A-Reliable Broadcast:
A Probabilistic Measure of Broadcast Reliability

Patrick Th. Eugster*

Rachid Guerraoui

Petr Kouznetsov

Distributed Programming Laboratory
EPFL

Abstract— This paper introduces a new probabilistic spec-
ification of reliable broadcast communication primitives,
called A-Reliable Broadcast. This specification captures in a
precise way the reliability of practical broadcast algorithms
that, on the one hand, were devised with some form of reli-
ability in mind but, on the other hand, are not considered
reliable according to ‘“traditional” reliability specifications.

‘We illustrate the use of our specification by precisely mea-
suring and comparing the reliability of two popular broad-
cast algorithms, namely Bimodal Multicast and IP Multi-
cast. In particular, we quantify how the reliability of each
algorithm scales with the size of the system.

I. INTRODUCTION
Reliable Broadcast

The growing interest in peer-to-peer computing has un-
derlined the importance of reliable broadcast algorithms.
Traditionally, the reliability of broadcast algorithms has
been defined by three properties [11]:

Integrity. For any message m, every correct process deliv-
ers m at most once, and only if m was previously broadcast
by sender(m).

Validity. If a correct process p broadcasts a message m,
then p eventually delivers m.

Agreement. If a correct process delivers a message m, then
every correct process eventually delivers m.

To obtain these strong properties in a system with pro-
cess and link failures, one employs costly, traditionally
acknowledgement-based algorithms. These can be effective
in a local environment, but may give unstable or unpre-
dictable performance under stress, and hence tolerate lim-
ited scalability [5], contradicting the stringent scalability
properties claimed by today’s peer-to-peer applications.

More pragmatic approaches to broadcast focus on per-
formance in very large-scale settings, and sacrifice strong
reliability guarantees (in the sense of [11]) to performance.
Examples include the Internet Multicast Usenet (MUSE)
protocol [14], the XPress Transfer Protocol (XTP) [22] or
a broad range of so-called network-level protocols build-
ing on IP Multicast [6]." The reliability of such protocols
is typically expressed in best-effort terminology: if a par-
ticipant discovers a failure, the “most reasonable” effort is
made to overcome it, but there is no guarantee that such an

This work is partially supported by the EU project IST-2001-33234
(PEPITO).

*Contact author. patrick.eugster@epfl.ch

'E.g., Reliable Multicast Transport Protocol (RMTP) [16], Reliable
Multicast Protocol (RMP) [20], Log-Based Receiver-Reliable Multi-
cast (LBRM) [12], Scalable Reliable Multicast (SRM) [9].

attempt will be successful. In short, best-effort reliable al-
gorithms are simply not intended to satisfy the traditional
properties of Reliable Broadcast [11].

Birman et al [4] proposed a new look at broadcast re-
liability. They informally characterized a wuseful reliable
broadcast algorithm through a set of properties (illustrated
by their gossip-based [7] Bimodal Multicast algorithm [4]),
including the following;:

Atomicity. The protocol provides a bimodal delivery
guarantee, under which there is a high probability that
each broadcast will reach almost all processes, a low prob-
ability that each broadcast will reach just a very small set
of processes, and a vanishingly small probability that it
will reach some intermediate number of processes. That is,
the traditional atomic “all or nothing” guarantee becomes
“almost all or almost none”.

This property is very appealing from a practical view-
point, but still rather informal,? and in [4] the authors
concentrate on giving a behavioral analysis of the Bimodal
Multicast algorithm.

An interesting approach to analyze the reliability of
broadcast algorithms can be found also in [15], where reli-
ability is the probability that either all or no correct pro-
cesses deliver a broadcast message if the sender is correct.
However, the formal proof of the correctness of an algo-
rithm with respect to a specification is not presented.

Reliability Measure

The motivation of this work is the observation that there
is a lack of a precise but also practical measure to estimate
the reliability of inexpensive best-effort algorithms. Intu-
itively, those are less reliable than algorithms that comply
with the strong properties of [11] but more reliable for in-
stance than a simple multisend. But what is the actual
meaning of “more reliable” and “less reliable”? Address-
ing this question is not trivial, yet fundamental, since these
algorithms are precisely those used in practice.

Contributions

The aim of this work is to introduce a precise measure
to quantify the intuitively understandable notion of relia-
bility used in practice. In other terms, we do not aim at
introducing an original broadcast algorithm which would

2The “almost all or almost none” is in fact “almost always almost
all or almost none”; the use of the term “almost” is indeed intuitive,
but gives a rather informal nature to this property.

be more reliable than others, but at defining what the very
statement “more reliable” may mean.

To this end, we introduce a new probabilistically flavored
specification of the reliability of broadcast algorithms called
A-Reliable Broadcast. Through this specification, we con-
tribute to bridging the gap between theory and practice in
broadcast reliability. Our specification is non-binary and
indeed constitutes a reliability measure.

In short, A-Reliability measures a probability distribution
for the reliability degree of a broadcast algorithm. The use
of probabilities enables the capture, to a certain extent, of
the nondeterminism inherent to large-scale systems.

We illustrate the use our measure through two well-
known examples. The first one, Bimodal Multicast [4],
is a representative of the rapidly proliferating family of
gossip-based algorithms which have received much atten-
tion lately, precisely because they are “pretty reliable”. As
a representative of the class of best-effort algorithms of-
ten used in practice, namely the network-level protocols,
we discuss IP Multicast [6] on top of which many other
“reliable” network-level broadcast protocols are built.

We also demonstrate the use of A-Reliability in com-
paring broadcast algorithms by contrasting Bimodal Mul-
ticast and IP Multicast, confirming that, in most practical
environments, Bimodal Multicast is “more reliable” than
IP Multicast, especially as the system grows in size. This is
insofar unsurprising as IP Multicast has not been designed
to be reliable, yet illustrates the usefulness of our specifi-
cation in.quantifying the difference between algorithms.

The practical use of our A-Reliability measure is fur-
thermore illustrated through the scalability analysis of Bi-
modal Multicast which illuminates very attractive scalabil-
ity properties of the algorithm.

Roadmap

Section II introduces A-Reliability. Section III discusses
the A-Reliability of Bimodal Multicast. Section IV simi-
larly applies our specification of A-Reliability to IP Mul-
ticast. Section V illustrates the use of A-Reliability in
comparing broadcasting algorithms through Bimodal Mul-
ticast and IP Multicast. Section VI discusses alternative
reliability measures and related issues. Section VII con-
cludes with final remarks, also on the applicability of our
specification.

II. A-RELIABLE BROADCAST: SPECIFICATION

This section presents our approach to measuring, in a
probabilistic sense, the reliability of a broadcast algorithm.

A. System and Environment

We consider an asynchronous (in the sense of [11]) system
IT of processes {p1, ..,pn}. Processes are connected through
fair lossy channels of infinite capacity. Let m be any mes-
sage, uniquely identified and equipped, in particular, with a
parameter sender(m). Processes communicate by message
passing defined by the primitives send(m) and receive(m).
Broadcast is defined by the primitives broadcast(m) and

deliver(m). Processes are subject to crash failures. A cor-
rect (in a given algorithm run) process is one that never
crashes (in that run). To simplify presentation, we do not
consider Byzantine failures, and we assume that crashed
processes do not recover.

The analysis of a broadcast algorithm usually depends
on more properties of the underlying system than only its
size and composition, as well as on parameters of the algo-
rithm itself. Henceforth, we will use the term environment,
denoted &, to refer to the set of relevant system properties
and algorithm parameters. Environment £ represents a
point in an environment space E, a set of all possible com-
binations of parameters: £ € E.

Let B; and By be two broadcast algorithms that have dif-
ferent sets of parameters in their respective environments
£x and £c. To compare the algorithms we introduce a
compound environment - a union of the two environments,
& = EUEc. Note that the composition makes sense only if
the related parameters in £, and £¢ do not contradict. For
example, if the system models for By and Bs comprise the
probabilities of an end-to-end message loss, respectively,
€1 € Ex and g3 € E¢, then €1 = e5. Otherwise, the com-
parison does not seem meaningful. In Section V we will
illustrate this through the concrete examples.

B. A-Reliable Broadcast

Let A be any pair of real numbers (¢, p) (¢,p € [0,1]).
We say that a broadcast protocol complies with the specifi-
cation of A-Reliable Broadcast (or a broadcast protocol
is A-Reliable) iff the following properties are simultane-
ously satisfied with probability 1:

Integrity. For any message m, every correct process deliv-
ers m at most once, and only if m was previously broadcast
by sender(m).

Validity. If a correct process p broadcasts a message m
then p eventually delivers m.

A-Agreement. If a correct process delivers a message m,
then eventually at least a fraction p of correct processes
deliver m.

Properties Validity and Integrity here are the same as in
traditional Reliable Broadcast [11].

Integrity is a safety property: it says that some “bad”
thing never happens, in particular, that every delivered
message is earlier broadcast and there are no duplicate de-
liveries. Prevailing broadcast algorithms always guaran-
tee the first part of the property: no “bogus” messages
are delivered. However, to guarantee the absence of du-
plicate deliveries in an asynchronous system one should
track infinitely large message history which is not feasible
in realistic settings. That is why we define Integrity in the
probabilistic context.

Although Validity can be viewed as a necessary property,
it is not always fulfilled for some broadcast algorithms.
For example, some acknowledgement-based broadcast al-
gorithms do not deliver a broadcast message at the source
until the message has become stable (received by most of
the correct processes in the system), and there is a proba-
bility that a stable message is never delivered at the source

(Validity is violated). That is why Validity is probabilisti-
cally guaranteed in the specification above.

Agreement, as defined in [11], is transformed here into A-
Agreement which is less restrictive in terms of the number
of processes that need to deliver the message and also has
a probabilistic flavor.

C. Interpretation of p and

A = (1, p) represents a basic “reliability measure” of a
broadcast algorithm. The values of ¢ and p are intrinsically
coupled: v can roughly be pictured as the probability with
which at least a fraction p of processes behave according to
the properties of Reliable Broadcast [11]. More precisely,
a sample A =(v, p) is characterized by:

Reliability probability 1: 1) is the probability that a proto-
col run behaves “properly”. That is, once a message m is
broadcast by a correct process, “enough” correct processes
eventually deliver m.

Reliability degree p: p defines the fraction of correct pro-
cesses which eventually deliver m.

For instance, to satisfy the properties of A-Reliable Broad-
cast with A = (¢p = 0.95,p = 0.9), once a message m is
broadcast, an algorithm should, with probability 0.95, de-
liver m to 90% of correct processes in the system. In other
terms, in a run of the system with 10 correct processes, one
can expect 95% of all messages which are broadcast to be
delivered by at least 9 processes (not necessarily the same
processes for every message).

D. Reliability Distribution Function

A-Reliable Broadcast does not aim at giving a binary
interpretation for the reliability of a broadcast algorithm
as in [11]. Instead, it defines a measure of reliability, such
that any broadcast protocol can be proven to be A-Reliable
with some set of parameters A = (¢, p).

In a practical system, with a given required reliability de-
gree p, several broadcast algorithms can easily be compared
along the 9 they offer for the given p. To give an informal
measure of the general performance in terms of reliability of
a broadcast algorithm, several samples A;...A; are usually
sufficient. A precise expression of the reliability of such an
algorithm requires however the consideration of the proba-
bilities for all possible p € [0, 1], especially when comparing
two algorithms in general. Indeed, consider two algorithms
B; and B, and a set Ag,=(0.9, 0.9) and Ap,=(0.85, 0.9).
Algorithm B; seems to perform better for pg, = pp, = 0.9.
However, this information is not sufficient to promote al-
gorithm B; as “more reliable” than algorithm Bsy, since for
P, = P, = 0.95, algorithm By might offer a ¢z of 0.8,
while in the case of algorithm By, ¢, might be only 0.7.

To compare two algorithms in a more general manner,
we define a reliability distribution function ¥g(p,&) of a
broadcast algorithm B:

Yp :[0,1] x E + [0,1] (1)

such that for any p € [0,1] and £ € E, B is A-Reliable with
A= (p(p,£),p).

As a direct consequence of the definition of A-Agreement
— a sample in which a fraction pg of processes deliver every
message is also a sample in which at least any fraction
p € [0, po] of the processes deliver every message — 1(p) is
a monotonically decreasing (with respect to p) function.

Note however, that by the size of “a fraction p of n pro-
cesses” we mean [pn]. Accordingly, ¥(p) is not represented
by a continuous function, but manifests steps.

E. Comparing Broadcast Algorithms

Consider a reliability range V = [p1,p2] C [0,1], that
is, a range of values for the reliability degree p which is of
interest in the context of a comparison.

In the sense of A-Reliable Broadcast, in the environment
&, an algorithm By is more reliable in V = [p1, p2] than an
algorithm B, iff

Vpe V: ¥ (p,€) > vs(p,E)
and (2)
Jpo € V : ¥B,(po,E) > B (p1,€)*

Similarly, in the environment £, an algorithm B is said
to be strictly more reliable in V = [p1, p2] (p2 > 0) than an
algorithm By iff

Vp € V, p 7é 0: ¢B1 (pa g) > wBe (p7 5) (3)

We exclude here p = 0, because for any broadcast algo-
rithm B: ¢p(0) = 1.

Finally, in the environment &, an algorithm Bj is more
reliable than an algorithm B iff, in £, B; is more reliable
than By in V = [0,1]. Analogously, in the environment &,
an algorithm B; is strictly more reliable than an algorithm
B, iff, in £, By is strictly more reliable than By in V =
[0,1].

F. Atomicity

The reliability distribution function can be used to define
the probability that a certain number of processes deliver
the message as a result of an algorithm run. More precisely,
the probability that the fraction p of correct processes that
delivered a broadcast message (in a given environment &)
is larger than p; but smaller than py (0 < p1 < p2 < 1)
can be defined as:

Plpr <p<po)=
=(p1,E) — Y(pe, E).

Thus, the following Atomicity predicate (see more examples
in [4]) defines a failed broadcast to be one that reaches
more than a fraction o of correct processes, but less than
a fraction 1 — o of correct processes in a system (o < 1/2).

(4)

Plo<p<l-—o)=
=9(0,€) — (o0 — 0, E).

Section VI discusses some alternative non-binary specifica-
tions of broadcast algorithms.

(5)

3This second condition is necessary to avoid that two equally per-
forming algorithms are “each more reliable than the other”.

G. Reliable Broadcast: From Perfect to Useless

A reliability distribution function 1 in the sense of (1)
can be found for any broadcast algorithm. We demonstrate
this through the following extreme cases.

G.1 Dreamcast

One can easily see that an algorithm implementing tra-
ditional Reliable Broadcast [11] (cf. [2], [19]) in a given
environment £ is A-Reliable with A = (1,1). Since ¥grB
is a monotonically decreasing function, this sample univo-
cally defines ¢¥rp: Vp € [0,1] ¥rB(p,€) = 0o. One may
call such an algorithm perfectly reliable. As we mentioned
earlier in the introduction, its practical implementation in
a network with unreliable processes and channels is expen-
sive and not scalable.

G.2 Spellcast

A bogus algorithm which does nothing (useless broad-
cast) conforms to the specification of A-Reliable Broadcast
in such a way that V&€ € E with at least one correct process
and Vp € 10,1] : ¢uyB(p,€) = 0 (as stated previously,
Yup(0,€) = oo).

Thus, the reliability level of any broadcast algorithm
can be found somewhere between these two extreme cases.
The following two sections illustrate this through two well-
known and more meaningful examples, Bimodal Multi-
cast and IP Multicast, respectively.

ITI. BIMODAL MULTICAST

This section focuses on the Bimodal Multicast [4] algo-
rithm. While providing a lower reliability in terms of A-
Reliability than a perfectly reliable protocol, it is in most
cases more scalable and efficient. We first recall the algo-
rithm, and then discuss its A-Reliability.

A. Protocol Overview

The algorithm uses the idea of gossip-based protocols
that dates back to the original USENET news protocol de-
veloped in early 1980’s (Network News Transport Protocol
— NNTP). In this protocol, a communication graph is su-
perimposed on a set of processes, and neighbors gossip to
diffuse news postings in a reliable manner over the links.
If process p; receives a news posting and then establishes
communication with process p;, p; would offer p; a copy
of that news message, and p; solicits the copy if it has not
already seen the message.

Bimodal Multicast is composed of two subprotocols
structured roughly as in the Internet MUSE protocol [14].
The first is an unreliable, hierarchical multicast (IP Multi-
cast [6] can be used where available) that makes best-effort
attempt to efficiently deliver each message to its destina-
tion. The second is a two-phase anti-entropy [7] protocol
that operates in a series of asynchronous rounds. During
each round, the first phase detects message losses; the sec-
ond phase corrects such losses and executes only if needed.

In the present work, we are concerned only with the first
phase of the anti-entropy protocol, namely the gossip-based
knowledge propagation. For the analysis below, we use a
simplified version of Bimodal Multicast, which differs from
the original protocol in ways that simplify the discussion
without changing the analytical results (used by the au-
thors of [4] themselves for analysis). The various exten-
sions and optimizations presented in isolation for Bimodal
Multicast (e.g., [21]) are not considered in the following.
The abstract version of the algorithm [4] is presented in
Figure 1, where the parameter 3 is the so-called fanout,
such that ng is the size of the fraction of the system which
is chosen as a destination set for the current gossip, and
the parameter T is the number of receive(m) events in the
longest causal chain for the message m. That is, a message
m is consequently forwarded at most T times.

{* Auxiliary function. *}
deliver_and_gossip(m, round)
{* Do nothing if already received.*}
if received._already then return

{* Mark the message as received and deliver it.*}
received_already:=true
pbDeliver(m)

{* if last round, don’t gossip.*}
if round=T then return

let S be a randomly chosen subset of the system,
such that |S| = ng
for each p in S send to p gossip(m,round+1)

{* Initial settings. *}
received_already:=false
initialize(T)

{* Initiate a Bimodal Multicast. *}
On a pbcast(m):
deliver_and_gossip(m,0)

{* Handle message receipt. *}
On receive gossip(m,round)
deliver_and_gossip(m,round)

Fig. 1. Abstract version of Bimodal Multicast

B. Model

Gossip protocols such as Bimodal Multicast can be ana-
lyzed with a stochastic approach as used in the epidemio-
logical theory [1], [4].

B.1 Breakdown in synchronous rounds

The stochastic analysis below is based on the assumption
that the execution of a broadcast algorithm can be broken
up into a sequence of synchronous rounds, such that, dur-
ing each round ¢, only processes which have gossips with
round number ¢ are gossiping, and every round happens
strictly after all the transmission of the previous round
are completed. Of course, in a real execution, each pro-
cess autonomously proceeds in its own rounds which are
completely unsynchronized with respect to other processes.

But as outlined in [4], the actual execution performs better,
and the obtained lower bound does give useful results.

B.2 Assumptions and definitions

For the following analysis, we assume that failures are
stochastically independent. In particular, the probability of
a message loss does not exceed a predefined € > 0, and the
probability of a process crash during the protocol execution
is bounded by 7 > 0. For simplicity, we assume that all
incorrect processes are initially crashed. This implies that
dependent link failures like a network partition are outside
of our failure model. Furthermore, at any moment and for
any message m;:

An infected process is one that already received m.

An infectious process is an infected one which is gos-
siping m in the current round.

A susceptible process is one that is not infected yet by
m.

We consider a system of n processes running Bimodal Mul-
ticast [4]. Following [4], we describe the state of the system
in round ¢ using the following random variables:

X, - the number of susceptible processes.
Y; - the number of infectious processes.

We assume that, initially, only one process is infected (the
process which broadcasts). To summarize the constraints
on the state of the system:

onn—l, }/E)Zl
X1 + Y1 = X (6)
Xr+Y,r,Yi=n

Note that at any round ¢, the number of infected processes
isn— Xt.

C. Analysis

Let F = f be the number of incorrect processes in a
given run. We define 8(1 —€)(n — f)/n as the probability
that a given gossip message m sent by an infectious process
is successfully received by a given process p;, that is: (a)
the gossiping (infectious) process chooses p; as destination,
(b) message m is not lost in transmission, and (c), process
p; is correct. Respectively, ¢f = 1 — B(1 —€)(n — f)/n
is the probability that a certain process did not receive a
given gossip message from a particular infectious process.
If j processes are gossiping in a given round, susceptible
process p; is not infected in this round with probability qft.

The corresponding stochastic process can be expressed in
the form of a homogeneous Markov chain with a transition
matrix defined by:

Dijkiy =
:P(Xt+1:k,Y;g_Fl:l'Xt:’l:,Y't:j,F:f) (7)
Q) a-a)gt k+i=i

0 E+1#£i

The distribution of X;; and Y341 can be defined as follows:
P(Xip1 =k, Y1 =1|F = f)
=Y > P(Xy=i,Ys = jIF = f)pijmy (8)
i g

Using (6),(7) and (8), we can build a distribution of X7
and Y7. We are interested in the probability that, for some
p € [0,1], not less than a fraction p of correct processes are
infected up to round 7"

Yeum(p, €M) =
=Y P(F = f)P(Xr <n—[p(n— f)IF = f)
f

= " (1—r)nIf 9)
> ()
Y. Y PXr=iYr=j|F =),

i<n—[p(n—f)] J

where s = (€,7,n,8,T) is the set of system and algo-
rithm parameters defining the current environment.

D. A-Reliability of Bimodal Multicast

Based on this, we formally characterize the A-Reliability
of Bimodal Multicast [4].

Proposition 1 For any environment Egpg = (e, 7,0, 6, T)
and any p € [0,1] Bimodal Multicast [4] is A-Reliable with
A= (¢BM(p7 gBM)7 p)

Proof: Validity and Integrity follow directly from the al-
gorithm description (Figure 1) and the absence of Byzan-
tine failures: the sender of a broadcast message delivers
the message immediately and a process that receives the
broadcast message delivers it only once. Thus, Validity
and Integrity are always satisfied.

The proof of A-Agreement follows from the analysis
above. Since ¥pum(p,Esm) gives the probability of suc-
cessfully infecting at least a fraction p of correct processes,
given that initially one process is infected, A-Reliability
with A=Y e (p, EsMm),p) is guaranteed.

E. Approzimation of Yem(p,EsMm)

Here we present a way to approximate the function
vem(p,Esm). We describe the state of the system using
the stochastic process X (t) - the proportion of susceptible
processes in round t.

Neglecting the fluctuation of X (t) around its conditional
expectation z(t), we have the following deterministic ap-
proximation of the stochastic process:

z(t +1) = a(t)g"@ D=0, (10)
with the following initial conditions:
-1
2(0) = ——,
" (11)
z(1) = z(0)q

Here ¢ =1 — B(1 —¢)(1 — 7). The approach is robust for
large n, when the deviation of X (¢) is comparatively small
[18]. We define the average reliability degree of the proto-
col Eppyp] as 1 — limy—y 400z (t). In other words, Ep[p]
specifies the average fraction of the system infected by a
broadcast message. From (10) we can derive the following
relationship:
1

y_n-1,
o(t +1)g" " = g(t)g" " = ——¢™.

- (12)

Denote ¢ =1 — p/n, where pp = fn(l —e)(1 — 7). Assume
that Bn is constant (the number of gossip messages sent by
a process per round does not depend on the system size).
For large n, (1—p/n)™ =~ e #. Thus, we have the following
recursive relationship:
2(0)= "2,
" (13)

z(t+1) = erEO-D,

Note that, according to (13), z(t) is a monotonically de-
creasing function. Applying Cauchy’s theorem, we can ap-
proximate the discrete function z(t) by a continuous one
y(t),t € [0,400[, such that z(t + 1) — z(t) = y(t) and
y(t) = z(¢), for t € N. That gives us the following Cauchy’s
problem:

(14)

g=etv1) _y (15)
The question is: what is the lower-bound asymptote of
the susceptible fraction of the system y(¢) and how does it
depend on n?

One can easily see that equation (15) does not depend on
t and n, that is if ¢(t) is a solution of (15), then, for any tg,
p(t —to) is also a solution of (15). The system size n only
impacts the initial condition (14). Thus the lower-bound
asymptote of y(t) does not depend on n: (14) defines the
time necessary to approach it.

The lower-bound asymptote z; can be roughly estimated
for y < 1 through the following consideration:

MVl — ek L e luy + 0(y?) =

- (16)
n=qz pe—H
Assume that the maximal number of rounds T is sufficient
to approach closely the upper bound of the infected fraction
1 — = (that is T = O(logn) [1], [18]). Hence, we can
approximate the probability that a given process is infected
as a result of the run as 1 — ;. The reliability distribution
function is approximated as:

Yem(p, €M) = Y (7) (co —m)iz}~ " (17)
[pn]<i<n

Note that we are approximating ¥ g (p, Egam) by the prob-
ability that at least fraction p of all processes is infected.

This is valid when 7 < 1. In general, (17) defines a lower
bound on Yprp(p,Esrm): the probability of infecting at
least fraction p of correct processes can be only larger.

F. Average reliability degree of Bimodal Multicast

The presented analysis allows to state the following re-
sult:

Proposition 2 For any environment Eppg = (6,7, 1, Bn)
in which 7 < 1, the average reliability degree Eppr[p](n)
as o function of system size n is such that:

67“

Epumlpl(n) = nstoo 1 (18)

11— pen’
where p = Bpn(l —e)(1 — 7).

The proof follows directly from the approximations pre-
sented above.

Note that if we choose fanout 3, = % (such that the
number of partners a process gossip to each round, k = 8,n
is constant), then the right-hand side of (18) is constant
with respect to the system size. In other words, the ex-
pected reliability degree of Bimodal Multicast is stable
with respect to the scale of the system. This a very valu-
able property for self-organizing systems, since for some
fized set of parameters of the algorithm, its reliability de-
gree does not degrade with the increase of the system size.
As we will see in the following section, IP Multicast is
not scalable in this sense: its average reliability degree
Erpupl(n) is decreasing exponentially with the increase
of n.

IV. IP MULTICAST

In this section, we illustrate the notion of A-Reliable
Broadcast through a second, in the traditional sense [11]
inherently unreliable algorithm, namely IP Multicast [6].

A. Protocol Overview

IP Multicast is a so-called network-level broadcast algo-
rithm. As its name reveals, it is directly based on IP, and
is used to broadcast datagrams. The transmission of such
datagrams is not reliable, and basic IP Multicast does not
consider message loss detection and reparation, making it
inherently unreliable. In the context of IP Multicast, many
different protocols have been described and deployed, for
instance in the MBone, the Internet’s IP Multicast back-
bone.

B. Model

While certain protocols are targeted at dense distribu-
tion of processes and thus rely on flooding techniques, we
focus here on a sparse distribution of processes. We pre-
suppose a spanning tree, as for instance the ones that
are encountered with the Protocol-Independent Multicast
— Sparse Mode (PIM-SM) [8] protocol.

B.1 Spanning tree

In conformance with what is usually supposed for the
analysis of such protocols (e.g., [17]), we suppose a k-ary
spanning tree of depth d. In other terms, we consider a
regular spanning tree with a single broadcasting process *
(the broadcaster of a given message) located at the root,
k? receiving processes constituting the leaves of the tree,
and every non-leaf node of the tree representing a router
with k outgoing links. The system size is thus given by
n = k%% but we will consider n and k as parameters of the
environment, and, since we are interested in large systems,
we use d = logrn. Note that a spanning tree obtained
in a real use case can always be captured by a possibly
bigger spanning tree with a number of leaves of order n
conforming to the above description.

B.2 Failures

In conformance with the analysis of Bimodal Multi-
cast presented in the previous section, we consider as 7 the
probability that a given process fails, and the probability
of a message loss in a link between two nodes in the span-
ning tree as ;. In addition, we define as v the probability
of a router failures. We assume that all incorrect entities
are initially crashed and the link failures are stochastically
independent.

C. Analysis

Similarly to the analysis presented in the previous sec-
tion, we propose a breakdown in successive rounds. These
rounds however correspond to the levels in the spanning
tree, that is, at round 1, the router of a broadcasting pro-
cess forwards a given message m to the k routers represent-
ing its child nodes (Yo = 1). Due to failures, only ¥; < k
will receive m. In any round 1 < t < d, the Y;_; “infec-
tious” routers of level ¢t — 1 forward m to their kY; ; child
nodes (maximum of k'). The probability p of a successful
reception of m by an entity at level ¢t < d is therefrom given
by p = (1—7)(1—g;). At round ¢t = d, the routers compos-
ing level d — 1 finally send m to the processes constituting
the leaves of the tree. We assume that F' = f processes are
correct in a given run.

The probability of having a given number Y; of “infected”
entities at a given level ¢ > 0 can be computed recursively
based on the probabilities of any number of infected entities
at level ¢t — 1. Finally, the probability of obtaining a given
number of infected processes at the leaves of the spanning
tree enables the computation of the fraction p of the correct
processes in II which have received m. For that end, we
require the probability of having j infected entities at level
0 < t < d based on the number ¢ of infected entities at the
previous level:

piy = ("J’?)pf‘a — p)) (19)

4For simplicity, we assume that the broadcasting process is correct.
5To be absolutely precise, we would have to consider n = k% + 1
processes, since the broadcasting process is itself receiving. At an
increased system size n, this does not significantly impact the result.

Thus, the probability of having j infected entities at round
0 <t < d is given recursively by:
P, =j) =

Y PMii=ip; (20)

0<i<kt—1

Let F = f be the number of incorrect processes in a given
run. The probability pg of successful transmission of mes-
sage m from an infected router at level d — 1 to a process
at level d is given by py = (1 —¢&;)(n — f)/n and the prob-
ability of having j infected processes at level t = d based
on the number i of infected entities at the previous level:

piss = (if)pﬁé(l ~ py)(ik=D) (21)

Thus, the probability of having j infected processes at
round d is given recursively by:

PYy=j|F=f) = Z P(Yi—1 = i)pijs

0<i<kd—1

(22)

As a direct consequence, the probability of having infected
at least fraction p of correct processes in a k-ary spanning
tree of depth d is given by:

Yrpm(p, Erpmm)

=Y P(F=[f)P(Ya>[p(n—NF =)
7

“3()u-mrr
2

[p(n—f)]<i<n—f

(23)

P(Yq =j|F = f),

where M is the number of correct processes in a given run
and E7p g is the environment defined as the set of param-
eters gI’PM = (Ela 77,1, k)

D. A-Reliability of IP Multicast

Based on (23), we are now able to formally characterize
the A-Reliability of IP Multicast.

Proposition 3 For any environment Ezpa = (€1, 7,7, 1, k)
and Vp € [0,1] IP Multicast 1is A-Reliable with A =

(Wrpm(p, ExpM), P)-

Proof: The proof of Integrity follows from the semantics
of IP and the absence of Byzantine failures, and Validity is
assured with prevalent operating systems. Thus, Validity
and Integrity are always satisfied in this model.

The proof of A-Agreement follows from the analysis
above. Yrpum(p, Ezpm) is equal to the probability of suc-
cessfully infecting at least a fraction p of processes. Thus
A-Reliability with A=(rpar(p, EzpM),p) is guaranteed.

E. Average reliability degree of IP Multicast

The average fraction p of correct processes which receive
m, Erpa(p], is given by:

Erpmlp)(n) = (1 —e)p'se " (24)
Furthermore, the probability that all n processes are cor-
rect and receive a given broadcast message m, P(Yy =n) =
(1), can be easily expressed in this model through:
P(Yy=n)=p+t(1—g)"(1—7)" (25)
V. COMPARING BIMODAL MULTICAST AND IP
MULTICAST

This section illustrates the use of A-Reliable Broadcast
in comparing broadcast algorithms. Based on the analyt-
ical results presented in Section IIT and Section IV, we
present here estimations of the reliability distribution func-
tions (and also the average reliability degrees for both al-
gorithms), which enable the comparison of Bimodal Multi-
cast and IP Multicast in the context of A-Reliability. Obvi-
ously, as IP Multicast has not been designed to be reliable,
Bimodal Multicast is “more reliable” than IP Multicast.
The goal here is more to illustrate the usefulness of our
specification in.precisely quantifying the difference between
algorithms.

Furthermore, we show that Bimodal Multicast, unlike TP
Multicast, manifests no considerable reliability degradation
as the system grows in size.

A. Environment

We assume that the system topology allows each pro-
cess to maintain dynamically a spanning tree with d layers
and and arity k, whose leaves represent the other processes
and non-leaf members represent the routers: n = k%. The
probability of a message loss on the way from one process
to another used in the analysis of Bimodal Multicast (Sec-
tion IIT) is thus bounded by ¢ = 1 — (1 — &)%(1 —)%,
where ¢; is the probability of a message loss in a link be-
tween two corresponding nodes in the spanning tree and vy
is the probability of a router failure. We consider Bimodal
Multicast and IP Multicast in the following compound en-
vironment Eg = Epp U Ezpm = (65 = 0.05,7 = 0.01,v =
0.001,n = 256,k = 4,8 = 0.02,T = 6) (see the definition
of a compound environment in section IT) . Non-common
parameters of the environments Egaq and Ezpag, B and T,
are chosen in order to approach closely the upper-bound
reliability degree 1 — x; defined by (16).

B. Reliability Distribution Functions

Figure 2 presents the reliability distribution functions
Yem(p,Er) of Bimodal Multicast and ¢¥rpap(p,Er) of
IP Multicast in the “realistic” compound environment
Er. Indeed, relevant to the intuition, Vp € [0.55,1] :
Yem(p,Er) > YpMm(p, ER), that is Bimodal Multicast is
strictly more reliable in V = [0.55,1] in the environ-
ment Er. However, in a “better” environment Exy (with
much smaller values for ¢;, 7 and), IP Multicast may

guarantee the same level of reliability as Bimodal Multi-
cast. At the extremum, in a perfect environment £p with
g = 1 = v = 0, where we have neither message losses
nor node failures, ¥rpap(p,Ep) = 00, Vp € [0,1]. Bimodal
Multicast on the other hand, due to its randomized na-
ture, even in the perfect system, admits the case when all
the gossips of any given round are sent to already infected
members and some part of the system will never get the
broadcast message. Thus, Vp €]0, 1[, ¥ (p, Ep) is strictly
less than 1 (but can be made arbitrarily close to 1). This
conveys the strong impact of the choice of the environment,
in which two algorithms are to be compared, on the respec-
tive reliability distributions, and thus on the result of the
comparison.

' Bimodal Mul&icasl
IP Multicast -
P
0.8 |
2
E 06 f
2
E
04|
02 |
0 . .
0 0.2 04 0.6 0.8 1
reliability degree
Fig. 2. Reliability distribution functions ¥pn(p,Er) and
Yrpm(p, ER).

C. Scalability Measure

Our non-binary approach to quantify the reliability of a
broadcast algorithm can be used to state out a new mea-
sure of the scalability of the algorithm. Basically, we can
consider an algorithm to be scalable if its average reliabil-
ity degree as function of the system size E[p](n) is constant
(or decreasing slowly).

Such an approach is innovative in the sense that it uses
a new, more flexible (compared to [11]) notion of reliability
and covers the cases when broadcast performance degrades
with the increase of the system size.

The presented scalability criterion obviously reflects just
one dimension of scalability, namely that of reliability. In-
vestigating scalability in terms of overhead would require a
measure of that overhead, which, as already mentioned, is
not in the scope of this work. [13] for instance presents re-
sults on the overhead in terms of message complexity, and
hence the associated scalability, of gossip-based broadcast
algorithms. It is nevertheless worth noting that IP Multi-
cast is “more scalable” in terms of message complexity and
time: to obtain the same reliability degree it requests a
smaller number of messages and consumes less time. Note
furthermore that traditional Reliable Broadcast[11] is scal-
able in this context: its reliability degree is Erp[p](n) = 1,
although it is not scalable in terms of message complexity
and time.

D. Average Reliability Degrees

Figure 3 presents the average reliability degrees for
Bimodal Multicast and IP Multicast (Epam[p], resp.
Erpum(p]) given a system size n. As expected, the system
size does not have a noticeable impact on the reliability of
Bimodal Multicast (see Proposition 2) while, for IP Mul-
ticast, Erpp[p] is significantly decreasing. This confirms
the advantage of Bimodal Multicast over IP Multicast in
terms of A-Reliability (in the “realistic” environment g).

"Bimodal Multicast —
IP Multicast -------—
b

0.95
09 f
0.85 1

0.8 -

expected reliability degree

0.75

0.7 L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

n

Fig. 3. Average reliability degrees Egr[p] and Erpas[p] for a given
system size n (otherwise the environment is identical to £g).

VI. RELATED ISSUES

In this section, we give more details on the nature of our
reliability distribution function 1 (p), and we discuss some
alternative measures that we have been exploring.

A. Separating Properties

A-Reliability defines the same probability for Integrity,
Validity and A-Agreement properties to be satisfied. An
alternative specification, considering different probabilities
Y1, vy and 14 of satisfying each property respectively,
would lead to an underspecified system: many possible and
not quantified intersections between the domains in which
each respective property is verified would be introduced. In
a practical context furthermore, it is sufficient to separate
“good” and “bad” runs, without any further distinction.

B. Correct vs. All

For particular kinds of applications, such as quorum
replication [3], a broadcast message must reach clear ma-
jority of all processes in the system (including failed pro-
cesses) in a “good” run. Thus, an alternative definition of
A-Agreement in A-Reliable Broadcast might require frac-
tion p of all (not only correct) processes to deliver a broad-
cast message m, once one correct process delivers m. The
specification does not directly apply to the notion of Reli-
able Broadcast [11]: A-Reliable Broadcast with A = (1,1)
guarantees now that all processes are correct and infected,
which does not make much sense in a failure-prone model.

C. Cumulative Distribution Function

From a probabilistic point of view, our reliability distri-
bution function 1)(p) expresses a similar, but not equivalent
measure than a cumulative distribution function. In fact,
for any given random variable X, the cumulative distribu-
tion function of X is given by

F(z) =P(X <z), Vz € (—00,00) (26)

In contrast, 1) expresses for a given random variable p:
Y(po,E) =P(p>p1), Vpr < 0,E EE (27)

Together with the assumption that Vp ¢ [0,1] ¥(p, &) =1,
we are able to express the relationship between ¥ (p) and
the cumulative distribution function of a random variable
p describing the fraction of processes which deliver a given
message

F(po,&) = 00 =¢(p1,€) + Plp = p1,€),Vp € (—00,00)
(28)
where the last term disappears when considering ¥(p, &)
as a continuous function with respect to p.

D. Lower Bounds

As illustrated through our examples in Section III and
Section V, a lower bound on the probability of successful
execution ® g, for a given broadcast algorithm B; can help
to estimate the reliability distribution function g, (p) for
that algorithm, which can be useful when comparing B,
with another algorithm Bs, especially if ¥p, (p) is known
and is smaller than g, (p) in some V. In practice, it is
important to find a lower bound which reflects most truly
the effective reliability distribution % (p) of an algorithm.
The lower bound presented in the case of Bimodal Multi-
cast is reasonably close to the real probability distribution
and provides useful information for comparisons with other
broadcast algorithms, but for many algorithms, finding a
precise reliability distribution function remains a difficult
task.

VII. CONCLUSIONS

There are many ways to define the reliability of a broad-
cast protocol. Traditionally, formally defined reliable pro-
tocols can be expensive and may lack scalability. Best-
effort reliable protocols are inexpensive and scalable, but
lack end-to-end delivery guarantees. Different variations
of broadcast algorithms have been applied successfully in
a number of practical implementations, but the very no-
tion of reliability of the protocols is not understood well
enough. So one can be interested in defining a measure of
the reliability of a broadcast protocol which can be applied
to the entire spectrum of existing and future broadcast al-
gorithms.

This paper suggests a probabilistic measure of reliabil-
ity. To demonstrate our notion of A-Reliabity, we consid-
ered the Bimodal Multicast algorithm of Birman et al [4]
and a protocol variant of IP Multicast [6] as case stud-
ies and we measured their respective reliabilities in prob-
abilistic terms. The proposed specifications help to prove

correctness of other probabilistic broadcast algorithms as
well as to verify upper-layer distributed computing abstrac-
tions, which are based on reliable broadcast primitives. For
example, to verify the leader election protocol [10] based
on Bimodal Multicast we can comprehend Bimodal Multi-
cast as a “black box” with probabilistic reliability specified
in this paper. More generally, we believe that our spec-
ifications give a uniform way to prove the correctness of
protocols based on Bimodal Multicast or TP Multicast.

To quantify the reliability of a broadcast algorithm in a
probabilistic sense, we need the precise knowledge of sys-
tem parameters and an accurate model of the behavior of
the algorithm based on former ones. Such parameters are
not always available, and models usually represent approx-
imations. This outlines the main limitation of our notion of
A-Reliable Broadcast: not every system model (and algo-
rithm) matches it perfectly. We understand the notions we
presented here as a first step towards defining a rigorous
measure for scalable and probabilistically reliable proto-
cols.

While the reliability offered by a broadcast algorithm
can be quantified through our approach, there is no mea-
sure of its efficiency so far, besides the simplistic message
complexity (typically O(n log n) for a push-based gossip
algorithm [13]). We are thus currently working on identi-
fying an appropriate measure for the efficiency, and maybe
therethrough the scalability of broadcast algorithms.

REFERENCES

N.T.J. Bailey. The Mathematical Theory of Infectious Diseases
and its Applications (second edition). Hafner Press, 1975.

K.P. Birman. Replication and fault-tolerance in the Isis sys-
tem. In Proceedings of the 10th ACM Symposium on Operating
Systems Principles, pages 79-86, December 1985.

K.P. Birman. Building Secure and Reliable Network Applica-
tions. Manning Publications Co., 1996.

K.P. Birman, M. Hayden, O.Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal Multicast. ACM Transactions on Computer
Systems, 17(2):41-88, May 1999.

David R. Cheriton and Dale Skeen. Understanding the limita-
tions of causally and totally ordered communication. In Proceed-
ings of the 14th Symposium on Operating Systems Principles,
pages 44-57, December 1993.

S. Deering. Multicast Routing in a Datagram Internetwork. PhD
thesis, Stanford University, 1991.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
Algorithms for Replicated Database Maintenance. In Proceed-
ings of the 6th ACM Symposium on Principles of Distributed
Computing (PODC ’87), pages 1-12, August 1987.

B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas. Protocol
Independent Multicast-Sparse Mode (PIM-SM): Protocol Spec-
ification (Revised). Internet Engineering Task Force (IETF),
November 2000.

S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang.
A Reliable Multicast Framework for Light-Weight Sessions and
Application Level Framing. IEEE/ACM Transactions on Net-
working, pages 784-803, November 1996.

I. Gupta, R. van Renesse, and K.P. Birman. A Probabilisti-
cally Correct Leader Election Protocol for Large Groups. In
Proceedings of the 14th International Conference on Distributed
Computing (DISC 2000), pages 89-103, October 2000.

V. Hadzilacos and S. Toueg. A Modular Approach to Fault-
Tolerant Broadcast and Related Problems. Technical report,
Cornell University, Computer Science, May 1994.

H.W. Holbrook, S.K. Singhal, and D.R. Cheriton. Log-Based
Receiver-Reliable Multicast for Distributed Interactive Simula-
tion. In Proceedings of the 1995 ACM Conference on Applica-

(10]

(11]

(12]

10

(13]

(14]

(21]

(22]

tions, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’95), pages 328-341, August 1995.
R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Ran-
domized Rumor Spreading. In Proceedings of the 41st Annual
IEEE Symposium on Foundations of Computer Science (FOCS
2000), pages 565-574, November 2000.

K.J. Lidl, J. Osborne, and J. Malcolm. Drinking from the fire-
hose: Multicast USENET news. In USENIX Association, editor,
Proceedings of the Winter 1994 USENIX Conference, pages 33—
45, jan 1994.

M.-J. Lin, K. Marzullo, and S. Masini. Gossip versus Determinis-
tically Constrained Flooding on Small Networks. In Proceedings
of the 14th International Conference on Distributed Computing
(DISC 2000), pages 253-267, October 2000.

S. Paul, K.K. Sabnani, J.C. Lin, and S. Bhattacharyya. Reli-
able Multicast Transport Protocol (RMTP). IEEE Journal on
Selected Areas in Communications, 15(3):407-421, April 1997.
G. Phillips, S. Shenker, and H. Tangmunarunkit. Scaling of
multicast trees: Comments on the Chuang-Sirbu scaling law.
In Proceedings of the 1999 ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM?’99), pages 41-52, August 1999.

B. Pittel. On Spreading of a Rumor. SIAM Journal of Applied
Mathematics, 47:213—223, 1987.

R. van Renesse, K.P. Birman, and S. Maffeis. Horus: A Flexible
Group Communication System. Communications of the ACM,
39(4):76-83, April 1996.

B. Whetten, T. Montgomery, and S. Kaplan. A High Perfor-
mance Totally Ordered Multicast Protocol. In Theory and Prac-
tice in Distributed Systems, number 938 in LNCS, pages 33-54.
Springer, 1995.

Z. Xiao and K. Birman. A Randomized Error Recovery Algo-
rithm for Reliable Multicast. In Proceedings of IEEE Infocom
2001, pages 239-248, April 2001.

XTP Forum. Xpress transfer protocol specification.
Rew. 4.0, pages 95-120, 1995.

In XTP

