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Abstract. The power of an object type T can be measured as the maximum number n of processes

that can solve consensus using only objects of T and registers. This number, denoted cons(T ), is called

the consensus power of T . This paper addresses the question of the weakest failure detector to solve

consensus among a number k > n of processes that communicate using shared objects of a type T with

consensus power n. In other words, we seek for a failure detector that is sufficient and necessary to

“boost” the consensus power of a type T from n to k. It was shown in [24] that a certain failure detector,

denoted Ωn, is sufficient to boost the power of a type T from n to k, and it was conjectured that Ωn

was also necessary. In this paper, we prove this conjecture for one-shot deterministic types. We first

show that, for any one-shot deterministic type T with cons(T ) ≤ n, Ωn is necessary to boost the power

of T from n to n+1. Then we go a step further and show that Ωn is also the weakest to boost the power

of (n + 1)-ported one-shot deterministic types from n to any k > n. Our result generalizes, in a precise

sense, the result of the weakest failure detector to solve consensus in asynchronous message-passing

systems [7]. As a corollary, we show that Ωt is the weakest failure detector to boost the resilience

level of a distributed shared memory system, i.e., to solve consensus among n > t processes using

(t− 1)-resilient objects of consensus power t.

1 Introduction

Background. Key agreement problems, such as consensus, are not solvable in an asynchronous

system where processes communicate solely through registers (i. e., read-write shared memory), as

long as one of these processes can fail by crashing [9, 11, 22]. Circumventing this impossibility has

sparked off two research trends:

(1) Augmenting the system model with synchrony assumptions about relative process speeds and

communication delays [10]. Such assumptions could be encapsulated within a failure detector

abstraction [8]. In short, a failure detector uses the underlying synchrony assumptions to provide

each process with (possibly unreliable) information about the failure pattern, i. e., about the

crashes of other processes. A major milestone in this trend was the identification of the weakest

failure detector to solve consensus in an asynchronous message-passing system [7]. The result

was extended later to the read-write shared memory model [20]. This failure detector, denoted
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Ω, outputs one process at every process so that, eventually, all correct processes detect the

same correct process. The very fact that Ω is the weakest to solve consensus means that any

failure detector that solves consensus can emulate the output of Ω. In a sense, Ω encapsulates

the minimum amount of synchrony needed to solve consensus among any number of processes

communicating through registers.

(2) Augmenting the system model with more powerful communication primitives, typically defined

as shared object types with sequential specifications [14, 22]. It has been shown, for instance,

that consensus can be solved among any number of processes if objects of the compare&swap

type can be used [14]. A major milestone in this trend was the definition of the power of an

object type T , denoted cons(T ), as the maximum number n of processes that can solve consensus

using only objects of T and registers. For instance, the power of the register type is simply 1

whereas the compare&swap type has power ∞. An interesting fact here is the existence of types

with intermediate power, like test-and-set or queue, which have power 2 [14,22].

Motivation. At first glance, the two trends appear to be fundamentally different. Failure detectors

encapsulate synchrony assumptions and provide information about failure patterns, but cannot

however be used to communicate information between processes. On the other hand, objects with

sequential specifications can be used for inter-process communication, but they do not provide any

information about failures. It is intriguing to figure out whether these trends can be effectively

combined [24]. Indeed, in both cases, the goal is to augment the system model with abstractions

that are powerful enough to solve consensus, and it is appealing to determine whether abstractions

from different trends add up. For instance, one can wonder whether the weakest failure detector to

solve consensus using registers and queues is strictly weaker than Ω.

One way to effectively combine the two trends is to determine a failure detector hierarchy, Dn,

n ∈ N such that Dn would be the weakest failure detector to solve consensus among n+1 processes

using objects of any type T such that cons(T ) = n. In the sense of [15], Dn would thus be the

weakest failure detector to boost the power of T to higher levels of the consensus hierarchy.

A reasonable candidate for such a failure detector hierarchy was introduced by Neiger in [24].

This hierarchy is made of weaker variants of Ω, denoted Ωn, n ∈ N, where Ωn is a failure detector

that outputs, at each process, a set of processes so that all correct processes eventually detect the

same set of at most n processes that includes at least one correct process. Clearly, Ω1 is Ω. It was

shown in [24] that Ωn is sufficient to solve consensus among k processes (k > n) using any set of

types T such that cons(T ) = n and registers. It was also conjectured in [24] that Ωn is the weakest

failure detector to boost the power of T to the level n + 1 of the consensus hierarchy. As pointed

out in [24], the proof of this conjecture appears to be challenging and was indeed left open. The

motivation of this work was to take up that challenge.
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Contributions. In this paper, we assume that processes communicate using read-write shared mem-

ory (registers) and one-shot deterministic types [15]. Although these types restrict every process to

invoke at most one deterministic operation on each object, they include many popular types such

as consensus and test-and-set, and they exhibit complex behavior in the context of the type booster

question [5, 15,17,21].

We show that Ωn is necessary to solve consensus in a system of k = n + 1 processes using

objects of any one-shot deterministic type T (cons(T ) = n) and registers. Then we generalize the

result by showing that Ωn is the weakest failure detector to solve consensus in a system of k (k > n)

processes using registers and (n + 1)-ported objects of type T .

Our result is a strict generalization of the fundamental result of [7] where Ω was shown to

be necessary to solve consensus in a message-passing system. We assume that, instead of reliable

channels, processes communicate through registers and objects of a powerful sequential type T . The

only information available on T is the fact that cons(T ) = n and T is one-shot and deterministic.

This lack of information forced us to reconsider the proof of [7]. In particular, we reuse and generalize

the notions of simulation tree, decision gadget and deciding process introduced in [7].

As a side effect, we get a formal proof that any failure detector that can be used to solve

consensus among k ≥ 2 processes in the read-write memory model can be transformed to Ω. The

result was first stated in [20] but, to our knowledge, its proof has never appeared in the literature.

As another interesting corollary of our result, we identify the weakest failure detector to boost

the resilience level of a distributed shared memory system. More precisely, consider a systems of

n processes that communicate through read-write registers and t-resilient objects. Informally, an

object implementation is called t-resilient if any operation on the object terminates unless more

than t processes fail, where t is a specified parameter. We show that Ωt+1 is necessary and sufficient

to solve consensus among n > t + 1 processes using t-resilient objects of consensus power t + 1.

Related work. The notion of consensus power was introduced by Herlihy [14] and then refined by

Jayanti [17]. Chandra, Hadzilacos and Toueg showed in that Ω is the weakest failure detector to

solve consensus in asynchronous message-passing systems with a majority of correct processes [7].

Lo and Hadzilacos showed that Ω can be used to solve consensus with registers and outlined a proof

that any failure detector that can be used to solve consensus with registers can be transformed to

Ω [20]. Neiger introduced the hierarchy of failure detectors Ωn and showed that objects of consensus

power n can solve consensus among any number of processes using Ωn [24]. Neiger also conjectured

in [24] that Ωn was actually necessary for solving consensus using objects of consensus power n and

gave a high-level outline of a potential proof of this conjecture. An indirect proof that it is impossible

to boost the resilience of atomic objects without using failure detectors appeared first in [13] (this

fact was independently and concurrently observed by Jayanti [18]). A direct self-contained proof of

3



this result appeared in [2], and then it was extended to more general classes of distributed services

in [3].

Roadmap. Section 2 presents necessary details of the model used in this chapter. We also recall here

the hierarchy of failure detectors Ωn. Section 3 shows that Ωn is necessary to boost the consensus

power of one-shot deterministic objects one level up. Section 4 generalizes the result to any number

of levels. Section 5 applies our result to the question of boosting the resilience of a distributed

system with respect to the consensus problem. Section 6 concludes the paper with a discussion on

how our proof relates to the Neiger’s original outline of how to approach such a proof [24].

2 Model

Our model of processes communicating through shared objects is based on that of [16,17] and our

notion of failure detectors follows from [7]. Below we recall what is substantial to show our result.

Processes

We consider a set Π of k asynchronous processes p1, . . . , pk (k ≥ 2) that communicate using shared

objects. To simplify the presentation of our model, we assume the existence of a discrete global

clock. This is a fictional device: the processes have no direct access to it. (More precisely, the

information about global time can come only from failure detectors.) We take the range T of the

clock’s ticks to be the set of natural numbers and 0 (T = {0} ∪ N).

2.1 Objects and types

An object is a data structure that can be accessed concurrently by the processes. Every object is

an instance of a type which is defined by a tuple (Q,O,m,R, δ). Here Q is a set of states, O is a set

of operations, m is a positive integer denoting the number of ports (used as the interface between

processes and objects), R is a set of responses, and δ is a relation known as the sequential specification

of the type: it carries each port, state and operation to a set of response and state pairs. We assume

that objects are deterministic: the sequential specification is a function δ : Nm×Q×O → Q×R. A

type is said to be m-ported if it has m ports. If not explicitly specified, we assume that the number

of ports of any object is k, i.e., the object is connected to every process.

A process accesses objects by invoking operations on the ports of the objects. A process can

use at most one port of each object. A port can be used by at most one process.

We say that type T = (Q,O,m,R, δ) is one-shot if ⊥ ∈ R, Q = 2Nm × Q′, for some Q′, such

that for all (S, q) ∈ Q, j ∈ Nm, and op ∈ O, if j /∈ S, then δ(j, (S, q), op) = ((S ∪ {j}, q′), r) where
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q′ ∈ Q′ and r ∈ R, otherwise (if j ∈ S), δ(j, (S, q), op) = ((S, q),⊥). Informally, a port of a one-shot

object can return meaningful (non-⊥) response at most once in any execution: every subsequent

operation applied on the port does not impact the object and returns ⊥.

We consider here linearizable [4, 16] objects: even though operations of concurrent processes

may overlap, each operation takes effect instantaneously between its invocation and response. If a

process invokes an operation on a linearizable object and fails before receiving a matching response,

then the “failed” operation may take effect at any future time. Any execution on linearizable objects

can thus be seen as a sequence of atomic invocation-response pairs, where the last operation invoked

by a failed process may be linearized (appointed to take effect) at any time after the invocation.

Unless explicitly stated otherwise, we assume that the objects are wait-free: any operation

invoked by a correct process on a wait-free object eventually returns, regardless of failures of other

processes.

2.2 Failures and failure patterns

Processes are subject to crash failures. We do not consider Byzantine failures: a process either

correctly executes the algorithm assigned to it, or crashes and stops forever executing any action.

A failure pattern F is a function from the global time range T to 2Π , where F (t) denotes the

set of processes that have crashed by time t. Once a process crashes, it does not recover, i.e.,

∀t : F (t) ⊆ F (t + 1).

We define correct(F ) = Π − ∪t∈TF (t), the set of correct processes in F . Processes in Π −
correct(F ) are called faulty in F . A process p /∈ F (t) is said to be up at time t. A process p ∈ F (t)

is said to be crashed at time t. We say that a subset U ⊆ Π is alive if U ∩ correct(F ) 6= ∅. We

consider here all failure environments [7], i.e., we make no assumptions on when and where failures

might occur. However, we assume that there is at least one correct process in every failure pattern.

2.3 Failure detectors

A failure detector history H with range R is a function from Π × T to R. H(p, t) is the value of

the failure detector module of process p at time t. A failure detector D with range RD is a function

that maps each failure pattern to a set of failure detector histories with range RD (usually defined

by a set of requirements that these histories should satisfy). D(F ) denotes the set of possible failure

detector histories permitted by D for failure pattern F . Note that we do not make any assumption

a priori on the range of a failure detector. When any process p performs a step of computation, it

can query its module of D, denoted Dp, and obtain a value d ∈ RD that encodes some information

about failures.
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The leader failure detector Ω outputs the id of a process at each process. There is a time

after which it outputs the id of the same correct process at all correct processes [7]. Formally, for

each failure pattern F , H ∈ Ω(F ) if and only if ∃t ∈ T∃q ∈ correct(F )∀p ∈ correct(F )∀t′ ≥ t :

H(p, t′) = q.

2.4 Algorithms

We define an algorithm A using a failure detector D as a collection of k deterministic automata, one

for each process in the system. A(p) denotes the automaton on which process p runs the algorithm

A. Computation proceeds in atomic steps of A. In each step of A, process p

(i) invokes an operation on a shared object and receives a response from the object, or queries its

failure detector module Dp and receives a value from Dp (in the latter case, we say that the

step of p is a query step), and

(ii) applies its current state, the response received from the shared object or the value output by

Dp to the automaton A(p) to obtain a new state.

A step of A is thus identified by a pair (p, x), where x is either λ (the empty value) or, if the

step is a query step, the failure detector value output at p during that step.

2.5 Configurations, schedules and runs

A configuration of A defines the current state of each process and each object in the system. An

initial configuration of A specifies the initial state of every A(p) and every object used by the

algorithm.3

The state of any process p in C determines whether in any step of p applied to C, p queries

its failure detector module or accesses a shared object. Respectively, a step (p, x) is said to be

applicable to C if and only if

(a) x = λ , and p invokes an operation o on a shared object X in its next step in C (we say that p

accesses X with o in C), or

(b) x ∈ RD, and p queries its failure detector Dp in its next step in C (x is the value obtained from

Dp during that step).

For a step e applicable to C, e(C) denotes the unique configuration that results from applying e to

C.
3 The consensus power of type T does not depend on whether or not the algorithms are allowed to choose the initial

states of objects of type T [5].
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A schedule S of algorithm A is a (finite or infinite) sequence of steps of A. S⊥ denotes the empty

schedule. We say that a schedule S is applicable to a configuration C if and only if (a) S = S⊥, or

(b) S[1] is applicable to C, S[2] is applicable to S[1](C), etc. For a finite schedule S applicable to

C, S(C) denotes the unique configuration that results from applying S to C.

Let S be any schedule applicable to a configuration C. We say that S applied to C accesses X

if S has a prefix S′ · (p, λ) where p accesses X in S′(C).

For any P ⊆ Π, we say that S is a P -solo schedule if only processes in P take steps in S.

A partial run of algorithm A using a failure detector D is a tuple R = 〈F,H, I, S, T 〉 where F

is a failure pattern, H ∈ D(F ) is a failure detector history, I is an initial configuration of A, S is

a finite schedule of A, and T ⊆ T is a finite list of increasing time values such that |S| = |T |, S is

applicable to I, and for all 1 ≤ k ≤ |S|, if S[k] = (p, x) then:

(1) Either p has not crashed by time T [k], i.e., p /∈ F (T [k]), or x = λ and S[k] is the last appearance

of p in S, i.e., ∀k < k′ ≤ |S|: S[k′] 6= (p, ∗) (the last condition takes care about the cases when

an operation of p is linearized after p has crashed, and there can be at most one such operation

in a run);

(2) if x ∈ RD, then x is the value of the failure detector module of p at time T [k], i.e., d = H(p, T [k]).

A run of algorithm A using a failure detector D is a tuple R = 〈F,H, I, S, T 〉 where F ∈ E is

a failure pattern, H ∈ D(F ) is a failure detector history, I is an initial configuration of A, S is an

infinite schedule of A, and T ⊆ T is an infinite list of increasing time values indicating when each

step of S has occurred. In addition to satisfying properties (1) and (2) of a partial run, R should

guarantee that

(3) every correct (in F ) process takes an infinite number of steps in S.

2.6 Problems and solvability

A problem is a predicate on a set of runs (usually defined by a set of properties that these runs

should satisfy). An algorithm A solves a problem M in an environment E using a failure detector D
if the set of all runs of A in E using D satisfies M . We say that a failure detector D solves problem

M in E if there is an algorithm A which solves M in E using D.

2.7 A weakest failure detector

Informally, D is the weakest failure detector to solve a problem M in an environment E if (a) D is

sufficient to solve M in E , i.e., D can be used to solve M in E , and (b) D is necessary to solve M

in E , i.e., any failure detector D′ that can be used to solve M can be transformed into D.
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More precisely, let D and D′ be failure detectors, and E be an environment. If, for failure

detectors D and D′, there is an algorithm TD′→D that transforms D′ into D in environment E , we

say that D is weaker than D′ in E , and we write D �E D′.

If D �E D′ but D′ �E D, we say that D is strictly weaker than D′ in E , and we write D ≺E D′.

If D �E D′ and D′ �E D, we say that D and D′ are equivalent in E , and we write D ≺E D′.

Algorithm TD′→D that emulates histories of D using histories of D′ is called a reduction al-

gorithm. Note that TD′→D does not need to emulate all histories of D; it is required that all the

failure detector histories it emulates be histories of D.

We say that a failure detector D is the weakest failure detector to solve a problem M in an

environment E if the following conditions are satisfied:

(a) D is sufficient to solve M in E , i.e., D solves M in E , and

(b) D is necessary to solve M in E , i.e., if a failure detector D′ solves M in E , then D is weaker

than D′ in E .

There might be a number of distinct failure detectors satisfying these conditions. (Though all

such failure detectors are in a strict sense equivalent.) With a slight abuse of grammar, it would be

more technically correct to talk about a weakest failure detector to solve M in E .

2.8 Consensus

The (binary) m-process consensus problem [11] consists for m processes to decide on some final

values (0 or 1) based on their initial proposed values in such a way that: (Agreement) no two

processes decide on different values, (Validity) every decided value is a proposed value of some

process, and (Termination) every correct process eventually decides.

It is sometimes convenient to think of the consensus problem in terms of a one-shot object type.

Formally, the m-process consensus type is specified as a tuple (Q,O,m,R, δ), where Q = 2Nm ×
{λ, 0, 1}, O = {propose(v) : v ∈ {0, 1}}, R = {⊥, 0, 1}, and for all v, v′ ∈ {0, 1}, S ∈ 2Nm , and j ∈
Nm − S, : δ(j, (S, λ), propose(v)) = ((S ∪ {j}, v), v) and δ(j, (S, v′), propose(v)) = ((S ∪ {j}, v′), v′).

We say that T solves m-process consensus if there is an algorithm that solves m-process con-

sensus using registers and objects of type in T .

The consensus power [14,17] of an object type T , denoted cons(T ), is the largest number m of

processes such that T solves m-process consensus. If no such largest m exists, then cons(T ) = ∞.

To prove our result, we also use a restricted form of consensus, team consensus. This variant of

consensus always ensures Validity and Termination, but Agreement is ensured only if the input val-

ues satisfy certain conditions. More precisely, assume that there exists a (known a priori) partition

of the processes into two non-empty sets (teams). Team consensus requires Agreement only if all
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processes on a team have the same input value. Obviously, team consensus can be solved whenever

consensus can be solved. Surprisingly, the converse is also true [24,25]:

Lemma 1 Let T be any type. If T solves team consensus among m processes, then T also solves

consensus among m processes.

Proof. We proceed by induction on m. For m = 2, team consensus is consensus. Assume that, (1)

for some m > 2, T solves team consensus among m processes (for non-empty teams A and B), and

(2) for all 2 ≤ l < m, T solves l-process consensus. Thus, A and B can use, respectively, |A|-process

consensus and |B|-process consensus to agree on the teams’ input values (A and B are non-empty,

thus, |A| < m and |B| < m). Once the team input value is known, the processes run the team

consensus algorithm among m processes (with teams A and B). Since all processes on the same

team propose the same value, Agreement of m-process consensus is satisfied. 2

2.9 Hierarchy of failure detectors Ωn

The hierarchy of failure detectors Ωn (n ∈ N) was introduced in [24]. Ωn (n ∈ N) outputs a set

of at most n processes at each process so that, eventually, the same alive (including at least one

correct process) set is output at all correct processes.

Formally, RΩn = {P ⊆ Π : |P | ≤ n}, and for each failure pattern F , H ∈ Ωn(F ) ⇔

∃t ∈ T∃P ∈ RΩn , P ∩ correct(F ) 6= ∅, ∀p ∈ correct(F )∀t′ ≥ t : H(p, t′) = P

Clearly, Ω1 is equivalent to Ω. It was furthermore shown in [24] that, for all k ≥ 2 and 1 ≤ n ≤ k−1:

(a) Ωn+1 ≺ Ωn;

(b) for any type T such that cons(T ) = n, Ωn can be used to solve k-process consensus using

registers and objects of type T .

3 Boosting types to level n + 1

In this section, we assume that k = n + 1 processes communicate through registers and objects

of a one-shot deterministic type T such that cons(T ) ≤ n. We show that Ωn is necessary to solve

consensus in this system. Our proof is a natural generalization of the proof that Ω is necessary to

solve consensus in message-passing asynchronous systems [7].
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3.1 An overview of the reduction algorithm

Let ConsD be any algorithm that solves consensus using registers, objects of a one-shot determinstic

type T , and a failure detector D. Our goal is to define a reduction algorithm TD→Ωn that emulates

the output of Ωn using D and ConsD. The reduction algorithm should have all correct processes

eventually agree on the same alive set of at most n processes.

TD→Ωn consists of two parallel tasks: a communication task and a computation task.

In the communication task, each process p periodically queries its failure detector module of D
and exchanges the failure detector values with the other processes values using read-write memory.

While doing so, p knows more and more of the other processes’ failure detector outputs and temporal

relations between them. All this information is pieced together in a single data structure, a directed

acyclic graph (DAG) Gp.

In the computation task, p uses its DAG Gp to periodically simulate locally, for any initial

configuration I and any set of processes P ⊆ Π, a number of finite runs ConsD. These runs

constitute an ever-growing simulation tree, denoted ΥP,I
p . Since registers provide reliable (though

asynchronous) communication, all such ΥP,I
p converge to the same infinite simulation tree ΥP,I .

It turns out that the processes can eventually detect the same set P ⊆ Π, such that P includes

all correct processes and either there exists a correct critical process whose proposal value in some

initial configuration I defines the decision value in all paths in ΥP,I , or some ΥP,I has a finite

subtree γ, called a complete decision gadget, that provides sufficient information to compute a set

of at most n processes one of which is correct process. This set of processes is called the deciding

set of γ. Eventually, the correct processes either detect the same critical process or detect the same

complete decision gadget and agree on its deciding set. In both cases, Ωn is emulated.

A difficult point here is that sometimes the deciding set is encoded in an object of type T .

We cannot use the sequential specification of type T , and we hence cannot use the case analysis

suggested by Lo and Hadzilacos [7] to compute the deciding set. Fortunately, in this case, it is

possible to locate a special kind of decision gadget, which we introduce here and which we call a

rake.

Leaves of the rake are configurations that result after each process applies one operation on

the same object of type T to a given configuration of ConsD. Moreover, every leave x of the rake

is univalent, i.e., there is exactly one value that can be decided in any run of ConsD extending x,

and there is at least one 0-valent and at least one 1-valent leave of the rake. Using the assumptions

that T is a one-shot deterministic type and cons(T ) ≤ n, we derive that there must be at least

one “confused” process pi that is not able to distinguish, in any solo execution, two univalent

configurations x0 and x1 of opposite valence. Thus, pi will never be able to decide on its own

10



Initially:

Gp ← empty graph

kp ← 0

while true

for all q ∈ Π do Gp ← Gp ∪Gq

dp ← query failure detector D
kp ← kp + 1

add [p, dp, kp] and edges from all vertices of Gp to [p, dp, kp] to Gp

Fig. 1. Building a DAG: the code for each process p

starting from x0 or x1. This implies that the set of n other processes (the deciding set of the rake)

must include at least one correct process that would provide pi with the decision value.

3.2 The communication task and DAGs

The communication task of algorithm TD→Ω is presented in Figure 1. This task maintains an ever-

growing DAG that contains a finite sample of the current failure detector history. (For simplicity,

the DAG is stored in a register Gp which can be updated by p and read by all processes.)

DAG Gp has some special properties which follow from its construction [7]. Let F be the current

failure pattern in E and H be the current failure detector history in D(F ). Then for any correct

process p and any time t (x(t) denotes the value of variable x at time t):

(1) The vertices of Gp are of the form [q, d, k] where q ∈ Π, d ∈ RD and k ∈ N. There is a mapping

τ : vertices of Gp(t) 7→ T, associate a time with every vertex of Gp(t), such that:

(a) For any vertex v = [q, d, k], q /∈ F (τ(v)) and d = H(q, τ(v)). That is, d is the value output

by q’s failure detector module at time τ(v).

(b) For any edge (v, v′), τ(v) < τ(v′). That is, any edge in Gp reflects the temporal order in

which the failure detector values are output.

(2) If v′ = [q, d, k] and v′′ = [q, d′, k′] are vertices of Gp(t) and k < k′ then (v, v′) is an edge of Gp(t).

(3) Gp(t) is transitively closed: if (v, v′) and (v′, v′′) are edges of Gp(t), then (v, v′′) is also an edge

of Gp(t).

(4) For all correct processes q, there is a time t′ ≥ t, a d ∈ RD and a k ∈ N such that, for every

vertex v of Gp(t), (v, [q, d, k]) is an edge of Gp(t′).

Note that properties (1)–(4) imply that for any set of vertices V of Gp(t), there is a time t′

such that Gp(t′) contains a path g such that every correct process appears in g arbitrarily often

and ∀v ∈ V , v · g is also a path of Gp(t′). Furthermore, every prefix of g is also a path in Gp(t′)
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3.3 Simulation trees

Let I l (l = 0, . . . , n + 1) denote an initial configuration of ConsD in which processes p1, . . . , pl

propose 1 and processes pl+1, . . . , pn+1 propose 0. Let P ⊆ Π be any set of processes, and g =

[q1, d1, k1], [q2, d2, k2], . . . [qs, ds, ks] be any path in Gp such that ∀i ∈ {1, 2, . . . , s} : qi ∈ P . Since

algorithms and shared objects considered here are deterministic, g and I l induce a unique schedule

S = (q1, x1), (q2, x2), . . . , (qs, xs) of ConsD applicable to I l such that:

∀i ∈ {1, 2, . . . , s} : xi ∈ {λ, di}.

For every P ⊆ Π, the set of all P -solo schedules of ConsD induced by Il and paths in Gp are pieced

together in a tree ΥP,l
p , called the simulation tree induced by P , I l and Gp, and defined as follows.

The set of vertices of ΥP,l
p is the set of finite P -solo schedules that are induced by I l and paths in

Gp. The root of ΥP,l
p is the empty schedule S⊥. There is an edge from a vertex S to a vertex S′

whenever S′ = S · e for some step e; the edge is labeled e. Thus, every vertex S of ΥP,l
p is associated

with a unique schedule S = e1e2, . . . es.

We tag every vertex S of ΥP,l
p according to the values decided in the descendants of S in ΥP,l

p : S

is assigned a tag v if and only if it has a descendant S′ such that p decides v in S′(I l). The set of all

tags of S is called the valence of S and denoted val(S). If S has only one tag {u} (u ∈ {0, 1}), then

S is called u-valent. A 0-valent or 1-valent vertex is called univalent. A vertex is called bivalent if

it has both tags 0 and 1. The tree ΥP,l
p is called u-valent (resp., bivalent) if S⊥ is u-valent (resp.,

bivalent) in ΥP,l
p .

Thanks to reliable communication provided by the read/write shared memory, for any two

correct processes p and q and any time t, there is a time t′ ≥ t such that ΥP,l
p (t) ⊆ ΥP,l

q (t′). As a

result, the simulation trees ΥP,l
p of correct processes p tend to the same limit infinite simulation

tree which we denote ΥP,l.

Assume that correct(F ) ⊆ P . By the construction, every vertex of ΥP,l has an extension in

ΥP,l in which every correct process takes infinitely many steps. By the Termination property of

consensus, this extension has a finite prefix S′ such that every correct process has decided in S′(I l).

Thus, every vertex S of ΥP,l has a non-empty valence, i.e. S is univalent or bivalent.

More generally:

Lemma 2 Let correct(F ) ⊆ P ⊆ Π, m ≥ 1, and S0, S1, . . . , Sm be any vertices of ΥP,l. There

exists a finite schedule S′ containing only steps of correct processes such that

(1) S0 · S′ is a vertex of ΥP,l and all correct processes have decided in S0 · S′(I l), and

(2) for any i ∈ {1, 2, . . . ,m}, if S′ is applicable to Si(I l), then Si · S′ is a vertex of ΥP,l.
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The following lemma will facilitate the proof of correctness of our reduction algorithm.

Lemma 3 Let correct(F ) ⊆ P ⊆ Π. Let S0 and S1 be two univalent vertexes of ΥP,l of opposite

valence and V ⊂ Π be a set of processes. If S0(I l) and S1(I l) differ only in the states of processes

in V , then V includes at least one correct process.

Proof. Since S0(I l) and S1(I l) differ only in the states of processes in V , any (Π−V )-solo schedule

applicable to S0(I l) is also applicable to S1(I l). By contradiction, assume that V includes only

faulty processes. By Lemma 2, there is a schedule S containing only steps of correct processes

(and thus no steps of processes in V ) such that all correct processes have decided in S0 · S(I l)

and S1 · S is a vertex of ΥP,l. Since no process in Π − V can distinguish S0 · S(I l) and S1 · S(I l),

the correct processes have decided the same values in these two configurations — a contradiction. 2

3.4 Decision gadgets

A decision gadget γ is a finite subtree of ΥP,l rooted at S⊥ that includes a vertex S̄ (called the

pivot of the gadget) such that one of the following conditions is satisfied:

(fork) There are two steps e and e′ of the same process q, such that S̄ · e and S̄ · e′ are univalent

vertices of ΥP,l of opposite valence. Then S̄ · e and S̄ · e′ constitute the set of leaves of γ.

Note the next step of q in S̄(I l) can only be a query step. Otherwise, S̄ · e(I l) = S̄ · e′(I l) and

thus S̄ · e and S̄ · e′ cannot have opposite valence.

(hook) There is a step e of a process q and step e′ of a process q′ (q 6= q′), such that:
(i) S̄ · e′ · e and S̄ · e are univalent vertices of ΥP,l of opposite valence.

(ii) q and q′ do not access the same object of type T in S̄(I l).
Then S̄ · e and S̄ · e′ · e constitute the set of leaves of γ. Note (ii) implies that either at least one

step in {e, e′} is a query step, or q and q′ access different objects in S̄(I l), or q and q′ access the

same register in S̄(I l).

If for every x ∈ RD ∪ {λ}, S̄ · e · (q′, x) is not a vertex of ΥP,l, then q′ is called missing in the

hook γ. Clearly, if q′ is correct, then it cannot be missing in γ.

(rake) There is a set U ⊆ P , |U | ≥ 2, and an object X of type T such that, for any q ∈ U , the

next step of q accesses X in S̄(I l) (U is called the participating set of γ). Let E denote the set

of all vertices of ΥP,l of the form S̄ · S where S = (q1, λ), (q2, λ), . . . , (q|U |, λ) and q1, q2, . . . , q|U |

is a permutation of processes in U . Note that every such S is applicable to S̄(I l). S̄, U and E

satisfy the following conditions:

(i) There do not exist a (Π − U)-solo schedule S′ and a process q′ ∈ Π − U , such that ∀S ∈
{S̄} ∪ E, S · S′ · (q′, λ) is a vertex of ΥP,l and q′ accesses X in S · S′(I l).
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(ii) If S ∈ E, then S is univalent.

(iii) If |E| = (|U |)!, i.e., E includes all vertices S̄ · (q1, λ) ·(q2, λ) · · · (q|U |, λ) such that q1, q2,

. . . , q|U | is a permutation of processes in U , then there is at least one 0-valent vertex and at

least one 1-valent vertex in E.

E constitutes the set of leaves of γ. Note that if |E| < (|U |)!, then there is at least one process

q ∈ U such that for some {q1, q2, . . . , qs} ⊆ U − {q}, S̄ · (q1, λ) · (q2, λ) . . . (qs, λ) · (q, λ) is not a

vertex of ΥP,l We call such processes missing in the rake. Clearly, every missing process is in

faulty(F ).

Intuitively, the rake handles the case when the decision value is encoded in the responses re-

turned by an object X of type T : no process pi can decide in any execution extending S̄(I l) unless

pi previously accessed X or heard from another process that accessed X. Furthermore, we show in

this section that in case the rake is complete and U = Π (all n + 1 processes access X in S̄(I l)),

there must be at least one “confused” process pi that cannot distinguish two univalent configura-

tions of opposite valence. Since T is one-shot, this confused process pi can only learn the decision

value from another process and thus pi cannot be the only correct process.

Examples of decision gadgets are depicted in Figure 2: (a) a fork with e = (q, d) and e′ = (q, d′),

(b) a hook where e = (q, x), e′ = (q′, x′), and q and q′ do not access the same object of type T in

S̄(I l); (c) a rake with a participating set U = {q1, q2} and a set of leaves E = {S̄ · (q1, λ) · (q2, λ), S̄ ·
(q2, λ) · (q1, λ)}, where q1 and q2 access the same object of type T in S̄(I l).

0-valent

1-valent

1-valent 0-valent

0-valent 1-valent

(a) (b)

S⊥S⊥ S⊥

S̄ S̄ S̄

e

(c)

e′e e′e (q1, λ)

(q2, λ)

(q2, λ)

(q1, λ)

Fig. 2. A fork, a hook, and a rake

Lemma 4 Let correct(F ) ⊆ P ⊆ Π and l ∈ {1, 2 . . . , n}. If the root of ΥP,l is bivalent, then ΥP,l

contains a decision gadget.
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Proof. Using arguments of Lemma 6.4.1 of [7], we can show that there exist a bivalent vertex S∗

and a correct process p such that:

(*) For all descendants S′ of S∗ (including S′ = S∗) and all x ∈ RD ∪ {λ} such that S′ · (p, x) is a

vertex of ΥP,l, S′ · (p, x) is univalent.

Moreover, one of the following conditions is satisfied:

(1) There are two steps e and e′ of p, such that S∗ · e and S∗ · e′ are vertices of ΥP,l of opposite

valence. That is, a fork is identified and we have the lemma.

(2) There is a step e of p and a step e′ of a process q such that S∗ · e and S∗ · e′ · e are vertices of

ΥP,l of opposite valence.

Consider case (2). If p = q, then by condition (*), S∗ · e′ is a univalent vertex of ΥP,l, and a fork

is identified.

Now assume that p 6= q. If p and q do not access the same object of type T in S∗(I l), we have

a hook.

Thus, the only case left is when p and q access the same object X of type T in S∗(I l). The

hypothetical algorithm of Figure 3 locates a rake in ΥP,l.

We show first that the algorithm terminates. Indeed, eventually either U = Π and there is

trivially no (Π − U)-schedules applicable to all S ∈ {S̄} ∪ E in ΥP,l, or the algorithm terminates

earlier in line 14.

Thus, we obtain a set U (|U | ≥ 2) and a vertex S̄ = S∗ · S′′ such that p and q take no steps in

S′′, S′′ applied to S∗(I l) does not access X, and every q′ ∈ U accesses X in S̄(I l). Then:

(i) There do not exist a (Π−U)-solo schedule S′ and a process q′ ∈ Π−U , such that ∀S ∈ {S̄}∪E,

S · S′ · (q′, λ) is a vertex of ΥP,l and q′ accesses X in S · S′(I l).

(ii) If S ∈ E, then S is univalent.

Indeed, take any S ∈ E. By the algorithm in Figure 3, S = S∗ · S′ where every process in U

takes exactly one step in S′, and, Since p ∈ U , p takes exactly one step in S′. by (*), S is

univalent.

(iii) If |E| = (|U |)!, i.e., E includes all vertices S̄ ·(q1, λ) ·(q2, λ) · · · (q|U |, λ) such that q1, q2, . . . , q|U |

is a permutation of processes in U , then there is at least one 0-valent vertex and at least one

1-valent vertex in E.

Indeed, assume that |E| = (|U |)!. By the algorithm, S∗ ·S′′ ·e′ ·e, S∗ ·S′′ ·e ·e′, S∗ ·e′ ·e ·S′′ and

S∗ · e′ · e · S′′, where e = (p, λ) and e′ = (q, λ), are vertices of ΥP,l. Since S′′ applied to S∗(I l)

does not access X, S∗ ·S′′ · e′ · e(I l) = S∗ · e′ · e ·S′′(I l) and S∗ ·S′′ · e · e′(I l) = S∗ · e · e′ ·S′′(I l).

But S∗ · e · e′ and S∗ · e′ · e are univalent vertices of opposite valence. Thus, S∗ · S′′ · e · e′
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1 U ← {p, q}
2 S̄ ← S∗

3 if 〈S̄ · e · e′ is vertex of Υ P,l 〉 then

4 E ← {S̄ · e′ · e, S̄ · e · e′}
5 else

6 E ← {S̄ · e′ · e}
7 while true do

8 if 〈 there exists a (Π − U)-solo schedule S′ and a process q′ ∈ Π − U

such that ∀S ∈ {S̄} ∪ E, S · S′ · (q′, λ) is a vertex of Υ P,l

and q′ accesses X in S · S′(Il) 〉
9 then

10 let S′ · (q′, λ) be the shortest such schedule

11 S̄ ← S̄ · S′

12 U ← U ∪ {q′}
13 E ← the set of all vertices S̄ · S of Υ P,l

such that S = (q1, λ), (q2, λ), . . . , (q|U|, λ)

and q1, q2, . . . , q|U| is a permutation of processes in U

14 else exit

Fig. 3. Locating a rake in Υ P,l

and S∗ · S′′ · e′ · e are also univalent vertices of opposite valence. Since E includes at least one

descendant of S∗ · S′′ · e · e′ and at least one descendant of S∗ · S′′ · e′ · e, there is at least one

0-valent vertex and at least one 1-valent vertex in E.

Hence, a rake with pivot S̄ and participating set U is located. 2

3.5 Complete decision gadgets

If a decision gadget γ has no missing processes, we say that γ is complete. If γ (a hook or a rake)

has a non-empty set of missing processes, we say that γ is incomplete.

Lemma 5 Let W be the set of missing processes of an incomplete decision gadget γ. Then W ⊆
faulty(F ).

Proof. Let γ be an incomplete decision gadget of ΥP,l and q be a missing process of γ. By definition,

q ∈ P and there is a vertex S of ΥP,l such that for any x ∈ RD ∪ {λ}, S · (q, x) is not a vertex of

ΥP,l. Thus, q is faulty in F . 2

Lemmas 4 and 5 imply the following:
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Corollary 6 Let C = correct(F ). Every decision gadget of ΥC,l is complete, and if the root of ΥC,l

is bivalent, then ΥC,l contains at least one decision gadget.

3.6 Confused processes

Lemma 7 Let γ be a complete hook in ΥP,l defined by a pivot S̄, a step e of q, and a step e′ of q′

(q 6= q′). There exists a process p ∈ {q, q′} and two vertices S0 and S1 in {S̄ · e, S̄ · e′ · e, S̄ · e · e′}
such that:

(a) S0 and S1 are univalent vertices of ΥP,l of opposite valence, and

(b) S0(I l) and S1(I l) differ only in the state of p.

Proof. By the definition of γ, S̄ · e and S̄ · e′ · e are univalent vertices of ΥP,l of opposite valence, q

and q′ do not access the same object of type T , and there is a vertex S̄ · e · (q′, x) in ΥP,l for some

x ∈ RD ∪ {λ}.
Assume that q and q′ access different objects in S̄(I l), or q′ is not a query step in S̄(I l). Thus,

e′ = (q′, λ), and S̄ · e · e′ is a vertex of ΥP,l such that S̄ · e · e′(I l) = S̄ · e′ · e(I l). But S̄ · e and S̄ · e′ · e
have opposite valences — a contradiction.

Thus either (1) e′ is a query step in S̄(I l), or (2) q and q′ access the same register in S̄(I l).

(1) If e′ is a query step in S̄(I l), then S0 = S̄ · e and S1 = S̄ · e′ · e are univalent vertices of ΥP,l of

opposite valence such that S0(I l) and S1(I l) differ only in the state of q′.

(2) Assume now that e and e′ access the same register r in S̄(I l). Thus, e = (q, λ), e′ = (q′, λ), and

S̄ · e · e′ is a univalent vertex of ΥP,l.

– If q writes in r in S̄(I l), then S0 = S̄ · e and S1 = S̄ · e′ · e are univalent vertices of ΥP,l of

opposite valence such that S0(I l) and S1(I l) differ only in the state of q′.

– If q reads r in S̄(I l), then S0 = S̄ · e · e′ and S1 = S̄ · e′ · e are univalent vertices of ΥP,l of

opposite valence such that S0(I l) and S1(I l) differ only in the state of q.

In each case, we obtain a process p ∈ {q, q′} and two vertices S0 and S1 in {S̄ ·e, S̄ ·e′ ·e, S̄ ·e ·e′}
such that (a) S0 and S1 are univalent vertices of ΥP,l of opposite valence, and (b) S0(I l) and S1(I l)

differ only in the state of p. 2

The following lemma uses the assumption that type T is deterministic.

Lemma 8 Let correct(F ) ⊆ P ⊆ Π and γ be a complete rake in ΥP,l with a pivot S̄ and a

participating set U such that |U | = n + 1. Let E be the set of leaves of γ. There exist a process

p ∈ U and two univalent vertices S̄ · S0 and S̄ · S1 in E such that
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(a) val(S̄ · S0) 6= val(S̄ · S1), and

(b) p has the same state in S̄ · S0(I l) and S̄ · S1(I l).

Proof. Assume that there are two vertices S̄ · S and S̄ · S′ in E, such that S and S′ begin with a

step of the same process p, and val(S̄ · S) 6= val(S̄ · S′). Since p takes exactly one step in both S

and S′, and this step of p is the first step in both S and S′, the states of p in S̄ ·S(I l) and S̄ ·S′(I l)

are identical, and we have the lemma.

Assume now that the valence of every vertex S̄ · S in E is defined by the id of a process that

takes the first step in S. Construct a graph K as follows. The set of vertices of K is E. Two vertices

S̄ · S and S̄ · S′ of K are connected with an edge if at least one process p has the same state in

S̄ · S(I l) and S̄ · S′(I l). Now we color each vertex S̄ · S of K with val(S̄ · S). Since every vertex of

E is univalent, the vertices of K have are colored 0 or 1.

Claim 9 K has at least one vertex of color 0 and at least one vertex of color 1.

Proof of Claim 9. Immediate from the definition of K. ut

Claim 10 K is connected.

Proof of Claim 10. We assume the opposite, and we show that type T then solves consensus

among n + 1 processes.

Indeed, assume that K is not connected, i.e., K consists of two or more connected components.

Clearly, any two vertices S̄ · S and S̄ · S′ of K, such that S and S′ begin with a step of the same

process, belong to the same connected component of K.

Let K1 be one of the connected components of K. We partition the system into two teams Π1

and Π2. Team Π1 consists of all processes p, such that all S̄ · S where S begins with a step of p

are in K1. Team Π2 consists of all other processes. Since K consists of at least two components, Π1

and Π2 are non-empty.

The algorithm in Figure 4 solves team consensus among n + 1 processes for teams Π1 and Π2,

using one object X of type T and two registers. Let X be initialized to its state in S̄(I l). Every

process p ∈ U writes its input value into its team’s register and then executes one step of ConsD

according to p’s state in S̄(I l) (by the definition of γ, in this step, p accesses X). The resulting

state of p corresponds to a vertex of exactly one component of K. If the state of p corresponds to

a vertex in K1, then p outputs the value of Π1’s register, otherwise, p outputs the value of Π2’s

register.

That is, the processes agree on the component to which the resulting state of the system

belongs. If the resulting state belongs to K1, then a process in Π1 was the first to access X in the
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{Initially:}
X is initialized to its state in S̄(Il)

Procedure tcPropose(v): { let p ∈ Πi, i is 1 or 2 }
1 Ri ← v { write the proposal in the team’s register }
2 let p be initialized to its state in S̄(Il)

3 take one step of ConsD { invoke an operation on X }
4 if 〈 the state of p corresponds to a vertex in K1 〉
5 then { Π1 is the winner }
6 return R1

7 else { Π2 is the winner }
8 return R2

Fig. 4. A team consensus algorithm using S̄(Il) and ConsD

corresponding execution (team Π1 is the winner). Otherwise, if the resulting state does not belong

to K1, then a process in Π2 was the first to access X (team Π2 is the winner).

Consider any execution of the algorithm. Clearly, every correct process decides. The first step

accessing X in the execution is of a process q in the winner team. By the algorithm, q has previously

written its proposal value in its team’s register. Since every process first accesses X and then decides

a value in the winner team’s register, any decided value is necessarily a proposed value of some

process.

Now assume that all processes on a team (Π1 or Π2) propose the same value. Since the processes

return values previously written in the winner team’s register, and, by the assumption, no two

different values can be written in a team’s register, no two processes decide differently.

Thus, T solves team consensus among n + 1 processes when object X is initialized to its state

in S̄(I l). By Lemma 1, T solves consensus among n + 1 processes — a contradiction with the

assumption that cons(T ) ≤ n.

Thus, K is connected. ut

By Claims 9 and 10, there are at least two vertices S̄ · S and S̄ · S′ in E of different colors,

connected with an edge. Thus, there is a process p that has the same state in S̄ ·S(I l) and S̄ ·S′(I l),

and we have the lemma. 2
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3.7 Critical index

We say that index l ∈ {1, 2, . . . , n + 1} is critical in P if either ΥP,l contains a decision gadget or

the root of ΥP,l−1 is 0-valent, and the root of ΥP,l is 1-valent. In the first case, we say that l is

bivalent critical. In the second case, we say that l is univalent critical.

Lemma 11 Let correct(F ) ⊆ P ⊆ Π. There exists a critical index in P .

Proof. By validity of consensus, ΥP,0 is 0-valent and ΥP,n+1 is 1-valent. Hence, there exists

l ∈ {1, . . . , n + 1} such that the root of ΥP,l−1 is 0-valent and the root of ΥP,l is either 1-valent

or bivalent. If the root of ΥP,l is 1-valent, l is univalent critical. If the root of ΥP,l is bivalent, by

Lemma 4, ΥP,l contains a decision gadget. Thus l is critical. 2

3.8 Deciding sets

Instead of the notion of a deciding process used in [7], we introduce the notion of a deciding set

V ⊂ Π. The deciding set V of a complete decision gadget γ is computed as follows:

(1) Let γ be a fork defined by pivot S̄ and steps e and e′ of the same process q, such that S̄ · e and

S̄ · e′ are univalent vertices of ΥP,l of opposite valence.

Then V = {q}.
(2) Let γ be a complete hook defined by a pivot S̄, a step e of q, and a step e′ of q′ (q 6= q′).

By Lemma 7, there exists a process p ∈ {q, q′} and two vertices S0 and S1 in {S̄ ·e, S̄ ·e′ ·e, S̄ ·e·e′}
such that (a) S0 and S1 are univalent vertices of opposite valence, and (b) S0(I l) and S1(I l)

differ only in the state of p.

Then we define the deciding set of γ as V = {p}.
(3) Let γ be a complete rake defined by a pivot S̄, a participating set U , and a set of leaves E.

– If |U | ≤ n, then we define the deciding set of γ as V = U .

– If |U | = n+1, then by Lemma 8 there is a “confused” process p ∈ U such that, for some S̄ ·S
and S̄ · S′ in E, p has the same state in S̄ · S(I l) and S̄ · S′(I l), and val(S̄ · S) 6= val(S̄ · S′).
Then we define the deciding set of γ as V = U−{p} where p is the smallest confused process.

By the construction, in each case, V is a set of at most n processes. The following lemma uses the

assumption that type T is one-shot.

Lemma 12 The deciding set of a complete decision gadget contains at least one correct process.

Proof. There are two cases to consider:
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(1) Let γ be a fork with leaves S0 and S1 and a deciding set {p}. The difference between S0(I l)

and S1(I l) consists only in the state of p. By Lemma 3, V = {p} includes exactly one correct

process.

(2) Let γ be a hook with a deciding set V = {p}. By Lemma 3, p is correct.

(3) Let γ be a complete rake defined by a pivot S̄, a participating set U , and a set of leaves E. Let

X be the object of type T accessed by steps of processes in U in S̄(I l). The following cases are

possible:

(3a) |U | ≤ n.

Assume, by contradiction, that all processes in deciding set V = U are faulty.

There exist two vertices S̄ · S0 and S̄ · S1 in E such that val(S̄ · S0) = 0 and val(S̄ · S1) = 1.

Since only processes in U take steps in S0 and S1 and each step p ∈ U in S̄(I l) accesses X,

the difference between S̄(I l), S̄ ·S0(I l) and S̄ ·S1(I l) consists only in the states of processes

in U and object X.

By Lemma 2, there is a schedule S containing only steps of correct processes (and thus no

steps of processes in U), such that all correct processes have decided in S̄ ·S(I l) and for any

S′ ∈ E, if S is applicable to S′(I l), then S′ · S is a vertex of ΥP,l.

By the definition of a rake, S applied to S̄(I l) does not access X, S is also applicable to

S̄ · S0(I l) and S̄ · S1(I l). Thus, S̄ · S0 · S and S̄ · S1 · S are vertices of ΥP,l.

But no process in Π −V can distinguish S̄ ·S(I l), S̄ ·S0 ·S(I l) and S̄ ·S1 ·S(I l), the correct

processes have decided the same values in these configurations — a contradiction.

(3b) |U | = n + 1, i.e., U = Π. Let V = U − {p} be the deciding set of γ, i.e., for some S̄ · S0

and S̄ ·S1, the vertices of ΥP,l of opposite valence, S̄ ·S0(I l) and S̄ ·S1(I l) differ only in the

states of processes in V and object X. Assume, by contradiction, that all processes in V are

faulty (i.e., since k = n + 1, the only correct process is p).

By Lemma 2, there is a schedule S containing only steps of correct processes (i.e., only steps

of p) such that all correct processes have decided in S̄ · S0 · S(I l), and if S is applicable to

S̄ · S1(I l), then S̄ · S1 · S is a vertex of ΥP,l.

Note that, since X is an object of a one-shot type, and p has already accessed X at least

once in S̄ · S0(I l), every subsequent operation of p on object X returns ⊥. Since the states

of p and all objects except of X are the same in S̄ · S0(I l) and S̄ · S1(I l), and p has already

accessed X at least once in S̄ ·S1(I l), S is also applicable to S̄ ·S1(I l) and p cannot distinguish

S̄ ·S0 ·S(I l) and S̄ ·S1 ·S(I l). Thus, S̄ ·S1 ·S is a vertex of ΥP,l, and p has decided the same

value in S̄ · S0 · S(I l) and S̄ · S1 · S(I l) — a contradiction.

In each case, the deciding set V contains at least one correct process. 2
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3.9 The reduction algorithm

Theorem 13 Let T be any one-shot deterministic type, such that cons(T ) ≤ n. If a failure detector

D solves consensus in a system of n + 1 processes using only registers and objects of type T , then

Ωn � D.

Proof. The communication task presented in Figure 1 and the computation task presented in

Figure 5 constitute the reduction algorithm TD→Ωn . The current estimate of Ωn at process p is

stored in a variable Ωn-outputp.

Initially:

Ωn-outputp ← {p}

1 while true

2 for all P ⊆ Π and l ∈ {0, 1, . . . , n + 1}
3 Υ P,l

p ← simulation tree induced by P , Il and Gp

4 V ← ∅
5 P ← Π

6 repeat

7 if P has no critical index then

8 V ← {p}
9 else

10 let l be the smallest critical index of P

11 if l is univalent critical then

12 V ← {pl}
13 else

14 γ ← the smallest decision gadget in Υ P,l
p

15 if γ is complete then

16 V ← the deciding set of γ

17 else

18 let W be the set of missing processes in γ

19 P ← P −W

20 until V 6= ∅ or P = ∅
21 if P = ∅ then V ← {p} then V ← {p}
22 Ωn-outputp ← V

Fig. 5. Extracting Ωn: process p

In the communication task (Figure 1), every process p maintains an ever-growing DAG Gp. In

the computation task (Figure 5), for each P ⊆ Π and each l ∈ {0, . . . , n + 1}, process p constructs
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a finite simulation tree ΥP,l
p induced by P , I l and Gp and tags each vertex S of ΥP,l

p according to

the decision taken in the descendants of S (if any).

Recall that finite simulation trees ΥP,l
p at all correct processes p tend to the same infinite

simulation tree ΥP,l. Let F be the current failure pattern.

First we observe that the “repeat-until” cycle in lines 6–20 is non-blocking. Indeed, each process

p eventually sets V to a non-empty value or reaches P = ∅. In both cases, p exits the “repeat-until”

cycle.

Claim 14 There exist P ∗ ⊆ Π, correct(F ) ⊆ P ∗, such that there is a time after which every correct

process p has P = P ∗ in line 21.

Proof of Claim 14. By Lemma 11, every P such that correct(F ) ⊆ P has a critical index. Thus,

there is a time after which the correct processes compute the same critical index l in every such P ,

and if l is bivalent, then the correct processes locate the same smallest (complete or incomplete)

decision gadget in ΥP,l.

By Lemma 5, there is a time after which whenever a correct process p reaches line 19, W ⊆
faulty(F ). Thus, there is a time after which either

(a) p always exits the “repeat-until” cycle in line 12 after locating a univalent critical index in some

P such that correct(F ) ⊆ P , or

(b) p always reaches line 14 with P = correct(F ).

In case (b), by Corollary 6, there is a time after which the smallest decision gadget in ΥP,l is

complete and p exits the “repeat-until” cycle in line 16. In both cases, there exists P ∗ such that

correct(F ) ⊆ P and there is a time after which every correct process has P = P ∗ in line 21. ut

Thus, there exist P ⊆ Π and V ∗ 6= ∅, such that every correct process eventually reach line 21 with

P = P ∗ and V = V ∗. Let l be the smallest critical index in P ∗. According to the algorithm, the

following cases are possible:

(1) l is univalent critical. That is, the root of ΥP ∗,l−1 is 0-valent and the root of ΥP ∗,l is 1-valent. In

this case, eventually, every correct process p permanently outputs V ∗ = {pl}. I l−1 and I l differ

only in the state of process pl. By Lemma 2, pl is correct.

(2) l is bivalent critical. Moreover, the smallest decision gadget in ΥP ∗,l is complete. In this case,

eventually, every correct process p permanently outputs the deciding set V ∗ (of size at most

n) of the complete decision gadget. By Lemma 12, the deciding set of γ includes at least one

correct process.
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In both cases, eventually, the correct processes agree on a set of at most n processes that includes

at least one correct process, i.e., the output of Ωn is emulated. 2

Theorem 13 and the algorithm of [24] imply the following result:

Theorem 15 Let T be any one-shot deterministic type such that cons(T ) = n. Then Ωn is the

weakest failure detector to solve consensus in a system of n+1 processes using registers and objects

of type T .

4 Boosting types to any level

Consider now a set Π of k processes (k > n) that communicate through registers and objects of an

m-ported one-shot deterministic type T such that cons(T ) ≤ n and m ≤ n + 1.

Theorem 16 Let T be any m-ported one-shot deterministic type, such that cons(T ) ≤ n and

m ≤ n + 1. If a failure detector D solves consensus in a system of k (k > n) processes using only

registers and objects of type T , then Ωn � D.

Proof. Let F be any failure pattern and ConsD be any algorithm that solves consensus using D.

The reduction algorithm TD→Ωn is exactly the same as the algorithm described in Figure 5, except

that now we have k ≥ n+1 processes, and variable l thus takes values in {0, 1, . . . , k}. The decision

gadget and deciding sets are defined in the same way as in Section 3. The deciding sets of forks and

hooks do not depend on the system size. Consider a rake γ with a participating set U . Since the

objects of type T are at most (n + 1)-ported, and processes in U access the same object of type T ,

U can include at most n + 1 processes. If |U | ≤ n, then the deciding set of γ is U . If |U | = n + 1,

then, by Lemma 8, there is at least one “confused” process p, and the deciding set V is defined as

U−{p}. In both cases, V is of size at most n. By Lemma 12, V includes at least one correct process. 2

Theorem 16 and the algorithm of [24] imply the following result:

Theorem 17 Let T be any (n+1)-ported one-shot deterministic type such that cons(T ) = n. Then

Ωn is the weakest failure detector to solve consensus in a system of k (k ≥ n + 1) processes using

registers and objects of type T .

As a corollary of Theorem 17, assuming that only registers are available, we obtain the following

result, outlined in [20].

Corollary 18 Ω is the weakest failure detector to solve consensus using only registers.
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Also, given that n-process consensus is a one-shot deterministic n-ported type of consensus power

n [19], we immediately obtain:

Corollary 19 Ωn is the weakest failure detector to solve consensus among k > n processes using

registers and n-process consensus objects.

5 Boosting resilience

So far we considered systems in which processes communicate through wait-free linearizable imple-

mentations of deterministic one-shot object types. Every operation invoked by a correct process on

a wait-free object returns, regardless of the behavior of other processes.

In contrast, in this section we assume that processes communicate through wait-free registers

and t-resilient implementations of object types (not necessarily one-shot and deterministic), where

0 ≤ t < n. We will simply call these t-resilient objects. Informally, a t-resilient object guarantees

that a correct process completes its operation on the object, as long as no more than t processes

crash. If more than t processes crash, no operation on a t-resilient object is obliged to return. This

corresponds to the weakly t-resilient implementations of [6]. We refer to [3] for a formal definition

of t-resilient objects based on I/O automata [23, chapter 8].

It is shown in [3] that no composition of t-resilient objects can be used to solve consensus among

n > t − 1 processes. In this section we show that Ωt+1 captures the exact amount of information

about failures sufficient to circumvent this impossibility. But first we recall a few earlier results that

are instrumental for our proof.

The following two lemmas are restatements in our terminology of the “necessity” part and the

“sufficiency” part of Theorem 6.1 in [6], respectively.

Lemma 1. Let t and n be integers, 0 ≤ t, 1 ≤ n. Then there exists an t-resilient n-process

implementation of consensus from wait-free (t+1)-process consensus objects and wait-free registers.4

Lemma 2. Let f and n be integers, 2 ≤ t < n. Then there exists a wait-free (f + 1)-process

implementation of consensus from t-resilient n-process consensus objects and wait-free registers.

The following result follows easily from Herlihy’s universal construction [14]:

Lemma 3. Let t and n be integers, 0 ≤ t, 1 ≤ n. Let T be an object type. Then there exists an

t-resilient n-process implementation of T from t-resilient n-process consensus objects and wait-free

registers.

4 Theorem 6.1 in [6] assumes 2 ≤ t. However, the necessity part of the theorem holds for 0 ≤ t.
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Finally, we are ready to demonstrate how our result on boosting the power of deterministic one-shot

deterministic types can be used to derive the following:

Theorem 20 Let t be any integer, 2 ≤ t < n− 1. Let T be any type (not necessarily one-shot de-

terministic), such that registers and t-resilient objects of type T solve t-resilient consensus. Ωt+1 is

then the weakest failure detector to solve consensus using wait-free registers and t-resilient objects

of type T .

Proof. By Lemma 2, t-resilient objects of type T implement wait-free (t+1)-process consensus. The

algorithm of [24] implements wait-free consensus using registers, (t + 1)-process consensus objects

and Ωt+1. This gives the sufficient part of the theorem.

Assume now that a failure detector D solves consensus using registers and t-resilient objects of

type T . By Lemmas 1, 2 and 3 any t-resilient object can be implemented from wait-free registers

and (t + 1)-process consensus objects.

Thus, D solves consensus using registers and objects of (t + 1)-process consensus objects. By

Corollary 19, Ωt+1 � D. This gives the necessary part of the theorem. 2

6 Concluding remarks

The conjecture that Ωn is the weakest failure detector to boost the power of T to the level n+1 of the

consensus hierarchy was given in [24]. As pointed out in [24], the proof of this conjecture appeared

to be challenging and was indeed left open. However, Neiger also gave in [24] an outline of some

preliminary elements that could be used to construct the proof. In this section, we give an overview

of major features that distinguish our proof from the outline sketched by Neiger [24, Section 5]. We

also point out some potential problems that arise in Neiger’s outline an the specific assumptions

made in that outline. Since the outline is given in a quite informal manner, we would like to

emphasize that the discussion below is subject to our interpretation of the missing details.

6.1 Restrictions on failure detectors

Neiger’s outline [24] is constructed as follows. Consider any algorithm that solves n + 1 consensus

using some failure detector D, read-write registers, and objects of deterministic (but necessarily

one-shot) type T . The aim is to use the algorithm for extracting the output of Ωn.

Following the arguments of [7], we can identify a decision gadget of the hook type. Recall that

a hook has a bivalent pivot S̄ such that for some processes p and q, such that S̄ extended with a

step of p results in a 0-valent vertex, S̄ extended with a step of q followed by a step p results in a
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1-valent vertex, and any vertex S̄ · S where S includes a step of p is univalent. Then it is argued

that for each process r, (1) there exists a bound br on the number of steps of r such that whenever

r takes br steps the system ends up in a univalent configuration, or (2) r is not the only correct

process. Indeed, suppose that r is the only correct process. Since all other processes take only a

bounded number of steps in extensions of S̄ in Υ I , there is a bound br on the number r needs to

take to decide, and thus bring the system to a univalent state.

Suppose property (1) above holds for every process r, and consider all possible schedules S in

which every process r takes up to br steps extending S̄. If one of the schedules does not belong to

Υ I , then we can identify a faulty process q (whose step is missing), and thus conclude that Π−{q}
contains at least one correct process. Now assume that all these schedules are in Υ I .

At this point, the Neiger’s outline [24] seems to require that for every process p, the sequences

of failure detector values seen by p in each of this schedules are identical, i.e., the failure detector

output does not depend on the order in which processes query their failure detector modules. To

make this argument work we need to impose certain restrictions on the class of failure detectors

we consider. For instance, we can suppose that for every failure detector history there is a time

after which some infinite sequences of failure detector values seen by the processes do not depend

on the interleaving of their steps. This can be obtained, e.g., if the domain of the failure detector

is finite [24], or if in every run, the output of the failure detector eventually stabilizes at every

correct process. For simplicity, assume the latter and consider the simulated executions in which

every process always sees exactly one “stable” failure detector value.

6.2 Atomically readable objects

Now the outline claims that there must exist two univalent descendants of S̄, S0 and S1, and a

process q such that the state of q and the states of all shared objects are identical in S0(I) and

S1(I). Thus, q cannot be the only correct process: q is not able to decide in any solo extension of

S0 or S1. The claim is proved by contradiction, presenting an algorithm that solves n+1 consensus

using objects of type T and read-write registers.

The contradiction is established on the assumption that type T is readable — every object of

type T exports a read operation that returns the current state of the object. If the claim does not

hold, then n + 1 processes can solve team consensus as follows: each process r runs br steps, reads

the states of all shared objects, and decide on the valence of any compatible configuration. The

conclusion is that, since process r took br steps, the system reached a univalent configurations and

all univalent configuration that are compatible with the object states and the state of r are of the

same valence.
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This conclusion seems to depend on the assumption that all objects can be read atomically.

Otherwise, the states of objects might not correspond to any state reachable by extensions of S̄

(e.g., r reads object A, then q modifies A, then q modifies object B, and then r reads B). It may

even happen that the system state, as observed by r, is compatible with a state of arbitrary valence,

causing the processes to disagree. Even though atomic accesses can be emulated in the read-write

shared memory model [1], it is difficult to say whether this emulation can be generalized to larger

classes of object types. Besides, just assuming readable types considerably simplifies reasoning

about the power of types [25].

6.3 Reduction algorithm

Now assume that an atomic read is available and, thus, the algorithm above establishes that there

is a “confused” process that can never decide in a solo run. In this case, a reduction algorithm

is suggested that, starting from a hook in a simulation tree, makes sure that all correct processes

eventually agree on the same process that is not the only correct process in the system. In the

reduction algorithm, every process p periodically looks at its finite simulation tree Υ I
p and computes

br for each process r such that condition (1) above is satisfied, or, if there is a process r for which

no such br exists, outputs Π − {r}.
In the first case, we use the reasoning above to identify a faulty or “confused” process q, and

output Π − {q}. If the situation stabilizes, i.e., the valences of the selected set of extensions of the

pivot of the hook do not change, all correct processes output set Π − {q} that obviously contains

at least one correct process.

Unfortunately, as Neiger observes [24], it can happen that in a given finite tree Υ I
p , first, some

process r does not satisfy (1) (e.g., because some steps of r are still missing), in which case the

algorithm outputs Π − {r}, and then, in the next iteration of the reduction algorithm, r satisfies

(1) (e.g., because more steps of r came out), in which case the algorithm outputs Π − {q} where

q 6= r, and so on, i.e., the output of the algorithm never stabilizes. There does not seem to be an

obvious way to handle this “stabilization” issue. 5

6.4 One-shot types

To conclude, we give an intuition of how our assumption of objects of type T being one-shot makes

life easier. As we have shown in Section 3.4, each bivalent infinite simulation tree Υ I either contains

a fork, or a hook that allows us to factor out a single correct process using a simple case analysis,
5 Interestingly, however, a similar approach can be used for extracting a failure detector that is strictly weaker

than Ωn but still provides enough information to circumvent some asynchronous impossibility — to solve n-set

agreement [12].
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or an incomplete rake which allows us to identify a set of processes that does not include all correct

processes, or a complete rake.

The latter is of particular interest for us, because, when the participating set of the complete

rake is Π, it is a special case of the extended hook of the Neiger’s outline discussed above. Indeed,

then the rake has a pivot S̄ such that every process is about to access the same object X of type T

in S̄(I). Moreover, Υ I contains all vertices of the form S̄ · S where S is a schedule in which every

process takes exactly one step (S̄ · S is called a leave of the rake). Further, all the rake’s leaves

are univalent, and there are leaves of opposite valence. Note that since every process is poised on

accessing object X in S̄(I), no such S contains a query step. Thus, we do not have to restrict the

properties of the failure detector at this point — simply because the decision values do not depend

on the failure detector output.

Using the fact that cons(T ) ≤ n, we conclude that at least one process r cannot distinguish two

leaves of the rake of the opposite valence, S0 and S1. Thus, in any solo extension of S0 or S1, r can

never decide. This is because r can get a non-⊥ response from object X at most once (type T is

one-shot) and all other objects have the same state in S0(I) and S1(I). Thus, we do not have to

rely upon the objects being atomically readable or simply readable.

We suspect that relaxing the one-shot requirement will not be straightforward and we leave it

for future research. Getting rid of the assumption that objects of type T are (n + 1)-ported when

boosting their power to levels higher than n + 1 (Section 4) is another direction for future work.
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