Robust Cortical Learning

- **Goals:** Explore the potential of "cortical learning" to tolerate failures and asynchrony of communication.
- Tools: Logic, algorithmic reasoning, programming
- **Prerequisites:** basic knowledge of distributed algorithms and neural computation, basic concurrent programming skills, curiosity and persistence

Summary

The goal of this interdisciplinary project is to explore computational mechanisms of learning in the brain. In the conventional *neuronal* model [4], the cortex is represented as a large random graph of *neuroids* (abstract neuron-like automata) connected via directed edges called *synapses*. Communication between neuroids is bound to be *vicinal*: a neuroid *fires* if the sum of potentials of all firing neuroids with synapses to it exceed a specific theshold. In this model, the problem *unsupervised learning* consists in memorizing an *input pattern* $x \in \{0, 1\}^n$, i.e., associating x with a hierarchical structure in the cortex and a top-level pattern I(x) so that (1) for all $x \neq y$, $I(x) \neq I(y)$ and (2) whenever x fires, I(x) fires too.

It has been argued that learning can be implemented with simple primitives [2, 3, 5], such asLINK, JOIN and PJOIN. For example, if two items A and B are already represented in the neural system, the primitive JOIN(A, B) modifies its structure so that a new item C will fire whenever representations of A and B fire. This way massively distributed cortical computation can be viewed as a composition of simple sequential primitives, which can be implemented in the vicinal way.

This project intends to extend this approach to *fault-prone* in which neuroids or synapses are subject to failures, which may affect the process of learning. Pursuing this goal may require reconsidering existing models of cortical computations, analyzing alternative proposals [1], and deriving new algorithms for *robust* (fault-tolerant) learning.

Contact

This is a joint project between Télécom ParisTech and UPMC.

Petr Kuznetsov http://www.infres.enst.fr/~kuznetso/ petr.kuznetsov@telecom-paristech.fr INFRES, Télécom ParisTech

Denis Sheynikhovich http://www.aging-vision-action.fr/people/denis-sheynikhovich/ denis.sheynikhovich@upmc.fr Vision Institute Aging in Vision and Action Lab CNRS INSERM University Pierre&Marie Curie

References

- E. M. E. Mhamdi and R. Guerraoui. When neurons fail. In 2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, May 29 - June 2, 2017, pages 1028–1037, 2017.
- [2] C. H. Papadimitriou and S. Vempala. Cortical learning via prediction. In Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, pages 1402– 1422, 2015.
- [3] C. H. Papadimitriou and S. S. Vempala. Cortical computation. In PODC, pages 1–2, 2015.
- [4] L. G. Valiant. *Circuits of the mind*. Oxford University Press, 1994.
- [5] L. G. Valiant. Memorization and association on a realistic neural model. Neural Computation, 17(3):527555, 2005.