
The Impossibility of Boosting Distributed Service Resilience �

Paul Attie��� Rachid Guerraoui� Petr Kouznetsov� Nancy Lynch� Sergio Rajsbaum�

(1) College of Computer and Information Science, Northeastern University

(2) School of Computer and Communication Sciences, EPFL

(3) MIT Computer Science and Artificial Intelligence Laboratory

(4) Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM)

Abstract

We prove two theorems saying that no distributed system
in which processes coordinate using reliable registers and
� -resilient services can solve the consensus problem in the
presence of ��� undetectable process stopping failures. (A
service is � -resilient if it is guaranteed to operate as long
as no more than � of the processes connected to it fail.)

Our first theorem assumes that the given services are
atomic objects, and allows any connection pattern between
processes and services. In contrast, we show that it is possi-
ble to boost the resilience of systems solving problems eas-
ier than consensus: the �-set consensus problem is solvable
for ���� failures using �-resilient consensus services. The
first theorem and its proof generalize to the larger class of
failure-oblivious services.

Our second theorem allows the system to contain failure-
aware services, such as failure detectors, in addition to
failure-oblivious services; however, it requires that each
failure-aware service be connected to all processes. Thus,
� � � process failures overall can disable all the failure-
aware services. In contrast, it is possible to boost the re-
silience of a system solving consensus if arbitrary patterns
of connectivity are allowed between processes and failure-
aware services: consensus is solvable for any number of
failures using only �-resilient �-process perfect failure de-
tectors.

1 Introduction

We consider distributed systems consisting of asyn-
chronously operating processes that coordinate using reli-
able multi-writer multi-reader registers and shared services.
A service is a distributed computing mechanism that in-
teracts with distributed processes, accepting invocations,

�The first author was supported by the National Science Foundation
under Grant No. 0204432

performing internal computation steps, and delivering re-
sponses. Examples of services include:

� Shared atomic (linearizable) objects, defined by sequen-
tial type specifications [12, 15], for example, atomic
read-modify-write, queue, counter, test&set, and
compare&swap objects. The consensus problem can
also be defined as an atomic object.

� Concurrently-accessible data structures such as balanced
trees.

� Broadcast services such as totally ordered broadcast [11].

� Failure detectors, which provide processes with hints
about the failure of other processes [6].1

Thus, our notion of a service is quite general. We de-
fine three successively more general classes of service—
atomic objects, failure-oblivious services, and general (pos-
sibly failure-aware) services—in Sections 2, 6, and 7. We
define our services to tolerate a certain number � of failures:
a service is � -resilient if it is guaranteed to operate as long
as no more than � of the processes connected to it fail.

A fundamental, general question in distributed comput-
ing theory is: “What problems can be solved by distributed
systems, with what levels of resilience, using services of
given types and levels of resilience?” In this paper, we ex-
pose a basic limitation on the achievable resilience, namely,
that the resilience of a system cannot be “boosted” above
that of its services. More specifically, we prove two theo-
rems saying that no distributed system in which processes
coordinate using reliable registers and � -resilient services
can solve the consensus problem in the presence of � � �
process stopping failures.

We focus on the consensus problem because it has been
shown to be fundamental to the study of resilience in dis-
tributed systems. For example, Herlihy has shown that con-

1Our notion of service encompasses all failure detectors defined by
Chandra et al. [5] with one exception: we exclude failure detectors that
can guess the future.

1



sensus is universal [12]: an atomic object of any sequential
type can be implemented in a wait-free manner (i.e., tol-
erating any number of failures), using wait-free consensus
objects.

Our first main theorem, Theorem 1, assumes that the
given services are atomic objects and allows any connec-
tion pattern between processes and services. The result is
a strict generalization of the classical impossibility result of
Fischer et al. [9] for fault-tolerant consensus. Our simple,
self-contained impossibility proof is based on a bivalence
argument similar to the one in [9]. The proof involves show-
ing that decisions can be made in a particular way, described
by a hook pattern of executions.

In contrast to the impossibility of boosting for consensus,
we show that it is possible to boost the resilience of systems
solving problems easier than consensus. In particular, we
show that the �-set consensus problem [7] is solvable for
�� � � failures using �-resilient consensus services.

Theorem 1 and its proof assume that the given services
are atomic objects; however, they extend to the larger class
of failure-oblivious services. A failure-oblivious service
generalizes an atomic object by allowing an invocation to
trigger multiple processing steps instead of just one, and to
trigger any number of responses, at any endpoints. The ser-
vice may also include background processing tasks, not re-
lated to any specific endpoint. The key constraint is that no
step may depend on explicit knowledge of failure events.
We define the class of failure-oblivious services, give ex-
amples (e.g., totally-ordered broadcast), and describe how
Theorem 1 can be extended to such services.

Our second main theorem, Theorem 11, addresses the
case where the system may contain failure-aware services
(e.g., failure detectors), in addition to failure-oblivious ser-
vices and reliable registers. This result also says that boost-
ing is impossible. However, it requires the additional as-
sumption that each failure-aware service is connected to all
processes; thus, � � � process failures overall can disable
all the failure-aware services. The proof is an extension of
the first proof, using the same “hook” construction. We also
show that the stronger connectivity assumption is necessary,
by demonstrating that it is possible to boost the resilience of
a system solving consensus if arbitrary connection patterns
are allowed between processes and failure-aware services:
specifically, consensus is solvable for any number of fail-
ures using only �-resilient �-process perfect failure detec-
tors. The proofs of all results are available in the full version
of the paper [1].

Related work. Our Theorem 1, for atomic services, can
be derived by carefully combining several earlier theorems,
including Herlihy’s result on universality of consensus [12],
and the result of Chandra et al. on � -resiliency vs. wait-
freedom [4]. However, this argument does not extend to

prove impossibility of boosting for failure-oblivious and
failure-aware services. Moreover, some of the proofs upon
which this alternative proof rests are themselves more com-
plex than our direct proof.

Theorem 1 appeared first in a technical report [2]. Sub-
sequent impossibility results for atomic objects appeared
in [10, 16]. Our models for failure-oblivious services and
general services are new. As far as we know, this is the first
time a unified framework has been used to express atomic
and non-atomic objects. Moreover, this is the first time
boosting analysis has been performed for services more
general than atomic objects.

Organization. Section 2 presents definitions for the un-
derlying model of concurrent computation and for atomic
objects. Section 3 presents our model for a system whose
services are atomic objects. Section 4 presents the first im-
possibility result. Section 5 shows that boosting is possible
for set consensus. Section 6 defines failure-oblivious ser-
vices, gives an example, and extends the first impossibility
result to systems with failure-oblivious services. Section 7
defines general services, gives examples, and presents our
second main impossibility result. Section 8 shows how to
model some important services in our framework, and Sec-
tion 9 concludes.

2 Mathematical Preliminaries

2.1 Model of concurrent computation

We use the I/O automaton model [17, chapter 8] as our
underlying model for concurrent computation. We assume
the terminology of [17, chapter 8]. An I/O automaton � is
deterministic iff, for each task � of �, and each state � of �,
there is at most one transition ��� �� ��� such that � � �.

An execution � of � is fair iff for each task � of �: (1) if
� is finite, then � is not enabled in the final state of�, and (2)
if � is infinite, then � contains either infinitely many actions
of �, or infinitely many occurrences of states in which � is
not enabled. A trace of � is a sequence of external actions
of � obtained by removing the states and internal actions
from an execution of �. A trace of a fair execution is called
a fair trace. If � and �� are execution fragments of � (with
� finite) such that �� starts in the last state of �, then the
concatenation � ��� is defined, and is called an extension of
�.

2.2 Sequential types

We define the notion of a “sequential type”, in order to
describe allowable sequential behavior of atomic services.
The definition used here generalizes the one in [17, chap-
ter 9]: here, we allow nondeterminism in the choice of

2



the initial state and the next state. Namely, sequential type
� � ��� ��� invs� resps� Æ� consists of:

� � , a nonempty set of values,

� �� � � , a nonempty set of initial values,

� invs, a set of invocations,

� resps, a set of responses, and

� Æ, a binary relation from invs	� to resps	� that is total,
in the sense that, for every ��� 	� � invs 	 � , there is at
least one �
� 	�� � resps 	 � such that ���� 	�� �
� 	��� �
Æ.

We sometimes use dot notation, writing
� ��� � ���� � �invs� � � � for the components of � . We
say that � is deterministic if �� is a singleton set 
	��,
and Æ is a mapping, that is, for every ��� 	� � invs 	 � ,
there is exactly one �
� 	�� � resps 	 � such that
���� 	�� �
� 	��� � Æ.

We allow nondeterminism in our definition of a sequen-
tial type in order to make our notion of “service” as general
as possible. In particular, the problem of �-set-consensus
can be specified using a nondeterministic sequential type.

Example. Read/write sequential type: Here, � is a
set of “values”, �� � 
	��, where 	� is a distinguished
element of � , invs � 
���� � 
������	� � 	 � � �,
resps � � � 
����, and Æ � 
������ 	�� �	� 	�� � 	 �
� � � 
��������	�� 	��� ����� 	�� � 	� 	� � � �.

Example. Binary consensus sequential type: Here,
� � 

��� 
��� �, �� � 
�, invs � 
init�	�� �
	 � 
�� ���, resps � 
decide(	) � 	 � 
�� ���,
and Æ � 
��init�	�� �� �decide(	)� 
	��� � 	 � � � �

��init�	�� 
	���� �decide(	�)� 
	���� � 	� 	� � � �

Example. �-consensus sequential type: Now � is
the set of subsets of 
�� �� � � � � �� having at most � ele-
ments, �� � 
�, invs � 
init�	� � 	 � 
�� �� � � � � ���,
resps � 
decide(	) � 	 � 
�� �� � � � � ���, and Æ �

��init�	��� �� �decide(	�)�� � 
	��� � �� � � �� 	� �
� � 
	�� � 
��init�	��� �� �decide(	�)�� �� � �� � �
�� 	� � ��.
Thus, the first � values are remembered, and every opera-
tion returns one of these values.

2.3 Canonical �-resilient atomic objects

A “canonical � -resilient atomic object” describes the al-
lowable concurrent behavior of atomic objects. Namely, we
define the canonical � -resilient atomic object of type � for
endpoint set � and index �, where

� � is a sequential type,

� � is a finite set of endpoints at which invocations and
responses may occur,

� � � � is the level of resilience, and

� � is a unique index (name) for the service.

The object is described as an I/O automaton, in Figure 1.
The parameter � allows different objects to be connected

to the same or different sets of processes. A process at end-
point � � � can issue any invocation specified by the un-
derlying sequential type and can (potentially) receive any
allowable response. We allow concurrent (overlapping) op-
erations, at the same or different endpoints. The object pre-
serves the order of concurrent invocations at the same end-
point � by keeping the invocations and responses in internal
FIFO buffers, two per endpoint (one for invocations from
the endpoint, the other for responses to the endpoint). The
object chooses the result of an operation nondeterministi-
cally, from the set of results allowed by the transition rela-
tion � �Æ applied to the invocation and the current value of
val. The object can exhibit nondeterminism due to nonde-
terminism of sequential type � , and due to interleavings of
steps for different invocations.

We model a failure at an endpoint � by an explicit input
action ���� �. We use the task structure of I/O automata and
the basic definition of fair executions to specify the required
resilience: For every process � � � , we assume the service
has two tasks, which we call the �-perform task and �-output
task. The �-perform task includes the ������� ��� action,
which carries out operations invoked at endpoint �. The �-
output task includes all the 
��� actions giving responses at
�. In addition, every �-* task (� is perform or output) con-
tains a special 	
��� ���� action, which is enabled when
either process � has failed or more than � processes in �
have failed. The 	
��� ���� action is intended to allow,
but not force, the service to stop performing steps on behalf
of process � after � fails or after the resilience level has been
exceeded.

The definition of fairness for I/O automata says that each
task must get infinitely many turns to take steps. In this con-
text, this implies that, for every � � � , the object eventually
responds to an outstanding invocation at �, unless either �
fails or more than � processes in � fail. If � does fail or
more than � processes in � fail, the fairness definition al-
lows the object to perform the 	
��� ���� action every
time the � � � task gets a turn, which permits the object
to avoid responding to �. In particular, if more than � pro-
cesses fail, the object may avoid responding to any process
in � , since 	
��� �
�
� ��� is enabled for all � � � . Also,
if all processes connected to the service (i.e., all processes
in �) fail, the object may avoid responding to any process.

Thus, the basic fairness definition expresses the idea that
the object is � -resilient: Once more than � of the processes
connected to the object fail, the object itself may “fail” by
becoming silent. However, although the object may stop
responding, it never violates its safety guarantees, that is,
it never returns values inconsistent with the underlying se-
quential type specification.

3



CanonicalAtomicObject�� � �� �� ��,
where � � ��� ��� invs� resps� Æ�

Signature:
Inputs:
���� , � � invs, � � � , the invocations at endpoint �
�����, � � �

Outputs:
���� , � � resps, � � � , the responses at endpoint �

Internals:
���������� , � � �

	
��� ���� , � � ��������� �
��
��, � � �

State components:
val � � , initially an element of ��
inv-buffer, a mapping from � to finite sequences of invs,

initially identically empty
resp-buffer, a mapping from � to finite sequences of resps

initially identically empty
failed � � , initially 	

Transitions:
Input: ����
Effect:

add � to end of inv-buffer���

Internal: ����������

Precondition:
� � �	�
�inv-buffer����
Æ���� val�� ��� ���

Effect:
remove head of inv-buffer���
val 
 �
add � to end of resp-buffer���

Output: ����
Precondition:

� � �	�
�resp-buffer����
Effect:

remove head of resp-buffer���

Input: �����
Effect:

failed 
 failed � ���

Internal: 	
��� ����
Precondition:

� � failed � failed � � � failed � �
Effect:

none

Tasks:
For every � � � :

�-perform: ������������ 	
��� �����������
�-output: ����� � � � resps� � �	
��� �
��
�����

Figure 1. A canonical atomic object.

A canonical atomic object whose sequential type is
read/write is called a canonical register. In this paper, we
will consider canonical reliable (wait-free) registers.

2.4 �-resilient atomic objects

An I/O automaton � is an � -resilient atomic object of
type � for endpoint set � and index �, provided that it im-
plements the canonical � -resilient atomic object � of type
� for � and �, in the following sense:

1. � and � have the same input actions (including ���� ac-
tions) and the same output actions.

2. Any trace of � is also a trace of �. (This implies that �
guarantees atomicity.)

3. Any fair trace of � is also a fair trace of �. (This says
that � is � -resilient.)

We say that � is wait-free (or, reliable), if it is ��� � � ��-
resilient. This is equivalent to saying that (a) � is �� �-
resilient, or (b) � is � -resilient for some � � �� � � �, or
(c) � is � -resilient for every � � �� � � �.

3 System Model with Atomic Objects

Our system model consists of a collection of process
automata, reliable registers, and fault-prone atomic objects
(which we sometimes refer to as services). For this section,
we fix � , �, and �, finite (disjoint) index sets for processes,
services, and registers, respectively, and � , a sequential
type, representing the problem the system is intended to
solve. A distributed system for ������ and � is the com-
position of the following I/O automata (see [17, chapter 8]):

1. Processes ��, � � � ,

2. Services (atomic objects) ��, � � �. We let �� denote
the sequential type, and �� � � the set of endpoints, of
service ��. We assume � itself is the index.

3. Registers �, � � �. We let � denote the value set and
	�� the initial value for register �. We assume � is the
index.

Processes interact only via services and registers. Pro-
cess �� can invoke an operation on service �� provided that
� � ��. Process �� can also invoke a read or write op-
eration on register � provided that � � �. Services and
registers do not communicate directly with one another, but
may interact indirectly via processes. In the remainder of
this section, we describe the components in more detail and
define terminology needed for the results and proofs.

3.1 Processes

We assume that process ��, � � � has the following in-
puts and outputs:

� Inputs ��, � � � �invs, and outputs 
�, 
 � � �resps. These
represent ��’s interactions with the external world.

� For every service �� such that � � ��, outputs ����, � �
���invs, and inputs 
���, 
 � ���resps.

� For every register �, outputs ���, where � is a read or
write invocation of �, and inputs 
��, where 
 is a re-
sponse of �.

4



� Input ���� �.

�� may issue several invocations, on the same or dif-
ferent services or registers, without waiting for responses
to previous invocations. The external world at �� may
also issue several invocations to �� without waiting for re-
sponses. As a technicality, we assume that when �� per-
forms a decide(	)� output action, it records the decision
value 	 in a special state component.

We assume that �� has only a single task, which there-
fore consists of all the locally-controlled actions of ��. We
assume that in every state, some action in that single task is
enabled. We assume that the ���� � input action affects �� in
such a way that, from that point onward, no output actions
are enabled. However, other locally-controlled actions may
be enabled—in fact, by the restriction just above, some such
action must be enabled. This action might be a “dummy”
action, as in the canonical resilient atomic objects defined
in Section 2.3.

3.2 The complete system

The complete system � is constructed by composing the
��� ��, and � automata and then hiding all the actions used
to communicate among them.

For any action � of �, we define the participants of ac-
tion � to be the set of automata with � in their signature.
Note that no two distinct registers or services participate in
the same action �, and similarly no two distinct processes
participate in the same action. Furthermore, for any action
�, the number of participants is at most �. Thus, if an action
� has two participants, they must be a process and either a
service or register.

As we defined earlier, each process �� has a single
task, consisting of all the locally controlled actions of
��. Each service or register ��, � � � � �, has
two tasks for each � � ��: �-perform, consisting of

������� ���� 	
��� ������� ����, and �-output, consisting
of 

��� � 
 � ���resps� � 
	
��� �
��
� ����. These
tasks define a partition of the set of all actions in the sys-
tem, except for the inputs of the process automata that are
not outputs of any other automata, namely, the invocations
by the external world and the ���� � actions. The I/O au-
tomata fairness assumptions imply that each of these tasks
get infinitely many turns to execute.

We say that a task � is applicable to a finite execution �
iff some action of � is enabled in the last state of �.

3.3 The consensus problem

The “traditional” specification of � -resilient binary con-
sensus is given in terms of a set 
��� � � �� of processes,
each of which starts with some value 	� in 
�� ��. Processes
are subject to stopping failures, which prevent them from

producing any further output.2 As a result of engaging in
a consensus algorithm, each nonfaulty process eventually
“decides” on a value from 
�� ��. The behavior of pro-
cesses is required to satisfy the following conditions (see,
e.g., [17, chapter 6]):

Agreement No two processes decide on different values.

Validity Any value decided on is the initial value of some
process.

Termination In every fair execution in which at most �
processes fail, all nonfaulty processes eventually de-
cide.

In this paper, we specify the consensus problem differently:
We say that a distributed system � solves � -resilient con-
sensus for � if and only if � is an � -resilient atomic object of
type consensus (Section 2.2) for endpoint set � . We argue
that any system that satisfies our definition satisfies a slight
variant of the traditional one. In this variant, inputs arrive
explicitly via init�� actions, not all nonfaulty processes need
receive inputs, and only nonfaulty processes that do receive
inputs are guaranteed to eventually decide. Our agreement
and validity conditions are the same as before; our new ter-
mination condition is:

Termination In every fair execution in which at most �
processes fail, any nonfaulty process that receives an
input eventually decides.

4 Impossibility of Boosting for Atomic Ob-
jects

Our first main theorem is:

Theorem 1 Let � � �� � be the number of processes, and let
� be an integer such that � � � � ���. There does not ex-
ist an �����-resilient �-process implementation of consen-
sus from canonical � -resilient atomic objects and canonical
reliable registers.

To prove Theorem 1, we assume that such an implemen-
tation exists and derive a contradiction. Let � denote the
complete system, that is, the composition of the processes
��, � � � , services ��, � � �, and registers �, � � �. By
assumption, � satisfies the agreement, validity and termina-
tion properties of consensus.

For each component � � � � � and � � �� (recall
that �� denotes the endpoints of �) let inv-buffer���� de-
note the invocation buffer of �, which stores invocations
from ��, and let resp-buffer���� denote the response buffer
of �, which stores responses to ��. Also let 
������� �
�inv-buffer����� resp-buffer�����.

2Stopping failures are usually defined as disabling the process from
executing at all. However, the two definitions are equivalent with respect
to overall system behavior.

5



4.1 Assumption

To prove Theorem 1, we make the following assumption:

(i) We assume that the processes ��, � � � , are determin-
istic automata, as defined in Section 2.1. For services,
we assume a slightly weaker condition: that the sequen-
tial type is deterministic, i.e, the sequential type has a
unique initial value and the transition relation Æ is a
mapping. Note that the sequential type for registers is
also deterministic, by definition.

Assumption (i) implies that, after a finite failure-free ex-
ecution �, an applicable task � determines a unique tran-
sition, arising from running task � from the final state
� of �. We denote this transition as ������������� ��
(since it is uniquely defined by the final state �). If
������������� �� � ��� �� ���, then we write ������� ��,
��������� ��, and ������� �� to denote �, �, and ��, respec-
tively. We sometimes abbreviate ������� �� as ����. Note
that, if � is the final state of �, then ������������� ��,
������� ��, ��������� ��, and ������� �� are defined iff � is
applicable to �.

Assumption (i) implies that any failure-free execution
can be defined by applying a sequence of tasks, one after
the other, to the initial state of �. Assumption (i) does not
reduce the generality of our impossibility result, because
any candidate system could be restricted to satisfy (i); if the
impossibility result holds for the restricted automaton, then
it also holds for the original one.

Lemma 2 Let � be any finite failure-free execution of �, �
be any task of � applicable to �, and��� be any failure-free
extension of � such that � includes no actions of �. Then �
is applicable to � � �.

Let � be any state of � arising after a finite failure-
free execution � of �, and let � be a task that is ap-
plicable to � (equivalently, enabled in �). Then we
write participants��� �� for the set of participants of action
��������� ��. Note that, for any task � and any state �,
�participants��� ��� � �. Also, if �participants��� ��� � �,
then participants��� �� is of the form 
��� ���, for some
� � � and � � � � �.

4.2 Initializations and valence

In our proof, we consider executions in which consensus
inputs arrive from the external world at the beginning of the
execution. Thus, we define an initialization of � to be a fi-
nite execution of � containing exactly one init��� action for
each � � � , and no other actions. An execution � of � is
input-first if it has an initialization as a prefix, and contains
no other init�� actions. A finite failure-free input-first ex-
ecution � is defined to be �-valent if (1) some failure-free

extension of � contains a decide(�)� action, for some � � � ,
and (2) no failure-free extension of � contains a decide(�)�
action, for any � � � . The definition of a �-valent execu-
tion is symmetric. A finite failure-free input-first execution
� is univalent if it is either �-valent or �-valent. A finite
failure-free input-first execution � is bivalent if (1) some
failure-free extension of � contains a decide(�)� action, for
some �, and (2) some failure-free extension of � contains
a decide(�)� action, for some �. These definitions immedi-
ately imply the following result:

Lemma 3 Every finite failure-free input-first execution of �
is either bivalent or univalent.

The following lemma provides the first step of the im-
possibility proof:

Lemma 4 � has a bivalent initialization.

For the rest of this section, fix �� to be any particular
bivalent initialization of �.

4.3 The graph ����

Now define an edge-labeled directed graph ���� as fol-
lows:

(1) The vertices of ���� are the finite failure-free input-first
extensions of the bivalent initialization ��.

(2) ���� contains an edge labeled with task � from � to ��

provided that �� � ����.

By assumption (i) of Section 4.1, any task triggers at most
one transition after a failure-free execution �. Therefore,
for any vertex � of ���� and any task �, there is at most
one edge labeled with � outgoing from �.

4.4 The existence of a hook

We show that decisions in � can be made in a particular
way, described by a hook pattern of executions. Similarly
to [5], we define a hook to be a subgraph of ���� of the
form depicted in Figure 2.

Lemma 5 ���� contains a hook.

4.5 Similarity

In this section, we introduce notions of similarity be-
tween system states. These will be used in showing non-
existence of a hook, which will yield the contradiction
needed for the impossibility proof.

Let � � � and let �� and �� be states of �. Then �� and
�� are �-similar if:

6



�
�

��

�

�

�� (�-valent)

�

�
�

�� (�-valent)

Figure 2. A hook starting in �.

(1) For every � � � � 
��, the state of �� is the same in ��
and ��.

(2) For every � � � � �:

1. The value of val� is the same in �� and ��.

2. For every � � �� � 
��, the value of 
������� is
the same in �� and ��.

Lemma 6 Let � � � . Let �� and �� be finite failure-free
input-first executions, �� and �� the respective final states
of �� and ��. Suppose that �� and �� are �-similar. If ��

and �� are univalent, then they have the same valence.

Similarly, we define the notion of �-similar states: Let
� � �, and let �� and �� be states of �. Then �� and �� are
�-similar if:

(1) For every � � � , the state of �� is the same in �� and
��.

(2) For every � � �� � 
��� � �, the state of �� is the
same in �� and ��.

Lemma 7 Let � � �. Let �� and �� be finite failure-free
input-first executions, �� and �� the respective final states
of �� and ��. Suppose that �� and �� are �-similar. If ��

and �� are univalent, then they have the same valence.

4.6 The non-existence of a hook

Now we are ready to prove the absence of hooks. We
assume that a hook exists, and we locate in ���� two uni-
valent executions of opposite valence that produce �-similar
(� � �) or �-similar states (� � �). Lemmas 6 and 7 es-
tablish a contradiction.

Lemma 8 ���� contains no hooks.

Lemma 5 contradicts Lemma 8. Hence we have derived
a contradiction by assuming the negation of Theorem 1.
Hence Theorem 1 is established.

5 �-Set Consensus

Our boosting impossibility result concerns consensus
implementations. Interestingly, while it is not possible to
implement �� � ��-resilient consensus using registers and
� -resilient atomic objects, this is not the case for the �-set
consensus problem [7]. In �-set consensus, the processes
have to agree on at most � different values (�-set consensus
reduces to consensus when � � �).

Consider a set of � -resilient �-set consensus services,
each one exporting � ports. An algorithm that implements
� �-resilient ��-set consensus works as follows. Take a prin-
cipal subset of the processes, and divide it into � disjoint
groups, each one accessing a different service. Each princi-
pal process participates in an execution proposing its input
value to its designated service. When it gets a decision back,
the process decides on the value and writes it in a shared
register. The remaining processes simply wait until at least
one principal process writes the value. The values of �� and
� � depend on the size of the principal set, and on the number
� of services we divide it into. There is a tradeoff between
�� and � �: if a small number of failures � � is tolerated, then
a high degree of agreement is achieved, namely a small ��.
If more failures � � must be tolerated, then a lower degree of
agreement is achieved, namely a large ��.

To achieve correctness, we must ensure first that at least
one principal process receives a decision from its service
and communicates the decision to all, i.e., (1) every � -
resilient service is connected to � � � processes, and (2)
fewer than � � �� � �� principal processes can fail: � � �
� � �� � ��. Thus, there is at least one service � that is not
killed, and moreover, there is at least one correct principal
process that receives a decision value from � and writes the
decision in a shared register. Thus, every correct process
eventually decides. The number of possible different deci-
sion values is at most � � �: there are at most � different
values returned per service; more precisely, at most � val-
ues per service being accessed by at least � processes, and
� values for a service that is being accessed by � processes
for � � �. Thus, for a desired overall resilience � �, we
want the smallest possible �� and so we find the smallest
integer � that guarantees � � � � � �� � ��. Thus, we have
� � ��� � � ����� � ��� services, and take the first � � � �
processes to be the principal processes (� ��� processes us-
ing as few services as possible, each one with � � � input
ports). It follows that

Theorem 9 For any � � � � �, � � � � � � �,
� � � � � � � �, it is possible to implement � �-resilient
��-set consensus using read-write memory and � -resilient
�-set consensus services, each one with � ports, for

�� � � �

�
� � � �

� � �

�
��	
��� �� � � ������� � ����

7



When each available service is wait-free, that is � � ���,
this algorithm reduces to the one of [13], and gives a tight
bound. As an example, assume that we want to implement
a � �-resilient ��-set consensus in a system of �� processes,
where � � � �� � �, using only �-resilient consensus ser-
vices, i.e., � � �, � � �. The smallest �� for which we can
do this is �� � �, using � � � services, each shared by �
processes (� � � � � �� principal processes).

Note that the algorithm above uses services that are not
connected to all processes. It is known that � -resilient � -
set consensus cannot be solved using only reliable regis-
ters [3, 14, 18]. We conjecture that � -resilient � -set con-
sensus cannot be solved using only reliable registers and
services that are connected to all processes.

6 Failure-Oblivious Services

A failure-oblivious service is a generalization of an
atomic object. It allows an invocation to trigger multiple
processing steps instead of just one ������� step. These
steps can interleave with processing steps triggered by other
invocations, and this makes a failure-oblivious service non-
atomic, in general. A failure-oblivious service also allows
an invocation to trigger any number of responses, at any
endpoints, instead of just a single response at the endpoint
of the invocation. The service may also include background
processing tasks, not related to any specific endpoint. The
key constraint is that no step may depend on explicit knowl-
edge of failure events. In this section, we define the class of
failure-oblivious services, give examples, and describe how
Theorem 1 can be extended to such services.

6.1 �-resilient failure-oblivious services

As for atomic objects, we begin by defining a canon-
ical � -resilient failure-oblivious service. A canonical � -
resilient failure-oblivious service is parameterized by � ,
� , and �, which have the same meanings as for canonical
atomic objects. Also, in place of the sequential type param-
eter � , the service has a service type parameter � , which
is a tuple ��� ��� invs� resps� ��� � Æ�� Æ�� Æ��, where � and
�� are as before, invs and resps are the respective sets of in-
vocations and responses (which can occur at any endpoint),
��� is a set of global tasks, and Æ�� Æ�� Æ� are three transi-
tion relations.

Here, Æ� is a total binary relation from invs	�	� to (the
set of mappings from � to finite sequences of resps) 	� .
It is used to map an invocation at the head of a particular
inv-buffer, and the current value for ��� , to a set of results,
each of which consists of a new value for ��� and sequences
of responses to be added to any or all of the resp-buffers. Æ�
is a total binary relation from � 	� to (the set of mappings
from � to finite sequences of resps) 	� . It is used to map

a particular endpoint and value of ��� to a set of results, de-
fined as above. Finally, Æ� is a total binary relation from �
to (the set of mappings from � to finite sequences of resps)
	� . It it used to map a value of ��� to a set of results. The
code for a canonical failure-oblivious automaton, showing
how these parameters are used, appears in Figure 3.

Thus, a canonical � -resilient failure-oblivious service is
allowed to perform rather flexible kinds of processing, both
related and unrelated to individual endpoints, as long as pro-
cessing decisions do not depend on knowledge of occur-
rence of failure events.

An I/O automaton � is an � -resilient failure-oblivious
service of type � , endpoint set � , and index �, provided
that it implements the canonical � -resilient failure oblivious
service � of type � for � and �, in the same sense as for
atomic objects.

6.2 Impossibility of Boosting

Let index set � include now the indices of all failure-
oblivious services. Now the notion of �-similarity restricts
the states of all registers and of all atomic and failure-
oblivious services except ��. We show, in the full version
of the paper, that Lemmas 2–8 extend to this case. Hence
the following result:

Theorem 10 Let � and � be integers, � � � � ���. There
does not exist an �� � ��-resilient �-process implemen-
tation of consensus from canonical � -resilient atomic ser-
vices, canonical � -resilient failure-oblivious services, and
canonical reliable registers.

7 General (Failure-Aware) Services

A general, or failure-aware service is a further general-
ization of a failure-oblivious service. This time, the gener-
alization removes the failure-oblivious constraint, allowing
the service’s decisions to depend on knowledge of failures
of processes connected to the service.

7.1 �-resilient general services

A canonical � -resilient general service is param-
eterized by � , � , and �, which have the same
meanings as for canonical failure-oblivious services,
and by a service type parameter � , which is a tu-
ple ��� ��� ��	�� ��� �� !"#
� Æ�� Æ�� Æ��, as for failure-
oblivious services. This time, however, the domains of Æ�,
Æ�, and Æ� are invs	 � 	 � 	 �� , � 	 � 	 �� , and � 	 �� ,
respectively. The final argument, in each case, will be in-
stantiated in the service code with the current failed set.

The only portions of the code that are different from
those for failure-oblivious services are the three transition
definitions that use the Æ�, Æ�, and Æ� (Figure 4).

8



CanonicalFailureObliviousService�� � �� �� ��,
where � � ������ invs� resps� ���� Æ�� Æ�� Æ��

Signature:
Inputs:
���� , � � invs, � � �
�����, � � �

Outputs:
���� , � � resps, � � �

Internals:
���������� , � � �

����
����� , � � �

	
��� ���� , � � ��������� ����
��� �
��
��, � � �
����
����� , � � ���

	
��� ����
����� , � � ���

State components:
As for canonical atomic object.

Transitions:
Input: ����
As for canonical atomic object.

Internal: ����������

Precondition:
� � �	�
�inv-buffer����
Æ����� �� val�� ��� ���

Effect:
remove head of inv-buffer���
val 
 �
for � � � do

add ���� to end of resp-buffer���

Internal: ����
����� , � � �

Precondition:
Æ����� val�� ��� ���

Effect:
val 
 �
for � � � do

add ���� to end of resp-buffer���

Internal: ����
����� , � � ���

Precondition:
Æ��val� ��� ���

Effect:
val 
 �
for � � � do

add ���� to end of resp-buffer���

Output: ����
As for canonical atomic object.

Input: �����
As for canonical atomic object.

Internal: 	
��� ���� , � � �
As for canonical atomic object.

Internal: 	
��� ����
����� , � � ���

Precondition:
failed � �

Effect:
none

Tasks:
For every � � � :

�-������� : ������������ 	
��� �����������
�-����
��: �����
������ 	
��� ����
������
�-�
��
� : ����� � � � resps� � �	
��� �
��
�����

For every � � ���:
�-����
��: �����
����� � 	
��� ����
������

Figure 3. A canonical failure-oblivious service.

Internal: ����������

Precondition:
� � �	�
�inv-buffer����
Æ����� �� val� failed�� ��� ���

Effect:
remove head of inv-buffer���
val 
 �
for � � � do

add ���� to end of resp-buffer���

Internal: ����
����� , � � �

Precondition:
Æ����� val� failed�� ��� ���

Effect:
val 
 �
for � � � do

add ���� to end of resp-buffer���

Internal: ����
����� , � � ���

Precondition:
Æ���val� failed�� ��� ���

Effect:
val 
 �

for � � � do
add ���� to end of resp-buffer���

Figure 4. Relations Æ�, Æ� and Æ� in a general service.

An I/O automaton � is an � -resilient general service of
type � , endpoint set � , and index �, provided that it imple-
ments the canonical � -resilient general service � of type �
for � and �, in the same sense as for atomic and failure-
oblivious services.

7.2 Impossibility of Boosting

Our impossibility results for atomic and failure-oblivious
services allow arbitrary connections between processes and
services. However, it turns out that we can boost the re-
silience of systems containing failure-aware services, if we
allow arbitrary connection patterns:

For example, consider a system that uses wait-free reg-
isters and �-resilient perfect failure detectors. Suppose that
every pair of processes shares a �-resilient �-process failure
detector. Such a system can implement a wait-free perfect
failure detector for all processes as follows: Process � just
listens to all failure detectors it is connected to and accumu-
lates the set of suspected processes in a dedicated register.
Periodically, it outputs its set of suspected processes. Since
every perfect failure detector is �-resilient, the algorithm is
wait-free. Using this construction, � -resilient consensus,
for any � , can be implemented using wait-free registers and
�-resilient services.

This boosting is, however, impossible if we assume a
system in which � -resilient failure-aware services must be
connected to all processes, thus, � � � process failures
overall can disable all the failure-aware services. We as-
sume that the system may also contain � -resilient failure-
oblivious services, connected to arbitrary processes. By
applying arguments similar to ones presented in Section 4,

9



we can prove boosting to be impossible, i.e., that �� � ��-
resilient consensus cannot be solved in such a model.

Theorem 11 Let � and � be integers, � � � � � � �.
There does not exist an �� � ��-resilient �-process imple-
mentation of consensus from canonical � -resilient general
services connected to all processes, canonical � -resilient
atomic services (connected to arbitrary processes), canon-
ical � -resilient failure-oblivious services (connected to ar-
bitrary processes), and canonical reliable registers.

8 Examples

In the full version [1] we show how totally ordered
broadcast, and various failure detectors, can be modeled in
our framework. An � -resilient totally ordered broadcast ser-
vice can be modeled as an � -resilient failure-oblivious ser-
vice. An invocation inserts a message into a queue (which is
the value val), and a !-����
�� action subsequently inserts
this message into every output buffer of the service. We use
general (failure-aware) services to model failure detectors.
Our failure detectors do not provide all the functionality of
the standard model [5]: because our failure detectors are au-
tomata, they cannot predict future input actions. Thus, our
services encompass only realistic failure detectors [8]. Oth-
erwise, modeling failure detectors using general services is
straightforward, since general services have access to the
set of failed processes.

9 Conclusions

We have established the impossibility of boosting the re-
silience of services in a distributed asynchronous system
where processes are subject to undetectable stopping fail-
ures. Our results can be viewed as a generalization to any
number � of failures of the impossibility result of Fischer,
Lynch and Paterson [9] for � � �. While our first result
(for atomic objects) can be derived from existing results in
the literature, the direct proof that we give is simpler, and
is also easily extended to more general services than atomic
objects.

References

[1] P. C. Attie, R. Guerraoui, P. Kouznetsov, N. A. Lynch,
and S. Rajsbaum. The impossibility of boosting dis-
tributed service resilience. Technical report, MIT Com-
puter Science and Artificial Intelligence Laboratory, 2005.
Available at http://theory.lcs.mit.edu/tds/
papers/Attie/boosting-tr.ps.

[2] P. C. Attie, N. A. Lynch, and S. Rajsbaum. Boosting fault-
tolerance in asynchronous message passing systems is im-
possible. Technical report, MIT Laboratory for Computer
Science, MIT-LCS-TR-877, 2002.

[3] E. Borowsky and E. Gafni. Generalized FLP impossibility
result for �-resilient asynchronous computations. In Proceed-
ings of the 25th ACM Symposium on Theory of Computing
(STOC), pages 91–100, May 1993.

[4] T. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Wait-
freedom vs. �-resiliency and the robustness of wait-free hier-
archies. In Proceedings of the 13th Annual ACM Symposium
on Principles of Distributed Computing (PODC’94), pages
334–343, August 1994.

[5] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. Journal of the ACM,
43(4):685–722, July 1996.

[6] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–
267, March 1996.

[7] S. Chaudhuri. Agreement is harder than consensus: set
consensus in totally asynchronous systems. In Proceed-
ings of the 19th Annual ACM Symposium on Principles of
Distributed Computing (PODC’00), pages 311–324, August
1990.

[8] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. A re-
alistic look at failure detectors. In IEEE Symposium on De-
pendable Systems and Networks (DSN 2002), Washington
DC, June 2002.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(3):374–382, April 1985.

[10] R. Guerraoui and P. Kouznetsov. On failure detectors and
type boosters. In Proceedings of the 17th International Sym-
posium on Distributed Computing (DISC’03), October 2003.

[11] V. Hadzilacos and S. Toueg. A modular approach to fault-
tolerant broadcast and related problems. Technical report,
Cornell University, Computer Science, May 1994.

[12] M. Herlihy. Wait-free synchronization. ACM Transactions
on Programming Languages and Systems, 13(1):124–149,
January 1991.

[13] M. Herlihy and S. Rajsbaum. Algebraic spans. Mathematical
Structures in Computer Science (Special Issue: Geometry
and Concurrency), 10(4):549–573, August 2000.

[14] M. Herlihy and N. Shavit. The topological structure of asyn-
chronous computability. Journal of the ACM, 46(6):858–
923, November 1999.

[15] M. Herlihy and J. M. Wing. Linearizability: a correct-
ness condition for concurrent objects. ACM Transactions on
Programming Languages and Systems, 12(3):463–492, June
1990.

[16] P. Jayanti. Private communication. 2003.

[17] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, 1996.

[18] M. Saks and F. Zaharoglou. Wait-free �-set agreement is im-
possible: The topology of public knowledge. SIAM Journal
on Computing, 29:1449–1483, 2000.

10


