
Licence de droits d’usage INF841 - OS - 2013 page 1

INF841
Operating Systems Module

 M. Sc. in Computer Science

Petr Kuznetsov
petr.kuznetsov@telecom-paristech.fr

Coauthored with
I. Demeure, B. Dupouy, and L. Pautet

Licence de droits d’usage INF841 - OS - 2013 page 2

Par le téléchargement ou la consultation de ce document, l’utilisateur accepte la licence d’utilisation qui y est attachée, telle que détaillée
dans les dispositions suivantes, et s’engage à la respecter intégralement.

La licence confère à l'utilisateur un droit d'usage sur le document consulté ou téléchargé, totalement ou en partie, dans les conditions définies ci-
après, et à l’exclusion de toute utilisation commerciale.

Le droit d’usage défini par la licence est limité à un usage dans un cadre exclusivement privé. Ce droit comprend :
-  le droit de reproduire le document pour stockage aux fins de représentation sur un terminal informatique unique,
-  le droit de reproduire le document en un exemplaire, pour copie de sauvegarde ou impression papier.

Aucune modification du document dans son contenu, sa forme ou sa présentation, ni aucune redistribution en tout ou partie, sous quelque forme et
support que ce soit et notamment par mise en réseau, ne sont autorisées.

Les mentions relatives à la source du document et/ou à son auteur doivent être conservées dans leur intégralité.

Le droit d’usage défini par la licence est personnel, non exclusif et non transmissible.
Tout autre usage que ceux prévus par la licence est soumis à autorisation préalable et expresse de l’auteur :
sitepedago@telecom-paristech.fr

Cadre privé } sans modification

Licence de droits d’usage

Licence de droits d’usage INF841 - OS - 2013 page 3

Operating Systems Module

1.  Introduction
2.  Processes
3.  Basics of System Programming
4.  File Management
5.  Memory management
6.  Bibliography and online resources

Licence de droits d’usage INF841 - OS - 2013 page 4

Literature
Books:
•  Siberschatz, Galvin, Gagne. Operating Systems Concepts, 7th edition,

Wiley, 2005
•  Tannenbaum. Modern Operating Systems, 2nd edition, Prentice-Hall,

2001
•  Bach, Maurice J. The Design Of The Unix Operating System. Prentice

Hall, Software Series, 1986
•  Nutt. Operating Systems: A Modern Perspective, 2nd edition, Addison-

Wesley (2002)
Links:
•  University of Surrey. Unix for beginners:

http://www.infres.enst.fr/~demeure/SiteCSIC/UNIX TUTORIAL/
index.html (Tutorials 1-6)

•  R. H. & A. C. Arpaci-Dusseau, U Wisc., Operating Systems: Three
Easy Pieces, 2013. http://pages.cs.wisc.edu/~remzi/OSTEP/

Licence de droits d’usage INF841 - OS - 2013 page 5

Operating Systems Module

 1. Introduction

Licence de droits d’usage INF841 - OS - 2013 page 6

What is an OS? What is it for?

¢  Top–down view: extended machine
•  Machine-language level is painful to use
•  OS provides a user-friendly interface that hiding the complexity

of the hardware

¢  Bottom-up view: resource manager
•  Computer hardware is a complex system run by multiple users
•  OS arbitrates the shared resources

¢  Simplistic view
•  OS is the one program running at all times (the kernel), all the

rest are system and application programs

Licence de droits d’usage

History of OS
¢  1860-1870: Analytical engine. Charles Babbage, Ada Lovelace
•  First programmable machine (purely mechanical, reproduced in 1991)

¢  1940-1955: First generation calculation engines. K. Zuse, H. Aiken, J. von
Neumann
•  Mechanical relays, vacuum tubes, programmed with plugboards (no OS)
•  Cycle times in seconds

¢  1955-1965: Transistors and batch systems
•  Mainframes, programmed by punchcards (FORTRAN, assembly) , later

“batched” on a tape
•  Fortran Monitor System (FMS)

¢  1965-1980: Integrated Circuits and Multiprogramming
•  IBM System/360 – first multi-purpose machines
•  OS/360 running on all models, multiprogramming, spooling

¢  1980-now: Personal computers
•  LSI (Large Scale Integration), microcomputers, general-purpose 8,16,32-

bit processors, GUI (Graphical User Interface), distributed OS

INF841 - OS - 2013 page 7

Licence de droits d’usage INF841 - OS - 2013 page 8

Computer hardware architecture

¢  A computer hardware architecture consists of 4 basic building elements:
•  processor, where program instructions are executed
•  memory where code and data are stored
•  input/output units that establish the interface between the various

peripherals (screen, keyboard, mouse, disks, etc.) and the computer
itself

¢  Von Neumann architecture (1945)
•  Both the code and the data are stored in (RAM) memory
•  Most of today’s architectures follow the Von Neumann model

processor" memory" input/output"

bus"

Licence de droits d’usage INF841 - OS - 2013 page 9

x"
y"
z"

Arithmetic"
Logical "

Unit"

Control "
Unit"main()"

{"
int x, y , z ;"
x=1;"
y=2;"
z=x+y;"
}"
"

Processor
¢  Arithmetic Logical Unit (ALU)
•  in which basic instructions are

executed
¢  Control Unit (CU)
•  fetches instructions from memory,
•  controls data fetching & storage,
•  controls the ALU operation

¢  A number of registers
•  small memories on the processor;
•  eg. Instruction register, program

counter.
¢  Instructions are executed following a fetch /

decode / execute / store model.

memory!

processor!

Licence de droits d’usage INF841 - OS - 2013 page 10

Bus and memory access

¢  Memory access (read/write):
•  Put address on address bus
•  Place read/write order on control bus
•  Wait if writing (latency)
•  Read/write data from/to data bus

processor" memory" input/output"

Data bus!
Control bus!

@ bus!

Licence de droits d’usage INF841 - OS - 2013 page 11

Operating system goals
¢  Build a virtual machine on top of

the hardware
•  Abstracts its capabilities
•  Hardware-independent
•  Provides a nice user

interface ... if possible

¢  Manage resources:
•  processor, memory, storage,

peripherals, time,
communications, etc.

applications"
other base "
software"
operating"
system "

software"
hardware"

OS upper layers"

OS kernel"

compilers, editors, "
command interpretors"

Licence de droits d’usage INF841 - OS - 2013 page 12

Operating system characteristics
¢  Degree of parallelism, single or multiple:
•  tasks,
•  users (multi-user => multi-task),
•  processors,
•  machines.

¢  Operating mode
•  Time sharing

-  Several simultaneous users
-  Each user has its virtual machine
-  =>Resource sharing
-  =>Time quantum

•  Real time
-  Meet deadlines
-  Interact with environment
-  => resource preallocation
-  => fault tolerance

Licence de droits d’usage page 13

Examples
¢  Mac OS X, Windows 8, iOS, Android …

¢  Unix (Solaris, Linux, FreeBSD) will be used:
•  Developed by Thompson and Ritchie, Bell Labs, 1969-70
•  Derived from CTSS and MULTICS (MIT)

-  Main characteristics
-  Kernel and user modes
-  90% Kernel written in C (portability)
-  Many communication tools (good for networks)
-  All resources seen as files, therefore uniform I/O style
-  Powerful command line interpreter (shell), with pipeline functionality

INF841 - OS - 2013

Licence de droits d’usage page 14

Interacting with the OS
¢  Through the command interpretor
•  Eg. Under Unix: ls, ps, exec
•  Interactively or through command programs (scripts).

¢  From a program,
•  Through a library of system calls

-  E. g.: read, write, sendto, fork, exit

INF841 - OS - 2013

Licence de droits d’usage page 15

Operating Systems Module

2. Processes

INF841 - OS - 2013

Licence de droits d’usage INF841 - OS - 2010 page 16

Processes: virtualization of CPU

2.1. Definitions
2.2. Scheduling: sharing the CPU
2.3. Signaling: communication
2.4. Synchronization: sharing the memory

Licence de droits d’usage page 17

Operating Systems Module

2-Processes
2.1-Definitions and concepts

INF841 - OS - 2013

Licence de droits d’usage INF841 - OS - 2010 page 18

Program versus process
¢  A program is a set of instructions (a static object)

¢  A process is a running program and its context (a dynamic object)

¢  A program context includes the information relative to the process execution:
•  Registers state: program counter, stack pointer, registers describing the

process virtual memory space.
•  Resources accessed by the process (e.g., file access rights, open files).
•  Other (e.g., clock value)

¢  The context must be:
•  saved when a process is deactivated or blocked and
•  restored when a process is activated.

¢  A process is uniquely identified by a Process IDentifier (PID)

Licence de droits d’usage INF841 - OS - 2010 page 19

Process state
¢  In a multiprocessing system, several processes can be running simultaneously:

sharing access to the processor.
¢  A process may go through several states:
•  Active or running: the process is the one currently using the processor
•  Ready or eligible: the process could use the processor if it were ready and if it

were its turn to be run.
•  Blocked or waiting: the process is waiting for a resource (e. g., on-going I/O).
•  Other (e. g., zombie or swapped)

¢  Transitions: activate, deactivate, block, wake-up
¢  Other operations on processes: create (fork, run program), destroy (kill, exit)

ready" running"

blocked"

activate!

deactivate!

block!
(I/O or event !
wait)!

wake-up!
(I/O or event !
completion)!

Licence de droits d’usage INF841 - OS - 2010 page 20

Process table and process space under Unix
¢  The OS maintains a table containing information relative to ongoing

processes

  UNIX allocates 3 memory areas for each process"
Ø  Code area"
Ø  Data area"
Ø  Stack area"
"

Memory resident
process TABLE

state

signals

Memory loaded
code TABLE

U-structure (can be swapped out)

Process entry

Licence de droits d’usage INF841 - OS - 2013 page 21

Process creation with Fork under Unix
int main (void)
{
 int f;
 •••;
 f = fork ();
 if (f == -1) {
 printf ("Error : the process cannot be created\n")
 exit (1);
 }
 if (f == 0) {
 printf ("Hi ! I am the child process\n")
 •••;
 }
 if (f != 0) {
 printf ("I am the father process\n")
 •••;

}

  Fork creates a «clone» of the calling process."
  The calling process is called parent and the callee is called child."
  The parent and the child have different process numbers."
  The values returned to the caller and to the callee are not the same."

Licence de droits d’usage INF841 - OS - 2013 page 22

Example of process creation under Unix
$ cat exo1.c
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main (void)
{
 int f;
 f = fork();
 printf ("value returned by fork: %d\n", (int)f);
 printf ("I am process number %d\n", (int)getpid());

}
$ gcc exo1.c -o exo1
$ exo1
value returned by Fork: 0
I am process number 3899
value returned by Fork: 3899
I am process number 3898
$

Licence de droits d’usage INF841 - OS - 2013 page 23

Memory management when forking a process
code

data

Process table {

F=fork();

}

program
 counter

F: 3339 (child PID)

code

child data

Process table {

F=fork();

}

program
 counter

F: 0
parent data

Before
FORK

After
FORK

PID: 3338

PID: 3338

PID: 3339

Licence de droits d’usage INF841 - OS - 2013 page 24

Fork-exec mechanism

¢  exec(char *path, char *arg0, ... char * argn, char * /* NULL */) :
•  exec is called by any process that wants its current code replaced by another

one specified by path.

•  fork creates a clone child process that executes the father’s code.

•  the child process may specify another code to be executed using exec

Licence de droits d’usage

INF841 - OS - 2013 page 25

Memory management when calling exec
code

data

Process table
{

exec(prog);

}

program
 counter

code of prog

data of prog

Process table program
 counter

Before
Exec

After
Exec

{
first line;

}

PID: 3338

PID: 3338

Licence de droits d’usage INF841 - OS - 2010 page 26

Fork-exec example
int main (int argc, char *argv[])
{•••
 if (argc != 2)
 {printf(" Usage : %s you forgot the argument (name file for exec)! \n",
argv[0]); exit(1);}
 printf (" I am %d, I will fork \n",(int)getpid());
 f=fork();
 switch (f)
 {
 case 0 :
 printf ("Hi ! I am the child %d\n",(int)getpid());
 printf ("%d : Code replaced by %s\n",(int)getpid(), argv[1]);
 execl(argv[1],(char *)0);
 printf (" %d : Error in exec \n", (int) getpid()); exit (2);
 case -1 :
 printf (" Fork failed "); exit (3) ;
 default : /* parent waits for end of child*/
 printf ("Parent %d waits\n ",(int)getpid());
 child=wait (&State);
 printf ("Child was : %d ", child);
 printf (".. Its state was :%0x (hexa) \n",State);exit(0);}
}
$./fexec exo1
I am 846, I will fork
Parent number 846 waits
Hi ! I am the child 847
847 : Code replaced by exo1
 Value returned by fork: 848
I am process number 847
 Value returned by fork: 0
I am process number 848
 Child was : 847 .. Its state was :ff00 (hexa)

Licence de droits d’usage INF841 - OS - 2013 page 27

Operating Systems Module

2. Processes
2.2. Processor scheduling

Licence de droits d’usage INF841 - OS - 2013 page 28

Processor scheduling
¢  Several processes may compete for accessing CPU
¢  The OS scheduler decides on the order in which processes will access

the processor.
¢  The scheduler implements a scheduling policy:
•  With or without priorities
•  With or without preemption
•  With or without recycling

BLOCKED processes queues
Wake-up
Blocked
process

READY processes queues

Execute
Elected
process

deactivate

Select one
according to
scheduling

policy

activate Block

exit

Licence de droits d’usage INF841 - OS - 2013 page 29

Scheduling policies
¢  What is «the best» scheduling policy ?
•  It depends on what is to be achieved

¢  Measures
•  Throughput: how many tasks can be executed per time unit.
•  Turnaround time: time between task submitted and final result returned

(includes: time waiting in queues, memory load time, execution time, I/O time)
•  Waiting time: time spent in the ready queue
•  Response time: time between task submitted and first scheduled

¢  We focus primarily on turnaround time and response since we are interested
fairness and interactivity in time-sharing systems.

¢  If we were in a real-time system a measure would be the number of missed
deadlines.

Licence de droits d’usage INF841 - OS - 2013 page 30

Examples of scheduling policies
¢  First Come first Served
¢  Shortest Job First
¢  Shortest Time-to-Completion Job First
¢  Priority
¢  Round-robin
¢  Combination, e. g., UNIX scheduling

Licence de droits d’usage INF841 - OS - 2013 page 31

First Come First Served
¢  Processes are executed in the order in which they arrive in the ready

queue:
•  no preemption, no recycling, no priority.

¢  Example:
•  Assume 3 processes P1, P2, P3, arrival order P1, P2, P3 all at time T0
•  Execution times: P1=12 time units, P2=2 time units, P3 =2 time units
•  Arrival order P1, P2, P3 all at time T0:

-  Average turnaround time = (12+14+16) / 3 = 14
-  Gantt chart

P1 P2 P3
12 14 16

Licence de droits d’usage INF841 - OS - 2013 page 32

Shortest Job first
¢  Execute processes with shortest execution time first
•  No preemption, no priority, no recycling
•  Example: arrival order P1, P2, P3 all at time T0:

-  Average turnaround time = (2+4+16) / 3 = 7.33

¢  Problem 1: how do we evaluate execution times ?
•  Prediction
•  Ask user to give an upper bound when the job is submitted (as before)

¢  Problem 2 = Starvation:
•  If short processes keep coming longer processes will never get access

to the processor
•  Ageing technique: when making scheduling decision, take into account

time already spent waiting.

P1 P2 P3
2 4 16

Licence de droits d’usage INF841 - OS - 2013 page 33

Shortest Time-to-Completion First (Preemtion)
¢  Preempt if less demanding jobs arrive
•  Preemption, no recycling, no priority.

¢  Example:
•  Assume 3 processes P1, P2, P3, arrival order P1 arrives at time 0, P2

and P3 arrive at time 5
•  Execution times: P1=12 time units, P2=2 time units, P3 =2 time units

-  Average turnaround time = (16+2+4) / 3 = 7.33

P1 P2 P3

5

P1

7 9 16

Licence de droits d’usage INF841 - OS - 2013 page 34

Priority
¢  A priority level is attached to each process.
•  Schedule the process with the highest priority first.
•  Priority, preemption, recycling

¢  Problem: starvation
•  if processes with high priority keep coming, processes with lower

priority will never get access to the processor

¢  Solution: ageing
•  Periodically increase priority to take into account time spent in the

ready queue.

Licence de droits d’usage INF841 - OS - 2013 page 35

Round Robin
¢  In order to fairly accommodate several «time-sharing» processes

¢  Split time into time intervals called quanta, and cyclically allocate a time
quantum to each process in the ready queue.
•  Preemption, recycling, no priority
•  Great for response time!

¢  Example: same as before, assuming the quantum is equal to one time
unit
•  Average turnaround time : (5+6+16) / 3=9
•  Performance depends on quantum size

1 2 4 5 6 3 16

P1 P1 P1 P3 P2 P1 P3 P1 P2 ...

Licence de droits d’usage INF841 - OS - 2013 page 36

Unix scheduling: priorities based on the past
utilization

Multi-level feedback queue (MLFQ)

¢  Combines round-robin, priority and ageing
•  Priority, preemption, recycling (woken-up treatment)

¢  Processes scheduled according to their priority (0-127)
•  0 the highest, 127 the lowest
•  Processes with priorities 0-25 and not preemptible (real-time

processes)
•  Round-robin for each priority level (greater than 25)

¢  Priority = Pbase+ f(CPU used, waiting time)
¢  After I/O or signal: Priority = g(I/O type)

Licence de droits d’usage INF841 - OS - 2013 page 37

Unix scheduling: example

¢  A process starts with a base priority (Pbase=60) and maintains a priority
margin C as a function of CPU consumption (fairness) and time in the
ready queue (ageing):

•  Initially, C=CPU time already used by the process
•  Each time quantum C=C/2
•  Process priority P=Pbase+C+ nice -20
•  The nice parameter adjusts the base priority (application-specific)

¢  When a process wakes-up after an I/O (recycling)
•  It starts with a priority depending on the I/O event.
•  The current process is preempted if appropriate

Licence de droits d’usage

Multiple-processor scheduling

¢  Load-sharing possible, but also more complexity…

¢  Centralized solution: all scheduling decisions taken by the master
processor, other processors only execute user code

¢  Symmetric multiprocessing (SMP), used by (almost) all modern OSs
•  Shared READY queues: synchronization required (we’ll see details

later) or private READY queues for each processor
•  Processor affinity: avoid migration between processors
•  Load balancing: distributed the load between private READY queues

(push and pull strategies)

INF841 - OS - 2013 page 38

Licence de droits d’usage

Up-to-date scheduling mechanisms
¢  Up to Linux 2.5, linear (in the number of tasks) scheduler was used
•  20% CPU time spent on scheduling!

¢  O(1) scheduler (Linux 2.5-2.6) and Completely Fair Scheduler (Linux
2.6+)
•  Two priority ranges: real-time (0-99, long quanta) and nice (100-140,

short quanta)
•  Tasks are stored in a red-black-tree (runqueue), CPU consumption

used as a key
•  Less CPU time used - faster to find
•  Waiting (sleeping tasks) consume less CPU and thus prioritized

(interactivity)
¢  RMS (Rate-Monotonic Scheduling) for real-time systems
•  Static-priority policy and preemption
•  Priority inverse to the period (processes are assumed periodic)

INF841 - OS - 2013 page 39

Licence de droits d’usage INF841 - OS - 2013 page 40

Operating Systems Module

2. Processes
2.3. Signaling

Licence de droits d’usage INF841 - OS - 2013 page 41

Signals
¢  A signal is a form of software interrupt that can originate from:
•  The kernel (divide by zero, illegal instruction, ...)
•  The keyboard (user hits Ctrl-C, Ctrl-D, …)
•  Call to the kill instruction, either through the shell, or by calling the kill

system call (from a C program)

¢  Upon receiving a signal, the most common behaviour for a process is:
•  To exit
•  Possibly to produce a core file that contains an image of the process

context when it received the signal, to allow for subsequent debugging

¢  Signal is a limited form of IPC (Inter Process Communication)

Licence de droits d’usage

List of standard signals (1/2)
In /usr/include/bits/signum.h
#define SIGHUP 1 /* Hangup (POSIX). */
#define SIGINT 2 /* Interrupt (ANSI), Ctrl-C */
#define SIGQUIT 3 /* Quit (POSIX), Ctrl-D */
#define SIGILL 4 /* Illegal instruction (ANSI). */
#define SIGTRAP 5 /* Trace trap (POSIX). */
#define SIGABRT 6 /* Abort (ANSI). */
#define SIGIOT 6 /* IOT trap (4.2 BSD). */
#define SIGBUS 7 /* BUS error (4.2 BSD). */
#define SIGFPE 8 /* Floating-point exception (ANSI). */
#define SIGKILL 9 /* Kill, unblockable (POSIX). */
#define SIGUSR1 10 /* User-defined signal 1 (POSIX). */
#define SIGSEGV 11 /* Segmentation violation (ANSI). */
#define SIGUSR2 12 /* User-defined signal 2 (POSIX). */
#define SIGPIPE 13 /* Broken pipe (POSIX). */
#define SIGALRM 14 /* Alarm clock (POSIX). */
#define SIGTERM 15 /* Termination (ANSI). */
#define SIGSTKFLT 16 /* Stack fault. */
#define SIGCLD SIGCHLD /* Same as SIGCHLD (System V). */
#define SIGCHLD 17 /* Child status has changed (POSIX). */

INF841 - OS - 2013 page 42

Licence de droits d’usage

Signals list (2/2)
In /usr/include/bits/signum.h
#define SIGCONT 18 /* Continue (POSIX). */
#define SIGSTOP 19 /* Stop, unblockable (POSIX). */
#define SIGTSTP 20 /* Keyboard stop (POSIX). */
#define SIGTTIN 21 /* Background read from tty (POSIX). */
#define SIGTTOU 22 /* Background write to tty (POSIX). */
#define SIGURG 23 /* Urgent condition on socket (4.2 BSD). */
#define SIGXCPU 24 /* CPU limit exceeded (4.2 BSD). */
#define SIGXFSZ 25 /* File size limit exceeded (4.2 BSD). */
#define SIGVTALRM 26 /* Virtual alarm clock (4.2 BSD). */
#define SIGPROF 27 /* Profiling alarm clock (4.2 BSD). */
#define SIGWINCH 28 /* Window size change (4.3 BSD, Sun). */
#define SIGPOLL SIGIO /* Pollable event occurred (System V). */
#define SIGIO 29 /* I/O now possible (4.2 BSD). */
#define SIGPWR 30 /* Power failure restart (System V). */
#define SIGSYS 31 /* Bad system call. */
#define SIGUNUSED 31

#define _NSIG 65 /* Biggest signal number + 1 (including real-time signals). */

INF841 - OS - 2013 page 43

Licence de droits d’usage INF841 - OS - 2013 page 44

Operations on signals

¢  Upon receiving signal, possible behaviors are:
•  Ignore signals
•  Catch signal and execute treatment
•  Mask signals

¢  To send a signal:
•  From C: kill(process_nb, signal_nb)
•  From shell: kill –signal_nb process_nb

¢  To display all the supported signals: kill –l !

Licence de droits d’usage INF841 - OS - 2013 page 45

Receiving a signal
¢  A table including a bit position for each signal (NSIG), is attached to each

process.
•  If the process has received no signal, all bits are set to 0.
•  Otherwise, the positions corresponding to a signal received are set to

1.
•  E. g., If signal number 15 was sent to the process, bit number 15 is set

to 1.

¢  A process checks if signals are received when it runs in the user mode.
The signal processing is deferred if the process:
•  Executes a system call (running in the kernel mode)
•  Is in uninterrubptiple sleep (e.g., waiting for disk I/O)

Licence de droits d’usage INF841 - OS - 2013 page 46

What to do when receiving a signal
¢  3 possibilities:
•  Ignore the signal:

-  by calling signal(signal_nb, SIG_IGN) in a program

•  Go back to the default treatment (one is defined for each signal) if
some other behaviour was defined:
-  signal(signal_nb, SIG_DFL)!

•  Define a specific treatment (function) to be executed:
-  signal(signal_nb, function)!

¢  signal() does not send a signal, only defines the treatment when
receiving it
•  In the U-structure part of the process entry, the system maintains a

table in which it stores the behavior to adopt when receiving each
signal

Licence de droits d’usage INF841 - OS - 2010 page 47

Example: ignoring all signals

#include <signal.h>

int main(void)
{

 short int SigNum;
 long SigVal;

 /* signal returns –1 if it cannot ignore the signal, 0 otherwise */

 for (SigNum = 1; SigNum <= NSIG ; SigNum ++)
 {
 SigVal = signal(SigNum, SIG_IGN);
 printf (" value returned for: %d.-> %d\n",
 SigNum , SigVal);
 }

•••
}

Licence de droits d’usage INF841 - OS - 2010 page 48

Example: using the alarm signal
/* If no key is hit a message is displayed on the screen every 5
seconds */
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
int main (void)
{
 void SigTreat (int Signal);
 int Charac;
 signal (SIGALRM, SigTreat);
 alarm(5);
 do
 {
 Charac = getchar ();
 putchar (Charac);
 alarm(5);
 } while (Charac != EOF); /* CTRL D to exit */
}

void SigTreat (int Signal)
{
 printf ("\7\7 type a key!\n");
 signal (Signal, SigTreat);
 alarm(5);
}

Licence de droits d’usage INF841 - OS - 2010 page 49

Example: SIGFPE signal
¢  SIGFPE :
•  Floating Point Exception signal.
•  Generated, for example, when division by zero occurs

¢  Program skeleton
long int Tab[NLIG, NCOL];

short int NumLig, NumCol;

int main (void)

{

 ...

 init(...);

 calcul(...);

}

¢  Init and calcul functions:
•  Init: reads inputs from keyboard or file
•  Calcul:

-  computes Tab[NumLig, NumCol] the elements of Tab.

Licence de droits d’usage INF841 - OS - 2010 page 50

Example: ignore SIGFPE signal

long int Tab[NLIG, NCOL];

short int NumLig, NumCol;

void main (void)

{

 ...

 signal(SIGFPE, SIG_IGN);
 ...

 init(...);

 calcul(...);

}

¢  Advantage:
•  If there is an error on the computation of one element, it does not

prevent the computation of the others
¢  Problem:
•  Nothing tells you which elements cannot be computed

Licence de droits d’usage INF841 - OS - 2010 page 51

Example: process SIGFPE signal
•  long int Tab[NLIG, NCOL];
•  short int NumLig, NumCol;
•  void main (void)
•  {
•  void Treat_FPE(int NumSig);
•  ...
•  signal(SIGFPE, Traite_FPE);
•  ...
•  init(...);
•  calcul(...);
•  }
•  void Treat_FPE(int NumSig)
•  {
•  printf(« signal %d : tab[%d, %d]\n », Numsig, NumLig, NumCol);
•  signal(SIGFPE, Traite_FPE);
•  }

¢  Problem:
•  Does not reset initial conditions that caused the error

Licence de droits d’usage INF841 - OS - 2010 page 52

Example: process SIGFPE signal (2)
 #include <setjmp.h>

long int Tab[NLIG, NCOL];
short int NumLig, NumCol;
jmp_buf context;
int main (void)
{
 void Treat_FPE(int NumSig);
 signal(SIGFPE, Traite_FPE);
 ...
 /* save current context in « context » data structure */
 setjmp(context);
 init(...);
 calcul(...);

}
void Treat_FPE(int NumSig)
{
 printf(“signal %d : tab[%d, %d]\n”, Numsig, NumLig, NumCol);
 /* reload context previously saved in "context" data structure */
 longjmp(context, 0);

}

Licence de droits d’usage INF841 - OS - 2013 page 53

Signal processing
¢  In Unix system V versions, when a process receives a signal, it executes

the treatment specified and goes back to the default treatment (it is not
true in other versions of Unix, e.g., BSD).

¢  It is therefore necessary to specify the behavior to adopt next time the
same signal is received in the treatment function.

void Traite_FPE(int NumSig)

{

 printf(« signal %d : tab[%d, %d]\n, Numsig, NumLig, NumCol);

 signal(SIGFPE, Treat_FPE);

 /* reload context previously saved in « context » data structure
*/
 longjmp(context, 0);

}

Licence de droits d’usage INF841 - OS - 2013 page 54

Operating systems module

2. Processes
2.4. Process synchronization

Licence de droits d’usage INF841 - OS - 2013 page 55

Why synchronize ?

¢  Concurrent access to a shared resource may lead to an inconsistent state
•  E. g., concurrent file editing
•  Non-deterministic result (race condition): the resulting state depends

on the scheduling of processes

¢  Concurrent accesses need to be synchronized
•  E. g., decide who is allowed to update a given part of the file at a given

time

¢  Code leading to a race condition is called critical section
•  Must be executed sequentially

¢  Synchronization problems: mutual exclusion, readers-writers, producer-
consumer

Licence de droits d’usage

Mutual exclusion

¢  No two processes are in their critical sections (CS) at the same time

+
¢  Deadlock-freedom: at least one process eventually enters its CS
¢  Starvation-freedom: every process eventually enters its CS
•  Assuming no process blocks in CS

¢  Originally: implemented by reading and writing
•  Peterson’s lock, Lamport’s bakery algorithm

¢  Currently: in hardware (mutex, semaphores)

INF841 - OS - 2013 page 56

Licence de droits d’usage

Readers-writers problem

¢  Writer updates a file
¢  Reader keeps itself up-to-date
¢  Reads and writes are non-atomic!

Why synchronization? Inconsistent values might be read

INF841 - OS - 2013 page 57

Writer
T=0: write(“sell the cat”)

T=2: write(“wash the dog”)

Reader

T=1: read(“sell …”)

T=3: read(“… the dog”)

Sell the dog?

Licence de droits d’usage

Producer-consumer (bounded buffer) problem
¢  Producers put items in the buffer (of bounded size)
¢  Consumers get items from the buffer
¢  Every item is consumed, no item is consumed twice

 (Client-server, multi-threaded web servers, pipes, …)
Why synchronization? Items can get lost or consumed twice:

INF841 - OS - 2013 page 58

Producer!
/* produce item */!
while (counter==MAX);!
buffer[in] = item !
in = (in+1) % MAX;!
counter++; !!

Consumer!
/* to consume item */!
while (counter==0); !
item=buffer[out];!
out=(out+1) % MAX;!
counter--; !
/* consume item */!
!Race!

Licence de droits d’usage INF841 - OS - 2013 page 59

Synchronization tools

¢  Test-and-Set (TAS) or Compare-and-Swap (CAS) instructions
¢  Interrupt masking (requires privileged execution mode).
¢  Semaphores (locks), monitors

¢  Nonblocking synchronization
•  No locks used

Licence de droits d’usage INF841 - OS - 2013 page
60

Test and Set (TAS)
¢  TAS(X) tests if X = 1, sets X to 1 if not, and returns the old value of X
•  Instruction available on almost all processors:

X == 1?"

X := 1"
no"

yes"

atomic"

shared X:=0"

Producer" Consumer"

while(counter==MAX);!
. . . !
buffer[in] = item; !
. . .!
while TAS(X);!
counter++; !
X:=0;!
. . .!
!

while (counter==0);!
. . .!
item = buffer[out];!
. . .!
while TAS(X);!
counter--; !
X:=0;!
...!

Problems:

•  busy waiting
•  no record of request order (for multiple

producers and consumers)

1"

0"

Licence de droits d’usage INF841 - OS - 2013 page 61

Semaphores [Dijkstra 1968]: specification
¢  A semaphore S is an integer variable accessed (apart from initialization) with two

atomic operations P(S) and V(S)
•  Stands for “passeren” (to pass) and “vrijgeven” (to release) in Dutch

¢  The value of S indicates the number of resource elements available (if positive), or
the number of processes waiting to acquire a resource element (if negative)
!
 
Init(S,v){ S := v; }!
!

P(S){!
!while S<=0; !/* wait until a resource is available */!
!S--; !/* pass to a resource */!

}!
!
V(S){!

!S++; ! !/* release a resource */!
}!
!
!

Licence de droits d’usage INF841 - OS - 2013 page 62

Semaphores: implementation

S is associated with a composite
object:
•  S.counter: the value of the

semaphore
•  S.wq: the waiting queue,

memorizing the processes
having requested a resource
element

Init(S,R_nb) {!
S.counter=R_nb;!
S.wq=empty;!

}!
P(S) { !
S.counter--;!
if S.counter<0{!
 put the process in S.wq

!until READY;}!
}!
V(S) { !
S.counter++!
if S.counter>=0{ !

!mark 1st process in S.wq
as !READY;}!

}!

Licence de droits d’usage INF841 - OS - 2010 page 63

Lock
¢  A semaphore initialized to 1, is called a lock (or mutex)

¢  When a process is in a critical section, no other process can come in

shared semahore S := 1"

Producer" Consumer"

while (counter==MAX);!
. . . !
buffer[in] = item; !
. . .!
P(S);!
counter++; !
V(S)!
. . .!
!

while (counter==0);!
. . .!
item = buffer[out];!
. . .!
P(S);!
counter--; !
V(S);!
...!

Problem: still waiting until the buffer is ready

Licence de droits d’usage INF841 - OS - 2013 page 64

Semaphores for producer-consumer

¢  2 semaphores used :
•  empty: indicates empty slots in the buffer (to be used by the producer)
•  full: indicates full slots in the buffer (to be read by the consumer)

shared semaphores empty := MAX, full := 0;!

Producer" Consumer"

P(empty)!
buffer[in] = item; !
in = (in+1) % MAX;!
V(full)!
!
!

P(full);!
item = buffer[out];!
out=(out+1) % MAX; !
V(empty);!

Licence de droits d’usage INF841 - OS - 2010 page 65

Potential problems with semaphores/locks
¢  Blocking: progress of a process is conditional (depends on other

processes)
¢  Deadlock (no progress ever made)

¢  Starvation (waiting in the waiting queue forever)

X1:=1; X2:=1!

Process 1! Process 2!

...!
P(X1)!
P(X2)!
critical section!
V(X2)!
V(X1)!
...!

...!
P(X2)!
P(X1)!
critical section!
V(X1)!
V(X2)!
...!

Licence de droits d’usage

Non-blocking algorithms
A process makes progress, regardless of the other processes

INF841 - OS - 2013 page 66

shared buffer[MAX]:=empty; head:=0; tail:=0;"

Producer put(item)! Consumer get()!

if (tail-head == MAX){!
!return(full);!

}!
buffer[tail%MAX]=item; !
tail++;!
return(ok);!

if (tail-head == 0){!
!return(empty);!

}!
item=buffer[head%MAX]; !
head++;!
return(item);!

Problems:
•  works for 2 processes but hard to say why it works J
•  multiple producers/consumers?
(go to a distributed computing class to learn more)

Licence de droits d’usage

Multiple producers-consumers: transactions
¢  Mark sequences of instructions as an atomic transaction, e.g., the resulting

producer code:
atomic {!

!if (tail-head == MAX){!
!return full;!
!}!
!items[tail%MAX]=item; !
!tail++;!

}!
return ok;!

¢  A transaction can be either committed or aborted
•  Committed transactions are serializable
•  Let the transactional memory (TM) care about the conflicts
•  Easy to program, but performance may be problematic in software

INF841 - OS - 2013 page 67

Licence de droits d’usage

More on synchronization

¢  Concurrency is indispensable in programming:
•  Every system is now concurrent
•  Every parallel program needs to synchronize
•  Synchronization cost is high (“Amdahl’s Law”)

¢  Tools:
•  Synchronization libraries (e.g., java.util.concurrent)
•  Synchronization primitives (e.g., TAS, CAS, LL/SC)
•  Transactional memory, also in hardware (Intel Haswell, IBM Blue Gene,…)

¢  More on blocking and nonblocking concurrent algorithms:
•  M. Herlihy, N. Shavit. The art of multiprocessor programming. Morgan

Kaufman. 2008

INF841 - OS - 2013 page 68

Licence de droits d’usage INF841 - OS - 2013 page 69

Operating Systems Module

3. Software life cycle
3.1. Compiling, Linking, Executing

Licence de droits d’usage INF841 - OS - 2013 page 70

Software production tools
Editor"

Compiler"

Linker"

Loader"

Source file 1" Source file 2" Source file n"

Object file 1" Object file 2" Object file n"

Executable file"

library"
library"

library"

design

programming

compiling

memory
execution

…

…

Licence de droits d’usage INF841 - OS - 2013 page 71

Separate compilations

¢  Separate compilations:
•  gcc -c f1.c (=> produces object file f1.o)
•  gcc -c f2.c (=> produces object file f2.o)

¢  Linking
•  gcc -o f f1.o f2.o (=> produces executable file f)

¢  Executing
•  ./f
•  i=0 ????

f1.c
int main(void)
{

 int i ;
 i=square(4) ;
 printf("i=%d\n", i);

}

f2.c
double square(double f)
{

 return(f*f);
}

Licence de droits d’usage INF841 - OS - 2013 page 72

From object files to executable file

¢  Here: static linking
¢  In dynamic linking, only a pointer to modules is kept. They are only loaded at

execution time if needed.

O
 data

N

O
 instructions

M

O
 data

K

O
 instructions

L

O

 data
N+K

O
 instructions

M+L + room for
 printf code

I/O library"

f1.0 f2.0

f

Licence de droits d’usage INF841 - OS - 2013 page 73

Link editing

Call C

Call B

Call C

0

1500

300

700

900

1200

100

200
Object A
 (600)

Object B
 (500)

Object C
 (300)

Call 1200

0

1500

300

700

900

1200

100

200

Call 1200

Call 700

BEFORE AFTER

Translation,
references

Licence de droits d’usage INF841 - OS - 2013 page 74

Compilation errors
¢  Going back to the previous example (f1, f2)

•  execution of: gcc -Wall -c f1.c
•  returns: warning implicit declarations: square, printf
•  Why?

-  Prototyping poorly done
-  Missing prototype of square and #include <stdio.h> for
printf

¢  Execution of: gcc -o f f1.o

returns: undefined symbol: square
 ld fatal error

¢ Why? missing object file f2.o containing code of square

Licence de droits d’usage INF841 - OS - 2013 page 75

Preprocessor prototyping and #include
¢  f cannot return the expected result because the use of square does not

correspond to the way it is defined (treats the output as int).
 i (format d) = 0 i (format lf) = 16.000000
 i (format d) = 320000 i (format ld) = 1076887552

¢  To avoid problems:
•  Compile with the -Wall option
•  Give prototype of all functions called (in .h files)

¢  Example corrected
f1.c
#include <stdio.h>
#include "f2.h"
int main(void)
{
 int i ;
 i=square(4) ;
 printf("i=%d\n", i);
}

f2.h
extern double square(double f);

f2.c
double square(double f)
{

 return(f*f);
}

Licence de droits d’usage INF841 - OS - 2013 page 76

Libraries and include files

¢  result of:
 gcc -o f f1.c f2.c
¢  will be:
 warning: type mismatch
 ld: undefined symbol sqrt

¢  To avoid the warning, cast the variable appropriately (i=(int) square(4))
¢  To avoid the ld: undefined ...,

•  #include <math.h>
•  load math library:

•  gcc -o f f1.c f2.c -lm

f1.c (modified)
#include <stdio.h>
#include "f2.h"
int main(void)
{
 int i ;
 i= square(4) ;
 printf("i=%d\n", i);
 i=sqrt(i);
 printf("i=%d\n", i);
}

Licence de droits d’usage INF841 - OS - 2010 page 77

Libraries and include files (2)

¢  result of:
•  gcc -Wall -o f f1.c f2.c
¢  will be:
•  ld: undefined symbol sqrt
¢  result of:
•  gcc -Wall -o f f1.c f2.c -lm
¢  will be OK

f1.c (modified)
#include <stdio.h>
#include <math.h>
#include "f2.h"
int main(void)
{
 int i ;
 i= (int) square(4) ;
 printf("i=%d\n", i);
 i=sqrt(i);
 printf("i=%d\n", i);
}

Licence de droits d’usage INF841 - OS - 2010 page 78

Prototyping and library errors

Action Effect
No #include
No library loading

No executable
produced

No #include
Library loading

Executable
produced but
potential
problems at
runtime

#include
No library loading

No executable
produced

Licence de droits d’usage INF841 - OS - 2013 page 79

Operating Systems Module

3. Software life cycle

3.2 Make Tool

Licence de droits d’usage INF841 - OS - 2010 page 80

Make tool
¢  make is a tool that provides support
•  to maintain an up-to-date executable file from various modules
•  by recompiling, linking, etc. what is necessary..

¢  To this purpose, make uses:
•  the dates at which the files were last modified (/compiled ?)
•  the dependencies among the various modules

¢  The dependencies among the modules and the actions to undertake in
order to generate the executable file are described in a "makefile".

¢  Usage:
make -f makeFileName

or, simply
make (looks for "makefile" or "Makefile" in the current directory)

Licence de droits d’usage INF841 - OS - 2013 page 81

Makefile, target and dependencies
¢  Dependency graph
•  If file A is dependent on file B there will be an

arc from B to A.
•  E.g., C depends on D1, D2, …, Dn, i. e., C is

a target that depends on N1, N2, Nn.

¢  Example dependency graph
•  f depends on f1.o and f2.o

¢  The structure of a makefile reflects the
structure of the corresponding dependency
graph.

¢  A makefile is a series of target, action lines:

¢  target: dependency 1 ...
dependency n

¢  <TAB> action

¢  The action describes what is to be done to
obtain the target from the dependency files.

D1"

D2"

Dn"

C"

 f1.c" f1.o"

f"

f2.c" f2.o"

…

Licence de droits d’usage INF841 - OS - 2013 page 82

First version of makefile

¢  If f1.c is modified then the f1.o target and the f targets will be redone.
¢  f2.o will remain unchanged

 ### f depends on f1.o and f2.o
 f: f1.o f2.o
 <TAB> gcc f1.o f2.o -o f
 ### f1.o depends on f1.c
 f1.o: f1.c
 <TAB> gcc -c f1.c
 ### f2.o depends on f2.c
 f2.o: f2.c
 <TAB> gcc -c f2.c

Licence de droits d’usage INF841 - OS - 2013 page 83

Second version of makefile
 f: f1.o f2.o
 gcc f1.o f2.o -o f

 ### f1.o depends on f1.c & f2.h
 f1.o: f1.c f2.h
 gcc -c -Wall f1.c

 f2.o: f2.c
 gcc -c -Wall f2.c

 clean:

 rm *.o core

NB:"
•  the target does not have to be a file. "
•  make clean will clean the current directory."

Licence de droits d’usage INF841 - OS - 2013 page 84

Makefile variables
¢  In the table below, we show some of the commonly used makefile

variable

Name example
Compiling
option

CFLAGS CFLAGS=-c -g -Wall

Linking options LDFLAGS LDFLAGS= -g -lm

Object files OFILES OFILES=f1.o f2.o
Sources files CFILES CFILES=f1.c f2.c
Compiler name CC CC=gcc
Linker name LD LD=gcc
Rm command RM RM=/bin/rm
Program name PROG PROG=f

Licence de droits d’usage INF841 - OS - 2013 page 85

Third version of makefile
¢  With variables

 BINDIR = /usr/local/bin
 CFLAGS = -c -g -Wall
 LDFLAGS = -g -lm
 OFILES = f1.o f2.o
 CC = $(BINDIR)/gcc
 LD = $(BINDIR)/gcc
 RM = /bin/rm -f
 PROG = f

 f: $(OFILES)

 $(LD) $(LDFLAGS) $(OFILES) -o $(PROG)
 f1.o: f1.c f2.h

 $(CC) $(CFLAGS) f1.c
 f2.o: f2.c

 $(CC) $(CFLAGS) f2.c

 clean:

 $(RM) $(OFILES) core

Licence de droits d’usage INF841 - OS - 2013 page 86

Suffix rules
¢  To go from a source to an object file, there is an implicit suffix rule:
.c.o:

 $(CC) $(CFLAGS) $<
¢  Thus:

 BINDIR = /usr/local/bin
 CFLAGS = -c -g -Wall
 LDFLAGS = -g -lm
 OFILES = f1.o f2.o
 CC = $(BINDIR)/gcc
 LD = $(BINDIR)/gcc
 RM = /bin/rm -f
 PROG = f
###

 f: $(OFILES)

 $(LD) $(LDFLAGS) $(OFILES) -o $(PROG)
 f1.o: f1.c f2.h

 $(CC) $(CFLAGS) f1.c
###

 clean:

 $(RM) $(OFILES) core

Licence de droits d’usage INF841 - OS - 2013 page 87

Organizing the directories

¢  A separate directory with all the “include” (*.h) files can be created.
¢  The gcc -I option can then be used to tell the compiler where to look for

the include files

CFLAGS= -c -g -Wall -I ../includeDir

Licence de droits d’usage INF841 - OS - 2010 page 88

Operating Systems Module

4. File System

Licence de droits d’usage INF841 - OS - 2013 page 89

Definitions
¢  A file is a named collection of related information that is recorded on

secondary storage (disks)
•  but can be mapped to the primary (main) memory

¢  File’s attributes:
•  Name: symbolic file name
•  Identifier: unique tag, identifies the file within the file system
•  Type:

-  Program files: source, object, executable
-  Data files: ASCII, binary, media files (various format), ...
-  System files, such as /etc/passwd, /var/spool/mail

•  Location: a pointer to a device and a path on the device
•  Size: the current size (bytes, words, or blocks) and, possibly, the max

allowed size
•  Protection: access control information
•  Time, date, and user: for creation, last modification, last use

Licence de droits d’usage INF841 - OS - 2013 page 90

File operations

¢ Access operations exported to the OS: !

•  File operations: !
-  create, open, read, write, seek, close, delete,
truncate,…!

•  Directory operations:
-  create, delete, opendir, closedir, readdir, link, …!

¢ System commands: cat, ls, file, rm, mv, cp, …!

Licence de droits d’usage INF841 - OS - 2013 page 91

File system manager

The file system manager is a part of the operating system

¢  It is in charge of all operations on file, of file storage, protection and
integrity

¢  It establishes a mapping between the logical organization seen by the
users and the physical organization of storage devices.

Licence de droits d’usage INF841 - OS - 2010 page 92

Operating Systems Module

4. File System
4.1. Physical organization

Licence de droits d’usage INF841 - OS - 2013 page 93

File system implementation under Unix
¢  On each storage disk, a special file called i-list (index-list) describes all

files stored on disk.

¢  An i-list entry is called an i-node
•  Each i-node describes one file
•  An i-node is stored on 64 bytes (if file too large, indirection is used)

¢  i-list size
•  Set when the disk is initialized
•  If the list contains a large number of entries (i-nodes), many files can

be created, but the i-list is large
•  If the i-list contains few i-nodes, then the i-list is small but only a small

number of files can be created, even if there is available space on disk.

Licence de droits d’usage INF841 - OS - 2010 page 94

File storage under Unix

2323

134

58

3211

69

67" 68" 69"

133" 134" 135"

File composed
of 5 blocks"

Blocks on Unix
disk"

Licence de droits d’usage INF841 - OS - 2010 page 95

Super block ... and disk organization

¢  The super block contains the following information:
•  Number of blocks reserved for i-list
•  Total number of blocks in disk
•  List of free blocks
•  List of free i-nodes
•  ...
•  Date of last modification
•  Number of free blocks
•  Number of free i-nodes
•  File system name

Boot block" Super block" I-list" File blocks"

Licence de droits d’usage INF841 - OS - 2013 page 96

I-node: example
¢  Protection: access rights
¢  UID and GID are the creator ids
¢  Disk @1 to disk @10 contain the

addresses of the first 10 blocks
composing the file.

¢  Disk @11, addresses a block that
contains the addresses of the 128
following blocks (assuming that a
block is 512 octets long)

¢  Disk @12, addresses a block that
addresses 128 blocks that each
contain the addresses of 128 file blocs
(2 levels of indirection)

¢  Disk @13, addresses a block that
addresses 128 blocks that each
address 128 blocs that each contain
the addresses of 128 file blocs (3
levels of indirection)

Protection
Number of links

UID-GID
Number of characters

...
Disk @ 1
Disk@ 2

...
Disk @ 10
Disk @ 11
Disk @ 12
Disk @ 13

Licence de droits d’usage INF841 - OS - 2013 page 97

Unix directory

¢  The above figure shows the directory « historical structure » (now names can be
longer than 14 bytes).

¢  Under Unix, directories establish the mapping between logical and physical
structures, that are completely separated.

¢  Some directory commands:
•  pwd (print working directory), gives the name and path of current directory
•  cd (change directory), to move in the directory graph
•  ls, to list files contained in a directory

I-node . directory itself

I-node .. parent directory

I-node file name

I-node file name

Physical name Logical name

2 bytes 14 bytes

I-list

Licence de droits d’usage INF841 - OS - 2010 page 98

Unix file access: example
¢  Assume looking for /usr/dep/titi

1" ."
1" .."
4" bin"

6" usr"

6" ."
1" .."

26" dep"

26" ."
6" .."

60" titi"

132
...

... 406

...

2348

...

...

Root directory" I-node 6"
contents:"
points to block 26 "

contents of block 132
on which directory /usr

is stored"

contents of block 406
on which directory "
/usr/dep is stored"

contents of block 2348
on which file /usr/dep/

titi is stored"

I-node 26"
contents:"
points to block 406 "

I-node 60"
contents:"
points to block 2348 "

Licence de droits d’usage INF841 - OS - 2010 page 99

Operating systems module

4. Files
4.2. Logical organization

Licence de droits d’usage INF841 - OS - 2010 page 100

Unix directory tree

¢  /dev: device files (note that under unix devices are considered as files)
¢  /etc: management files such as passwd, group, hosts
¢  /bin and /usr/bin: shell commands
¢  /usr/include: header files (.h)
¢  /var/spool/mail: for mail
¢  /tmp: a useful directory to which anyone may write

etc"

root"

bin" usr" dev"

users"

martin" dupont"

toto" toto"

Licence de droits d’usage INF841 - OS - 2013 page 101

File structure and file access under Unix
¢  Under Unix a file is a sequence of bytes with no other structure
•  It is ended by a special EOF (End Of File) character
•  Advantage:

-  Small, portable system
-  Universal: all files and devices are managed in the same way

•  Drawback:
-  Many functions to be written by the user when more complex file access

schemes are needed
¢  Sequential access
•  Used by default: the access functions (read, write) use a cursor that

is moved each time an access is performed.
¢  Direct or random access
•  Can be performed using functions such as lseek that can be used to

explicitly move the cursor to the desired position.

Licence de droits d’usage INF841 - OS - 2013 page 102

Access rights
¢  Upon file creation:
•  the file inherits the UID and GID of the file owner (as specified in /etc/

passwd).
•  In the i-node, the access rights are set using the umask found in the

owner’s environment.
¢  The access rights are coded over 9 bits
¢  Example 1:
•  A file with rights rw- r-- ---
•  Can be read and written by the owner and can be read by members of

the same group.
¢  To change a file access rights use ‘chmod’ that has two « modes »
•  chmod 644 file !

-  Gives read/write access to the user, and read access to group and other
•  chmod g+w file!

-  Adds ‘write’ access to the group.

user group others

 rwx rwx rwx

Licence de droits d’usage INF841 - OS - 2013 page 103

Access rights (2)

Example 2: making a directory private

 mkdir private
 chmod 711 private

 cd private

 mkdir dir1

 chmod 755 dir1
No one (other than the owner) can read private (through ls) everybody
can access dir1 (cd dir1).
NB You need the ‘x’ right to execute ‘cd’, and the ‘r’ right to execute ‘ls’

 chmod a+x toto
 chmod –R 755 dir-name/

Licence de droits d’usage INF841 - OS - 2013 page 104

Standard files

High
level

Low level
(descriptor)

Default

Standard
input

 stdin 0 keyboard

Standard
output

stdout 1 screen

Error output stderr 2 screen

Licence de droits d’usage INF841 - OS - 2010 page 105

Operating systems module

4. Files
4.3. C input/output library

Licence de droits d’usage INF841 - OS - 2013 page 106

C input/output library
¢  2 libraries are available
•  Low level (open, read, write, etc)
•  High level (fopen, fread, fwrite, etc)

¢  File access: associate a file local name to a file global name:
•  Low level:

-  a file descriptor is used.
-  It is an integer value returned by the ‘open’ call.
-  It corresponds to an index in the table where the list of open files is

maintained.
•  High level:

-  A FILE pointer is used
-  It is returned by the ‘fopen’ call.
-  It is a pointer to a file structure describing the file (FILE *)

¢  We now focus on the low level library

Licence de droits d’usage INF841 - OS - 2013 page 107

Opening a file
¢  Before accessing a file you need to ‘open’ it:

 int desc
 ...
 desc=open(“ toto ”, O_RDWR);
 if(desc == -1)
 {
 perror(“ open toto ”);
 exit(1)
 }
¢  An entry is created in the table corresponding to the opened files.
¢  ‘desc’ is the index (descriptor) of the newly created file in the table
¢  O_RDWR: Open for reading (RD) and writing (WR)
¢  If the file does not exist, it is created.

¢  File creation: int creat(char *nom, int mode);
¢  ‘mode’ denotes the file access rights.

Licence de droits d’usage INF841 - OS - 2013 page 108

Reading, writing, closing
int write(int filуdesс, char *buffer, unsigned nbyte)
int read(int filуdesс, char *buffer, unsigned nbyte)

int close(int filуdesс)

Example
int main (void)
{
 int MyFile, Ret_Read, Ret_Write;
 char MyArray [512] ;
 MyFile= open ("toto", O_RDONLY) ;
 if (MyFile== -1)
 {
 perror ("open");
 •••
 }
 while((Ret_Read = read (MyFile, MyArray, 512)) > 0)
 {
 •••
 Ret_Write = write(1, MyArray, Ret_Read);
 if (Ret_Write == -1)
 { /* error processing */ };
 }
 close (MyFile) ;
}

Licence de droits d’usage INF841 - OS - 2013 page 109

Moving the cursor
¢  A cursor keeps track of the byte last read or written
¢  To move the cursor: ‘lseek’
¢  long lseek(int fildes, long offset, int from)

¢  ‘from’
•  0, from beginning of file
•  1 from current position
•  2 from the end of file

¢  Lseek returns:
•  cursor value
•  -1 if error.

Licence de droits d’usage page 110

Other I/O functions not detailed here

¢  Character mode: getc, putc, getchar, putchar
¢  Formatted I/O: scanf, printf, fscanf, fprintf, sscanf, sprintf
¢ 

INF841 - OS - 2013

Licence de droits d’usage page 111

Synchronizing file accesses

¢ To lock
•  lockf(filedesc, F_LOCK, nb_octets)
•  locks the nb_octets following the current cursor position

(use lseek if need to set the cursor)
¢ To unlock
•  lockf(filedesc, F_ULOCK, nb_octets)
•  unlocks the nb_octets following the current cursor position

(use lseek if need to set the cursor)

¢  If nb_octets=0 locks/unlocks all file (recommended)

INF841 - OS - 2013

Licence de droits d’usage page 112

Synchronizing file accesses (2)

 lseek(sortie, 0, 0);
 ilock=lockf(sortie, F_LOCK, 0);
 printf(“Proc %d entering critical section\n”, (int)getpid());
 /* begin critical section */
 ...
 /* end critical section */
 lseek(sortie, 0, 0);
 ilock=lockf(sortie, F_ULOCK, 0);
 printf(“Proc %d exited critical section\n”, (int)getpid());

INF841 - OS - 2013

Licence de droits d’usage

Operating systems module

4. Files
4.4. Using pipes

INF841 - OS - 2013

Licence de droits d’usage INF841 - OS - 2013 page 114

Pipes
¢  Pipes are a special type of producer/consumer files
¢  A standard pipe
•  is declared using the ‘pipe’ call
•  used by processes with a common ancestor
•  unidirectional (bidirectional on Unix System V)

¢  A named pipe
•  Is declared using the ‘mknod’ call
•  It can be accessed by any process who knows its name and have the

proper access rights.
parent"

pipe"

fork"

P"
I"
P"
E"

Parent creates a pipe!

Parent creates a child!

child"

Licence de droits d’usage page 115

Using standard pipes
int main(void)
{
 int Ret_fork, Pipe[2], State;
 char c;
 pipe(Pipe);
 Ret_fork=fork();
 if (Ret_fork!=0)
 {
 close(Pipe[0]);
 printf(“send characters!\n”);
 while((c=getchar())!=EOF)
 write(Pipe[1], &c, 1);
 wait(&State);
 }
 if (Ret_fork == 0)
 {
 printf(“Child ready to read.\n”);
 close(Pipe[1]);
 while(read(Pipe[0], &c, 1))
 printf(“characters received=%c\n”, c);
 exit(0);
 }
}

INF841 - OS - 2013

Licence de droits d’usage page 116

Using named pipes
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

int main(int nb_arg, char **argv)
{
 int Ret_mknod;
 if (nb_arg!=2)
 {
 printf(“argument was expected”);
 exit(1);
 }

 /* create a named pipe accessible by everybody */
 Ret_mknod=mknod(argv[1], S_IFIFO|0666, 0)
 if (Ret_mknod!=0)
 {
 perror(“mknod”);
 exit(1);
 }
 printf(“Pipe %s created.\n”, argv[1]);
 ...
}

INF841 - OS - 2013

Licence de droits d’usage INF841 - OS - 2013 page 117

Using pipes from the shell

¢  Examples
•  ps -ax | grep dupont
•  ypcat passwd | grep isabelle

Licence de droits d’usage INF841 - OS - 2013

Operating systems module

4. Files
4.5. Useful commands

cp, mv, rm, ln

Licence de droits d’usage INF841 - OS - 2013 page 119

 cp command
¢  Assume that, from his home directory, user dupont types:

 cp f1 f2!

util"

martin"dupont"

f1" g1"

29 .
12 ..
50 f1

dupont directory!

BEFORE"

AFTER"util"

martin"dupont"

f1" g1"f2"

29 .
12 ..
50 f1
62 f2

Licence de droits d’usage page 120

 mv command
¢  Assume that, from his home directory, user dupont types:

 mv f2 f50!

dupont directory!

BEFORE"

AFTER"
util"

martin"dupont"

f1" g1"f50"

29 .
12 ..
50 f1
62 f2

util"

martin"dupont"

f1" g1"f2"

29 .
12 ..
50 f1
62 f50

INF841 - OS - 2013

Licence de droits d’usage INF841 - OS - 2013 page 121

 ln command
¢  Assume that, from his home directory, user martin types:

 ln ../dupont/f50 g2!

 dupont dir!

BEFORE"

AFTER"

29 .
12 ..
50 f1
62 f50

util"

martin"dupont"

f1" g1"f50"

38 .
12 ..
47 g1

martin dir!

util"

martin"dupont"

f1" g1"f50"

g2" dupont dir!

29 .
12 ..
50 f1
62 f50

38 .
12 ..
47 g1
62 g2

martin dir!

File not duplicated; link counter incremented by one !

Licence de droits d’usage INF841 - OS - 2013 page 122

 ln –s command: symbolic link
¢  This command creates a new file that contains the input string
¢  The created file is of type ‘l’ (linked file)
¢  Example
•  ln –s ../dupont/f50 g3
•  creates in dupont a new file named ‘g3’ containing ‘../dupont/f50’

¢  ‘g3’ is a pointer to f50
¢  Watch out:
•  If dupont types

-  mv f50 f60
•  Then cat g3 will return ‘file not found’

> ls -l!
> -rw-r--r-- 2 martin staff 31 Sep 25 11:11 g2!
> lrwxr-xr-x 1 martin staff 20 Sep 25 11:20 g3->../dupont/f50!

Licence de droits d’usage INF841 - OS - 2013 page 123

 ln –s command
¢  Assume that, from his home directory, user martin types:
•  ln –s ../dupont/f50 g3 BEFORE"

AFTER"util"

martin"dupont"

f1" g1"f50"

g2" dupont dir!

29 .
12 ..
50 f1
62 f50

martin dir!

Contents of g3 file is ../dupont/f50

util"

martin"dupont"

f1" g1"f50"

g2" dupont dir!

29 .
12 ..
50 f1
62 f50

38 .
12 ..
47 g1
62 g2

martin dir!

g3"

38 .
12 ..
47 g1
62 g2

101 g3

Licence de droits d’usage INF841 - OS - 2013 page 124

 rm command
¢  rm /util/martin/g1

BEFORE"

AFTER"

util"

martin"dupont"

f1" g1"f50"

g2"

 dupont dir!

29 .
12 ..
50 f1
62 f50

martin dir!

Zeros the i-node reference of g1

 dupont dir!

29 .
12 ..
50 f1
62 f50

martin dir!g3"

38 .
12 ..
47 g1
62 g2

101 g3

util"

martin"dupont"

f1" f50"

g2"

g3"

38 .
12 ..
0 g1

62 g2

101 g3

Licence de droits d’usage page 125

Operating Systems Module

 5. Memory Management

5.1. Definitions and concepts

INF841 - OS - 2013

Licence de droits d’usage INF841 - OS - 2013 page 126

Definition
¢  Memory is an array of cells each having an address.
¢  The memory manager is in charge of memory allocation to the operating

system and to runing processes.
¢  Memory access (read/write):
•  Put address on address bus
•  Place read/write order on control bus
•  Wait if writing (latency)
•  Read/write data from/to data bus

processor" memory" input/output"

Data bus!
Control bus!

@ bus!

Licence de droits d’usage INF841 - OS - 2013 page 127

Memory access
¢  If the cell has m bits (Binary digIT), each cell can encode 2m values.
¢  m: data bus width
¢  n: address bus width

0"

1"

2n-1"

address!

n bits"

address!

m bits"

data!

Read/write command!

m bits wide cells!

Licence de droits d’usage INF841 - OS - 2013 page 128

Memory Hierarchy

Registers

Caches

(Main) Memory

Disk

Magnetic Tape

Access Time Capacity

Licence de droits d’usage INF841 - OS - 2013 page 129

Memory management
¢  Logical and physical memory organization
¢  Loading / Relocation:
•  Programmer does not know where the program will be placed in memory when

executed
•  During execution, a program may be swapped to disk and returned to main

memory at a different location (relocated)
•  Memory references must be translated to actual physical memory address

¢  Protection:
•  Processes should not be able to reference memory locations in another

process without permission
•  Must be checked during execution

-  Impossible to check absolute addresses in programs since the program could be
relocated

-  Operating system cannot anticipate all of the memory references a program will make
¢  Sharing:
•  Allow several processes to access the same portion of memory
•  Better to allow access to the same copy rather than have many replicas of the

same program.

Licence de droits d’usage INF841 - OS - 2013 page 130

Binding of Instructions and Data to Memory
Address binding of instructions and data to memory addresses can
happen at three different stages.
¢  Compile time:
•  if memory location known a priori, absolute code can be generated;
•  must recompile code in case of location changes

¢  Load time:
•  must generate relocatable code if memory location is not known at

compile time
¢  Execution time:
•  binding delayed until run time if the process can be moved during its

execution
•  need hardware support for address maps (e.g., base and limit

registers).

Licence de droits d’usage INF841 - OS - 2013 page 131

Dynamic relocation using a relocation register

CPU" Memory"

Memory
Management
Unit (MMU)"

1200"

Relocation"
Register"

Logical
(relocatable)

address!

17" 1217"

Physical !
(absolute)!
address!

Licence de droits d’usage INF841 - OS - 2013 page 132

Swapping
¢  A process can be swapped temporarily out of memory to a backing store, and

then brought back into memory for continued execution.
¢  Backing store
•  fast disk large enough to accommodate copies of the memory images for all

users;
•  must provide direct access to these memory images.

Operating system"

User space"

Process 1"

Process 2"

1: swap out "

2: swap in "

memory"
Backing store"

Licence de droits d’usage INF841 - OS - 2013 page 133

Basic memory organization
¢  Main memory usually into two partitions:
•  Resident operating system, usually held in low memory with interrupt

vector.
•  User processes then held in high memory.

¢  Single-partition allocation
•  Relocation-register scheme used to protect user processes from each

other, and from changing operating-system code and data
•  Base (or relocation) register contains value of smallest physical

address
•  Bounds (or limit) register specifies the size of the range of logical

addresses

Licence de droits d’usage INF841 - OS - 2013 page 134

Dynamic relocation and
protection

Process "
control block"

Program"

Data"

Stack"

Base register"

Bounds register"
comparator"

adder"

Absolute!
address!

System trap (interrupt) if limit exceeded"

Relative!
address!

Licence de droits d’usage INF841 - OS - 2010 page 135

Dynamic Code Loading

¢  Routine is not loaded until it is called
¢  Better memory-space utilization; unused routines are never loaded.
¢  Useful when large amounts of code are needed to handle rarely occurring

cases.
¢  No special support from OS
¢  Implemented through program design.

Licence de droits d’usage INF841 - OS - 2013 page 136

Dynamic Code Linking

¢  Linking postponed until execution time.
¢  Small piece of code, stub, used to locate the appropriate memory-

resident library routine.
¢  Stub replaces itself with the address of the routine, and executes the

routine.
¢  OS needs to check if routine is already in processes’ memory space. If

not, the routine is loaded.
¢  Dynamic linking is particularly useful for sharing libraries and library

updates.

Licence de droits d’usage INF841 - OS - 2013 page 137

Operating systems module

5. Memory Management

5.2. Memory partitioning
Contiguous allocation

Licence de droits d’usage INF841 - OS - 2013 page 138

Memory Partitioning Schemes

¢  Monoprogramming (no swapping)
•  One process in memory at a time

¢  Fixed-size partitioning: partitioning is done in advance
•  Multiprogarmming bounded by the number of partitions (MFT -

Multiprogramming with a Fixed number of Tasks)
•  A process must be loaded into a partition of equal or greater size => unused

space in a partition cannot be claimed by another process
 => internal fragmentation

¢  Variable-size partitioning (MVT - Multiprogramming with Variable number of
Tasks)
•  Leftovers may be of no use (even though there is enough total space to satisfy

a request)
 => external fragmentation

Licence de droits d’usage INF841 - OS - 2013 page 139

Fixed-size partitioning
¢  Equal-size partitions
•  any process whose size is less than or equal to the partition size can

be loaded into an available partition
•  if all partitions full, the OS can swap a process out
•  a program may not fit in a partition (must be designed with overlays)

¢  Main memory use is inefficient.
•  Any program, no matter how small, occupies an entire partition

(internal fragmentation)
¢  Placement Algorithm with Partitions
•  Equal-size partitions

-  it does not matter which partition is used
•  Unequal-size partitions

-  assign each process to the smallest partition within which it fits
-  queue for each partition
-  processes assigned to minimize wasted memory within a partition

Licence de droits d’usage INF841 - OS - 2013 page 140

Variable-size partitions
¢  Holes (blocks) of available memory of various size scattered throughout memory

(external fragmentation)
¢  When a process arrives, allocate memory in a hole large enough
¢  OS maintains information about:
•  allocated partitions
•  free partitions (holes)

¢  May use compaction to shift processes’ partitions so they are contiguous
•  all free memory is in one block

OS"

process 5"

process 8"

process 2"

OS"

process 5"

process 2"

OS"

process 5"

process 2"

process 9"

OS"

process 9"

process 2"

OS"

process 9"

process 2"

Licence de droits d’usage INF841 - OS - 2013 page 141

Variable-size partitioning:
Dynamic Storage-Allocation Strategies

Memory

New Job
Where ??

¢ First fit: allocate the first hole large enough
¢ Next fit: same as first fit but start where finished last time
¢ Best fit: allocate the smallest hole big enough
¢ Worst fit: allocate largest hole

Licence de droits d’usage INF841 - OS - 2013 page 142

Performance of placement strategies
¢  First-fit
•  Fastest
•  Often many processes loaded in the front end that must be searched

over when trying to find a free block.
¢  Next-fit
•  Rather allocate a block of memory at the end of memory where the

largest block is found and broken up into smaller blocks
•  Compaction is required to obtain a large block at the end of memory
•  Slightly worse performance than first-fit

¢  Best-fit
•  The slowest!
•  Surprisingly, also more memory wasted (external fragmentation).

¢  Worst-fit
•  As slow as best-fit
•  Worst use of memory too (largest block is typically small)

Licence de droits d’usage INF841 - OS - 2013 page 143

Fragmentation
¢  External Fragmentation
•  total memory space exists to satisfy a request, but it is not contiguous.

¢  Internal Fragmentation
•  allocated memory may be slightly larger than requested memory; this

size difference is memory internal to a partition, but not being used.
¢  Reduce external fragmentation by compaction
•  Shuffle memory contents to place all free memory together in one large

block.
•  Compaction possible only if relocation is dynamic, and done at

execution time.

Anything else (better?) to fight external fragmentation?
¢  Non-contiguous address spaces: segmentation and paging

Licence de droits d’usage

Segmentation: generalized base-and-bounds

¢  Recall that address space is split into logical
segments:
•  Program code
•  Stack (position in the function call chain and local

variables)
•  Heap (dynamically allocated memory)

¢  Maintain a separate base-and-bounds register per
segment
•  Segment base and segment bounds

¢  Still not general enough…

INF841 - OS - 2013 page 144

Program"

Heap"

(free)"

Stack"

Licence de droits d’usage INF841 - OS - 2013 page 145

Operating systems module

5. Memory Management

5.3. Memory virtualization: paging

Licence de droits d’usage INF841 - OS - 2013 page 146

Virtual Memory

¢  Virtual memory is the OS abstraction that gives the programmer the
illusion of an address space that may be larger than the physical address
space

¢  Most commonly implemented using paging
¢  Motivated by:
•  Convenience:

-  No need to care about the actual amount of physical memory
•  Higher degree of multiprogramming:

-  (parts of) processes are loaded on demand

Licence de droits d’usage INF841 - OS - 2013 page 147

Virtual Memory: Paging

¢  Physical memory divided into equal-sized
frames, logical (virtual) memory into pages,
power of 2 bytes (512, 1024, 8192)

¢  OS keeps track of all free frames.
¢  To run a process of n pages, need to find n

free frames, not necessarily contiguous
¢  Larger pages: more internal fragmentation.
¢  Page table translates logical to physical

addresses.
•  maintained by OS, one per process
•  one-to-one page-frame mapping
•  memory address = page number + offset

within the page

?

Memory

VM

frame
page

Licence de droits d’usage INF841 - OS - 2013 page 148

Paging: Address Translation
¢  Address generated by CPU is divided into:
•  Page number (p) – used as an index into a page table which contains base

address of each page in physical memory.
•  Page offset (d) – combined with base address to define the physical memory

address that is sent to the memory unit.

CPU p d

p

f

f d

f frames

d

page table memory

virtual address

physical address

Licence de droits d’usage INF841 - OS - 2013 page 149

Paging Example

Licence de droits d’usage INF841 - OS - 2013 page 150

Where to Store Address Space?
¢  Virtual address space may be larger than physical memory
¢  Where do we keep it?
•  On the next device down our storage hierarchy.

Memory

VM

Disk

Licence de droits d’usage INF841 - OS - 2013 page 151

Where to Store Page Table?
¢  Where do we keep the page table?
•  In memory …

OS

P0 (code,data,…)

(free)

P1 (code,data,…)

P2 (code,data,…)

P1 Page Table

P0 Page Table

(free) P2 Page Table

Licence de droits d’usage

Paging: two problems
¢  Page lookups take too slow, per memory reference:
•  extra memory reference (in the page table)
•  extra calculation to compute the physical address
•  slows down each process by two or more!

¢  Page tables (PT) grow too big:
•  32-bit address space
•  4KB (212) page size
•  4 byte page-table entry (PTE)
•  Roughly 1 million (232/212) pages
•  4MB page table
•  100 processes
•  400MB only for page tables!

INF841 - OS - 2013 page 152

Licence de droits d’usage INF841 - OS - 2013 page 153

Paging: faster translation

¢  Use caching for popular page-frame translations
•  Cache for page table entries is called the Translation-Lookaside Buffer (TLB)
•  Typically fully associative
•  Relatively small number of entries (e.g., 64 entries)

¢  On every memory access, first look for the page-frame mapping in the TLB
¢  Works thanks to temporal locality!

CPU p d

f d

f frames

d

TLB

memory

virtual address

physical address

p/f

f

Licence de droits d’usage INF841 - OS - 2013 page 154

TLB Miss

¢  What if the TLB does not contain the right PT entry?
•  TLB miss
•  Evict an existing entry if does not have any free ones

-  Replacement policy: Least-Recently-Used (LRU), random,…
•  Bring in the missing entry from the PT

¢  TLB misses can be handled in hardware or software
•  Software allows application/OS to assist in replacement decisions

Licence de droits d’usage INF841 - OS - 2013 page 155

Paging: handling the page-table size

¢  Solution one: combine segmentation and paging
•  Address space is typically sparsely used
•  So why keeping the PTE in the table?
•  One page table for each segment (contiguously used) of

the address space

¢  Solution two: inverted page tables (one entry per physical
frame)
•  no separate page table per process
•  map each frame to (PID,page)
•  lookups are challenging: done via hash tables

¢  Solution three: multi-level paging

Program"

Heap"

(free)"

Stack"

Licence de droits d’usage INF841 - OS - 2013 page 156

Paging: two-level page tables

¢  Page the page tables: the PT is not allocated contiguously
¢  More efficient use of memory but two lookups per memory reference

Page
Table

Master
PT

2nd-Level
PTs

P1 PT

P0 PT

Kernel PT
Non-page-able

Page-able

OS Segment

Licence de droits d’usage INF841 - OS - 2013 page 157

What if virtual memory > physical memory?

¢  If address space of each process is ≤ size of physical memory, then no
problem
•  Still need to deal with fragmentation

¢  When virtual memory gets larger than physical memory
•  Partially stored in memory
•  Partially stored on disk

¢  Again we have to deal with misses: page misses

Licence de droits d’usage INF841 - OS - 2013 page 158

Demand Paging
¢  To start a process (program), just load the code page where the process

will start executing
¢  As process references memory (instruction or data) outside of loaded

page, bring in as necessary
¢  How to represent fact that a page is not yet in memory?

0
1
2

1 v
i
i

A

B

C

0

1

2
3

A

0

1

2

B

C

VM

Page Table Memory Disk

Licence de droits d’usage INF841 - OS - 2013 page 159

Page Fault
¢  What happens when process references a page marked as invalid in the

page table?
•  Page fault exception
•  Check that reference is valid
•  Find a free memory frame
•  Read desired page from disk
•  Change valid bit of page to v
•  Restart instruction that was interrupted by the exception

¢  What happens if there is no free frame?

Licence de droits d’usage INF841 - OS - 2013 page 160

Cost of Handling a Page Fault
Check page table, find free memory frame (or find victim) … about 200 -
600 µs
Disk seek and read … about 10 ms
Memory access … about 100 ns

¢  Page fault degrades performance by a factor of 100000!!!!!
•  And this doesn’t even count all the additional things that can happen

along the way

¢  Avoid page faults at all cost! J
•  If want no more than 10% degradation, can only have 1 page fault for

every 1,000,000 memory accesses
•  And this is up to the OS: page replacement policy

Licence de droits d’usage INF841 - OS - 2013 page 161

Page Replacement

¢  What if there’s no free frame left on a page fault?
Free a frame that’s currently being used

1.  Select the frame to be replaced (the victim)
2.  Write the victim back to disk
3.  Mark the victim as invalid in the PT
4.  Read the desired page into the freed frame
5.  Mark the page as valid
6.  Restart failed instruction

¢  Optimization:
do not need to write victim back if it has not been modified (check the
dirty bit of the page)

¢  How do we choose the best victim in order to minimize the page fault
rate?

Licence de droits d’usage INF841 - OS - 2013 page 162

Optimal Page Replacement
¢  Suppose we only have 3 memory frames
¢  Suppose we know the access pattern in advance

•  7, 0, 1, 2, 0, 3, 0, 4, 2, 3

¢  Optimal algorithm is to replace the page that will not be used for the
longest period of time
•  What’s the problem with this algorithm?

¢  Realistic policies try to predict future behavior on the basis of past
behavior
•  Use of temporal locality again

Licence de droits d’usage INF841 - OS - 2013 page 163

FIFO

¢  First-in, First-out
•  Be fair, let every page live in memory for about the same amount of

time.
¢  What’s the problem?
•  Is this compatible with what we know about behavior of programs?

¢  How does it do on our example?
•  7, 0, 1, 2, 0, 3, 0, 4, 2, 3

Licence de droits d’usage INF841 - OS - 2013 page 164

Belady's anomaly: FIFO replacement
Assume 3 frames and the following page access sequence: 012301401234

Frame 1: 0 3 3 3 4 4 4
Frame 2: 1 1 0 0 0 2 2
Frame 3: 2 2 2 1 1 1 3
Page faults: 3 0 1 4 2 3
-> 9 page faults (3 to initially fill memory then 6)

If 4 free frames:
Frame 1 : 0 4 4 4 4 3 3
Frame 2 : 1 1 0 0 0 0 4
Frame 3 : 2 2 2 1 1 1 1
Frame 4 : 3 3 3 3 2 2 2
Virtual page fault: 4 0 1 2 3 4
-> 10 page faults (4 to initially fill memory then 6)

More memory, more page faults !!!

the page request order is an important factor
not just the size of memory

Licence de droits d’usage INF841 - OS - 2013 page 165

Fixing the anomaly: stack algorithms
¢  Least Frequently Used (LFU) Replacement
•  Have a reference bit (set whenever the page is referenced) and

(software) counter for each page frame
•  At each clock interrupt, the OS adds the reference bit to the counter

and then clears the reference bit
•  When need to evict a page, choose frame with lowest counter
•  No notion of time: may be hard to evict a page referenced long time

ago
¢  Least Recently Used (LRU) Replacement
•  On referencing a page, timestamp it
•  When need to evict a page, choose the one with the oldest timestamp

-  What’s the motivation here?
-  Is LRU optimal?
-  In practice, LRU is quite good for most programs

•  Is it easy to implement?

Licence de droits d’usage INF841 - OS - 2013 page 166

LRU approximation:
Second-Chance (Clock) Algorithm

¢  Arrange physical pages in a circle (with a “clock hand”)
¢  Hardware keeps a use bit (reference bit) per page, set each time the

page is referenced
•  If use bit is not set, the frame has not been used for a while

¢  On page fault:
1.  Advance clock hand
2.  Check use bit

-  If 1, has been used recently, clear and go on
-  If 0, this is our victim

¢  Can we always find a victim? At what cost?

Licence de droits d’usage INF841 - OS - 2013 page 167

LRU Approximation:
Nth-Chance Algorithm

¢  Similar to Clock except:
•  maintain a counter in addition to the use bit

¢  On page fault:
1.  Advance clock hand
2.  Check use bit

-  If 1, clear and set counter to 0
-  If 0, increment counter, if counter < N, go on, otherwise, this is our

victim
¢  What’s the problem if N is too large?

Licence de droits d’usage INF841 - OS - 2013 page 168

Page Replacement summary

¢  FIFO suffers from Belady’s anomaly

¢  LRU avoids Belady’s anomaly
•  Exploits locality of reference

¢  But while it works well, it is hard to implement in software
•  Aging and various clock algorithms are the most common in practice

Licence de droits d’usage INF841 - OS - 2013 page 169

References

¢  “Operating Systems”, William Stallings, Prentice Hall, 4th ed. 2001, Chapter 7,
http://williamstallings.com/OS4e.html

¢  Lectures notes from the text supplement by Siberschatz and Galvin, Modified by
B. Ramamurthy, Chapter 8

Licence de droits d’usage INF841 - OS - 2013 page 170

Operating Systems Module

 7- Conclusion, bibliography and on-line resources

Licence de droits d’usage

So what did we learn?

OS is a virtual machine and resource manager

¢  Virtualization
•  CPU: processes and scheduling
•  Memory: relocation, segmentation and paging

¢  Concurrency
•  TASs, locks, semaphores,…

¢  Persistent storage
•  file system

¢  ‘In allocating resources, strive to avoid disaster, rather than to attain the

optimum.’
 Bulter Lampson, "Hints for Computer System Design"

INF841 - OS - 2013 page 171

Licence de droits d’usage INF841 - OS - 2013 page 172

Useful URLs
¢  See « site pédagogique » INF841

¢  University of Surrey, Unix tutorial:
Unix for beginners”: http://www.infres.enst.fr/~demeure/SiteCSIC/UNIX
TUTORIAL/index.html

¢  Mark Burgess, A short introduction to operating systems, October 3,
2001: http://www.iu.hio.no/~mark/os/os.html

¢  Eric Steven Raymond, The Art of Unix Programming:
http://catb.org/~esr/writings/taoup/html/

¢  Advanced Linux Programming:
http://www.advancedlinuxprogramming.com/alp-folder“

¢  Memory Management Reference: www.memorymanagement.org

Licence de droits d’usage INF841 - OS - 2010 page 173

Operating systems books
¢  Siberschatz, Galvin, Gagne. Operating Systems Concepts, 7th edition,

Wiley, 2005
¢  Tannenbaum, Modern Operating Systems, 2nd edition, Prentice-Hall,

2001
¢  Nutt, Operating Systems: A Modern Perspective, 2nd edition, Addison-

Wesley (2002),
•  includes material on windows

¢  Bach, Maurice J. The Design Of The Unix Operating System. Prentice
Hall, Software Series, 1986
•  Ins and out s of linux

¢  Operating Systems”, William Stallings, Prentice Hall, 4th ed. 2001,
http://williamstallings.com/OS4e.html

Licence de droits d’usage

More:
¢  Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau, Operating

Systems: Three Easy Pieces, 2013.
http://pages.cs.wisc.edu/~remzi/OSTEP/
•  OS lecture notes, very much in preparation, but very easy read

¢  M. Herlihy, N. Shavit. The art of multiprocessor programming. Morgan
Kaufman, 2008.
•  Concurrency with and without locks. Excellent combination of details

and intuition.

INF841 - OS - 2013 page 174

