
Reducing Noise in Gossip-Based Reliable Broadcast∗

P. Kouznetsov1 R. Guerraoui1 S. B. Handurukande1 A.-M. Kermarrec2

1 Distributed Programming Laboratory
Swiss Federal Institute of Technology, Lausanne, CH 1015, Switzerland

2 Microsoft Research Ltd., Cambridge, UK

Abstract

We present in this paper a general garbage collection
scheme that reduces the “noise” in gossip-based broadcast
algorithms. In short, our garbage collection scheme uses
a simple heuristic to trade “useless” messages with “use-
ful” ones. Used with a given gossip-based broadcast algo-
rithm, a given size of buffers, and a given number of dis-
seminated messages (e.g., per gossip round), our garbage
collection scheme provides higher overall reliability than
more conventional schemes. We illustrate our approach
through two algorithms: Bimodal Multicast (pbcast) [1]
and Lightweight Probabilistic Broadcast (lpbcast) [5].

Our scheme is based on the intuitive idea of discard-
ing messages according to their “age”. The “age” of a
message represents the number of times the message has
been retransmitted. Roughly speaking, if you have to choose
among a set of jokes to memorize, you might probably not
choose the one you have heard the most often: it is very
likely that there will be someone in your audience to already
know this joke.

1 Introduction

Context. Traditional reliable broadcast algorithms (in
the sense of [6]) might be considered efficient in the context
of local area networks but they do not scale to large settings.
Network-level algorithms, such as IP Multicast [3], provide
a limited form of reliability, that degrades drastically with
the scale of the system.

Gossip-based broadcast algorithms represent an ade-
quate solution to the general problem of broadcasting infor-
mation among a large group of participants. Their scalabil-
ity relies on a decentralized peer to peer interaction model
where each participant gossips received messages periodi-
cally to a set of other participants. These algorithms differ
according to the period of gossip, the number of times a

∗This work is supported by the Swiss National Foundation and Mi-
crosoft Research.

message is gossiped and the choice of participants to gossip
to. The redundancy, inherent to gossip-based algorithms,
helps to achieve a high degree of reliability without any cen-
tralized mechanism.

Motivation. The buffering and periodic exchange of
messages tend, however, to hamper the global scalability
from the network perspective. Gossip messages might in-
clude out-of-date items, or “noisy” messages, that unnec-
essarily load the network. An obvious challenge in gossip-
based algorithms is to reduce this “noise” without decreas-
ing the overall reliability. Messages need to be discarded
anyway, and the difficulty is to find the most appropriate
messages to discard, i.e., messages that have been already
delivered by “enough” processes, instead of messages that
have not. This is a non-trivial issue given that no global
information is available. An improper purging mechanism,
which would choose useful messages to remove instead of
noisy ones, can compromise reliability guarantees. At first
place, a reasonable approach consist in purging “old” mes-
sages and keep recently published ones.

In a large scale and dynamic setting, the notion of time
is hard to measure and might even be meaningless. A mes-
sage m1 might have been broadcast at time t but, because
of network partitions and/or randomization, m1 might have
only been forwarded a couple of times and might have con-
sequently been delivered only by very few processes. An-
other more recent message m2, broadcast at time t + ∆t,
might have been retransmitted many times, and might have
consequently reached a larger number of processes.

Contributions. We propose in this paper a general
garbage collection scheme for gossip-based reliable broad-
cast algorithms, based on the “age” of messages. Our notion
of message “age” captures a logical notion of time. More
precisely, the age of a message is the number of times the
message has been already gossiped. The age information
is carried by messages themselves and computed on each
process. Each process is able to take decisions about the
garbage collection independently, which is crucial in decen-
tralized systems. Our age-based garbage collection is then

inherently scalable.

2 Garbage collection in gossip-based broad-
cast algorithms

2.1 Reminder: gossip-based broadcast algo-
rithms

We briefly present in this section two variants of gossip-
based broadcast algorithms through which we shall illus-
trate our garbage collection scheme.

Bimodal Multicast (pbcast)[1] is composed of two sub-
protocols structured roughly as in the Internet MUSE proto-
col [7]. The first is an unreliable, hierarchical multicast that
makes best-effort attempt to efficiently deliver each mes-
sage to its destination. IP Multicast [2] can be used where
available. The second is a two-phase anti-entropy [4] al-
gorithm that operates in a series of asynchronous rounds.
During each round, the first phase detects message losses.
To this end a gossip-based dissemination phase, where each
node sends a digest of its message history, is initiated.
The second phase corrects such losses and executes only
if needed.

In the present work, we are concerned only with the first
phase of the anti-entropy protocol, namely the gossip-based
dissemination. A process will continue to gossip the mes-
sage during a fixed number of rounds after its initial re-
ception. The message is then considered out-of-date and
garbage-collected.

Lightweight Probabilistic Broadcast (lpbcast) [5] is
close to pbcast, but, in addition to the information dissem-
ination, it also encloses the membership layer. Lpbcast is
lightweight because it consumes little memory resources
and requires no dedicated services for membership manage-
ment. Aside from the membership scheme, the main dif-
ferences between lpbcast and pbcast are (1) that the latter
algorithm limits the number of hops as well as (2) repeti-
tions for a given message, and (3) that lpbcast melts the two
phases of pbcast (dissemination of messages and exchange
of digests) into a single phase. In lpcast, messages received
within a round are buffered before being gossiped. If the
number of messages exceeds the buffer size, message to be
removed are randomly chosen.

2.2 Noise and garbage collection

In a gossip-based algorithm, an efficient garbage col-
lection mechanism should maximize the utility of gossiped
messages and therefore limit the noise in the system. But
these algorithms admit the cases where some messages

might be unnecessarily gossiped whereas there are mes-
sages that “deserve” more dissemination.

In order to limit the size of the buffers, a garbage col-
lection scheme is involved. To be meaningful, a garbage
collection should be closely related to a reliable stability
detection mechanism. Such mechanisms must detect when
a message has been delivered by all (or some pre-defined
part) of its recipients, or in other words, has become sta-
ble, at which point it can be discarded. The decentralized
approach we profess here does not allow to detect precisely
when a message is delivered by every process. Thus, we
are aiming at a best-effort garbage collection scheme which
allows, in a probabilistic sense, to use only the information
received locally, when deciding which message to garbage
collect.

3 Age-based garbage collection

3.1 Message age

The idea underlying our garbage collection scheme is to
associate with every message some integer, corresponding
to the number of rounds the message spent in the system by
the current moment. This number is called age of the mes-
sage and is updated in every gossip round. Informally, the
age represents the dissemination degree of a message in the
system. Figure 1 presents a pseudo-code which implements
our scheme.

3.2 Gossip processing

There are several phases in our garbage collection
scheme (Figure 1(a)).

I. Broadcast message. Upon a message broadcast,
its age value is initialized to 0. The message is
then added to the message history events and if
its maximal size is exceeded, “oldest” elements are
purged. This is done by the auxiliary function RE-
MOVE OLDEST ELEMENTS() (Figure 1(b), see more
details on the function in Section 3.3).

II. Gossip transmission. This phase is executed period-
ically (every T seconds) and includes choosing ran-
domly the gossip target and sending the gossip. The
ages of stored messages are incremented.

III. Gossip reception. When a received gossip is pro-
cessed, the messages which have not been seen before
by process pi are delivered and stored in the buffer. If
a received message has been seen before and the copy
of it is stored in the buffer, its age is updated: the max-
imum of the ages of received and stored messages is
taken. As before, REMOVE OLDEST ELEMENTS() is
invoked to purge the “oldest” items.

Process pi:

upon BROADCAST MESSAGE(e)
. . .
e.age← 0

REMOVE OLDEST ELEMENTS()

every T seconds

for all e ∈ events do
e.age←e.age+1

. . .
SEND GOSSIP()

upon RECEIVE (gossip)
. . .
{Update the ages}
for all e ∈ gossip.events do

if events contains e′ such that
e′.id = e.id and e′.age < e.age then

e′.age← e.age
REMOVE OLDEST ELEMENTS()

(a) Gossip processing

REMOVE OLDEST ELEMENTS()
{Out-of-date}
while |events|> |events|mAND events contains e and e′ such that
(e.source = e′.source and (e.id - e′.id) > LONG AGO) do

events← events/ {e′}

{Age}
while |events| > |events|m do

if |events| > |events|m then
let e′ ∈ events such that

e′.age = maxe∈events(e.age)

events← events/ {e′}

(b) Auxiliary function

Figure 1. Age-based buffer processing.

3.3 Age-based purging

When choosing an element to remove from the buffer,
two criteria are applied (see Figure 1(b)). A message is
purged if:

I. (out-of-date) the message is received a long time ago,
with respect to more recent messages from the same
broadcast source. This period of time is measured in
gossip rounds and compared with LONG AGO param-
eter.

II. (oldest) the message has the largest age parameter in
the buffer.

4 Practical evaluation

We describe here the results of applying our garbage col-
lection scheme to pbcast and lpbcast. In short, we show
below that our age-buffering scheme allows gains of up to
10% of message stability and to increase the throughput in
more than two times.

4.1 Testing environment

The measurements we present here are obtained with 60
processes. The message history buffer size at every process
is limited to 30. The fanout, i.e. the number of other pro-
cesses each process gossips to per round, is fixed to 4. For
modelling failures we use process crash ratio equal to 5%

and message loss ratio equal to 10%. Where not explicitly
mentioned, the broadcast rate is 30, that is, 30 new mes-
sages are introduced in the system per gossip round.

4.2 Results

We can summarize the results as follows:

• Figure 2 depicts the message stability levels provided
by the broadcast algorithms implementing age-based
and randomized buffering schemes. The stability level
for age-based buffering is considerably higher for both
pbcast and lpbcast.

• The throughput estimation presented in Figure 3 im-
plies that age-based buffering enables a broadcast al-
gorithm to stand twice higher broadcast rate providing
the same level of message stability.

Despite process crashes and message losses, reliability is
not sacrificed by our age-based garbage collection: the av-
erage stability level is almost the same for both age-based
and randomized buffering schemes. The simulation results
clearly show this though it is not presented in the paper, due
to space constraint. In fact, our age-based garbage collec-
tion scheme does not decrease the useful redundancy level
of an algorithm. When age-based garbage collection is im-
plemented, it is less probable to gossip a noisy message.
This is the source of considerable performance gains shown
in Figures 2 and 3.

We should mention that for the practical evaluations, we
study here the circumstances that are somewhat beneficial
for the age-based buffering scheme: we consider only the
gossip-based anti-entropy phase [4] (there is no “unreli-
able” phase as in [1]) and we model the high and regular
broadcast rate. We have run a number of experiments in
less stressful conditions, in particular, when broadcast rate
is small with respect to the buffer sizes. The results are
not so impressive, although the advantages of our age-based
garbage collection scheme over a random one still hold.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

200 300 400 500 600 700 800

st
ab

il
it

y

round

Age-based purging
Random purging

(a) Pbcast

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

200 300 400 500 600 700 800

st
ab

il
it

y

round

Age-based purging
Random purging

(b) Lpbcast

Figure 2. Measurements: stability of non-optimized and
optimized (age-based purging) versions of pbcast and lpb-
cast.

References

[1] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal multicast. In ACM
Transactions on Computer Systems, volume 17(2),
pages 41–88, 1999.

[2] S. Deering. Multicast Routing in a Datagram Internet-
work. PhD thesis, Stanford University, 1991.

[3] S. Deering. Internet multicasting. In ARPA HPCC 94
Symposium. Advanced Research Projects Agency Com-
puting Systems Technology Office, Mar. 1994.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance.
In Proceedings of the 6th Annual ACM Symposium
on Principles of Distributed Computing (PODC’87),
pages 1–12, Aug. 1987.

0

10

20

30

40

50

60

70

80

20 25 30 35 40 45 50

T
hr

ou
gh

pu
t f

or
 9

0%
 s

ta
bi

li
ty

Buffer size

Age-based purging
Random purging

(a) Pbcast

0

10

20

30

40

50

60

70

80

20 25 30 35 40 45 50

T
hr

ou
gh

pu
t f

or
 9

0%
 s

ta
bi

li
ty

Buffer size

Age-based purging
Random purging

(b) Lpbcast

Figure 3. Measurements: throughput of non-optimized
and optimized (age-based purging) versions of pbcast and
lpbcast (message stability level 90%).

[5] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A.-M.
Kermarrec, and P. Kouznetsov. Lightweight probabilis-
tic broadcast. In IEEE International Conference on De-
pendable Systems and Networks (DSN2001), July 2001.

[6] V. Hadzilacos and S. Toueg. Distributed Systems, chap-
ter 5: Fault-Tolerant Broadcasts and Related Problems,
pages 97–145. Addison-Wesley, 2nd edition, 1993.

[7] K. Lidl, J. Osborne, and J. Malcolm. Drinking from the
firehose: Multicast USENET news. In USENIX Asso-
ciation, editor, Proceedings of the Winter 1994 USENIX
Conference, pages 33–45, jan 1994.

