
Hybrid Relaxed Concurrent Data Structures

Goals: Define a specification of hybrid relaxed data structures, devise algorithms matching the
specification.

Tools: Logic, algorithmic reasoning, programming.

Prerequisites: Maturity in math and algorithms, basic knowledge of distributed computing, basic
concurrent programming skills.

Many data structures, such as queues and stacks, are notorious for being concurrency-averse,
i.e., for not permitting efficient concurrent implementations. The reason is that concurrent threads
have to contend on the same elements of such data structures, which incurs considerable synchro-
nization costs. A popular way to improve performance is to relax the semantics by allowing some
operation to return elements out of order [1, 4, 6, 7]. For example, a k-out-of order queue allows
items to be dequeued out of FIFO order up to k elements. One can implement a k-out-of-order
queue from k independent queues: at the cost of weaker consistency guarantees, the relaxed queue
offers more parallelism and, as a result, exhibits significant performance gains.

Alternatively, one can also consider relaxations by allowing inconsistent responses under con-
tention [3]. For example, concurrent dequeue operations on a relaxed queue may be allowed to
return the same queue element. One can implement queues and stacks using basic read and write
operations, which is, in general, impossible for k-out-of-order queues.

In this project, we follow the quest for scalable but consistent concurrency by considering hybrid
relaxation. It makes sense to expect that in sequential executions, when no two operations contend
on the shared data, our concurrent implementation should ensure strong semantics, i.e., create an
illusion of an atomic object [5]. Under contention, when k ≥ 2 operations are concurrent, we might
want to expect the object to relax (up to k) the order in which the elements can be returned.

The plan is to study this notion with different levels of contention [2], from interval contention
to step contention and different relaxation approaches, and to check performance of resulting data
structures experimentally.

Milestones

1. Study the recent literature on relaxed concurrent data structures, starting from [1,3, 4, 6, 7].

2. Formally define the notion of hybrid relaxation.

3. Implement relaxed versions of a queue, a stack, and a priority queue, using read-write oper-
ations and, if needed, stronger synchronization primitives.

4. If time allows, study the performance of resulting implementations.

1



Contact

Petr Kuznetsov
http://www.infres.enst.fr/~kuznetso/

petr.kuznetsov@telecom-paristech.fr

INFRES, Télécom Paris

Armando Castañeda
https://www.matem.unam.mx/fsd/armando

armando.castaneda@im.unam.mx

Instituto de Matemáticas, UNAM, México

References

[1] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The spraylist: a scalable relaxed priority
queue. In A. Cohen and D. Grove, editors, Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco, CA, USA,
February 7-11, 2015, pages 11–20. ACM, 2015.

[2] H. Attiya, R. Guerraoui, D. Hendler, and P. Kuznetsov. The complexity of obstruction-free
implementations. J. ACM, 56(4), 2009.

[3] A. Castañeda, S. Rajsbaum, and M. Raynal. Relaxed queues and stacks from read/write
operations. In OPODIS, 2020. https://arxiv.org/pdf/2005.05427.pdf.

[4] T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quantitative relaxation
of concurrent data structures. In R. Giacobazzi and R. Cousot, editors, POPL, pages 317–328.
ACM, 2013.

[5] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[6] C. M. Kirsch, H. Payer, H. Röck, and A. Sokolova. Performance, scalability, and semantics of
concurrent FIFO queues. In Y. Xiang, I. Stojmenovic, B. O. Apduhan, G. Wang, K. Nakano,
and A. Y. Zomaya, editors, ICA3PP, volume 7439 of Lecture Notes in Computer Science, pages
273–287. Springer, 2012.

[7] T. Zhou, M. M. Michael, and M. F. Spear. A practical, scalable, relaxed priority queue. In
ICPP, pages 57:1–57:10. ACM, 2019.

2


