Proving a similar result for all non-trivial read-modify-
write operations (such as fetch-and-add, swap, test-and-set and
load-link/store-conditional) is equally straightforward.

7. Related Work
Numerous papers present implementations of concurrent data
structures, several of these are cited in Section 2. We refer the
reader to Herlihy and Shavit’s book [23] for many other examples.

Contemporary architectures often execute instructions issued by
a single process in an out-of-order manner, and providefenceor
barrier instructions to order the execution (cf. [1, 33]). There is a
plethora of fence and barrier instructions (see [35]). For example,
DEC Alpha provides two different fence instructions, a memory
barrier (MB) and a write memory barrier (WMB). PowerPC pro-
vides a lightweight (lwsync) and a heavyweight (sync) mem-
ory ordering fence instructions, wheresync is full fence, while
lwsync giuarantees only RAR, WAR, and WAW ordering but
not RAW. SPARC V9 RMO provides several flavors of fence in-
structions, through a MEMBAR instruction that can be customized
(via four-bit encoding) to order a combination of previous read and
write operations with respect to future read and write operations.
Pentium 4 supports load fence (lfence), store fence (sfence)
and memory fence (mfence) instructions. Themfence instruction
can be used for implementing the RAW order.

Recently, there has been a renewed interest in formalizing mem-
ory models (cf. [40, 43, 44]), model checking [8], and verifying

[42] programs that run on these models. Our result is complemen-
tary to this direction: it states that we may need to enforce certain
order, i.e. RAW, regardless of what weak memory model is used.
Further, our result can be used in tandem with program testing and
verification: if RAW and AWAR is completely missing from a pro-
gram that claims to satisfy certain specifications, then that program
is certainly incorrect and there is no need to attempt to test it or
verify it.

Kawash’s PhD thesis [29] (also in papers [25, 26]) investigates
the ability of weak consistencymodels to solve mutual exclusion,
with only read and write operations. This work shows that many
weak models (Coherence, Causal consistency, P-RAM, Weak Or-
dering, SPARC consistency and Java Consistency) cannot solve
mutual exclusion. Processor consistency [18] can solve mutual ex-
clusion, but it requires multi-write registers; for two processes,
solving mutual exclusion requires at least three variables, one of
which is multi-writer. In contrast, we show that particular orders
of operations or certain atomicity constraints must be enforced, re-
gardless of the memory model; moreover, our results apply beyond
mutual exclusion and hold for a large class of important objects.

Boehm [7] studies when memory operations can be reordered
with respect to PThread-style locks, and shows that it is not safe to
move memory operations into a locked region by delaying them
past a lock call. On the other hand, memory operations can be
moved into such a region by advancing them to be before an
unlock call. Boehm also provides detailed evaluation of the cost
of using fences. However, Boehm’s paper does not address the
central subject of our paper, namely, the necessity that certain
ordering patterns (RAW or AWAR) must be presentinsidethe lock
operations themselves.

Our proof technique employs thecovering technique, origi-
nally used by Burns and Lynch [10] to prove a lower bound on
the number of registers needed for solving mutual exclusion. This
technique had many applications, both with read / write opera-
tions [4, 5, 13, 14, 28, 39], and with non-trivial atomic operations,
such as compare&swap [15, 16]. Some steps of our proofs can be
seen as a formalization of the arguments Lamport uses to derive a
fast mutual exclusion algorithm [32].

8. Conclusion and Future Work
We presented an important result which states that it is impossi-
ble to build a wide range of concurrent algorithms that are both
correct and do not use expensive synchronization. Our results have
powerful implications for concurrent algorithm construction, hard-
ware design, testing and verification. We focused on two common
synchronization idioms: read-after-write (RAW) and atomic write
after read (AWAR). We proved that mutual exclusion algorithms
must contain either RAW or AWAR patterns in their entry sections.
Similarly, we proved that linearizable implementations of strongly
non-commutative operations must use RAW or AWAR. Finally, we
proved that our result applies to many classic specifications such
as stacks, sets, hash tables, queues, work-stealing structures and
compare-and-swap operations. We believe that our result is practi-
cally useful as a guideline for algorithm writers and further, sug-
gests targeted improvements in hardware design: in particular, op-
timizing the cost of store-load fences and compare-and-swap oper-
ations.

An interesting direction for future work is strengthening our
result by considering not only a read after a write (or a write after
a read), but also longer sequences of reads and writes. Another
interesting direction is formulating a useful class of operations for
which we do not need to use RAW and AWAR.
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