
Distributed Computing in Shared
Memory and Networks 

 
Class 3: Fault-Tolerant Distributed Services  

Paxos, BFT, Blockchains

WEP 2018
KAUST

	

2 ©	2012	P.	Kuznetsov		

So far…

Shared-memory computing:
§  Wait-freedom and linearizability
§  Lock-based and lock-free synchronization
§  Consensus and universality

3 ©	2012	P.	Kuznetsov		

Message-passing

§  Consider a network where every two
processes are connected via a reliable
channel
ü no losses, no creation, no duplication

§  Which shared-memory results translate into
message-passing?

§  Implementing a distributed service

4 ©	2012	P.	Kuznetsov		

Implementing message-passing

Theorem 1 A reliable message-passing
channel between two processes can be
implemented using two one-writer one-reader
(1W1R) read-write registers

Corollary 1 Consensus is impossible to solve in
an asynchronous message-passing system if
at least one process may crash

5 ©	2012	P.	Kuznetsov		

ABD algorithm:  
implementing shared memory

Theorem 2[ABD] A 1W1R read-write register
can be implemented in a (reliable) message-
passing model where a majority of processes
are correct

6

Implementing a 1W1R register
Upon write(v)
t++
send [v,t] to all
wait until received [ack,t] from a majority
return ok

Upon read()
r++

 send [?,r] to all
wait until received {(t’,v’,r)} from a
majority
return v’ with the highest t’

©	2012	P.	Kuznetsov		

7

Implementing a 1W1R register, contd.
Upon receive [v,t]
if t>ti then

vi := v
ti := t
send [ack,t] to the writer

Upon receive [?,r]
send [vi,ti,r] to the reader

©	2012	P.	Kuznetsov		

8 ©	2012	P.	Kuznetsov		

A correct majority is necessary
Otherwise, the reader may miss the latest written value

The quorum (set of involved processes) of any write
operation must intersect with the quorum of any read
operation:

W	writes	v	 R	reads	v	

9

How to build  
a consistent and reliable system?

Service accepts requests
from clients and returns
responses

§  Liveness: every persistent
client receives a response

§  Safety: responses
constitute a total order
w.r.t. the service’s
sequential specification

Service

Clients

debit($100) ok

10

How to build a fault-tolerant system?

Replication:

§  Service = collection of
servers

§  Some servers may fail

Service

Clients

debit($100) ok

11

“CAP theorem” [Brewer 2000]
No system can combine:
§  Consistency: all servers observe the same

evolution of the system state
§  Availability: every client’s request is eventually

served
§  Partition-tolerance: the system operates

despite a partial failure or loss of
communication

Sounds familiar, no?

©	2017	P.	Kuznetsov		

12

Strongly consistent  
replicated state machine

Universal construction in message-passing:
§  Clients access the service via a standard

interface
§  Servers run replicas of the (sequential)

service
§  (A subset of) faulty servers do not affect

consistency and availability

Leslie Lamport: The Part-Time Parliament.
ACM Trans. Comput. Syst. 16(2): 133-169
(1998)

©	2017	P.	Kuznetsov		

13

Paxos: some history
§  Late 80s: a three-phase

consensus algorithm
ü A Greek parliament reaching

agreement
§  1989: a Paxos-based fault-

tolerant distributed database
§  1990: rejected from TOCS

 “All three referees said that the
paper was mildly interesting, though
not very important, but that all the

Paxos stuff had to be removed.”

13	

14

 This submission was recently discovered behind a
filing cabinet in the TOCS editorial office.
Despite its age, the editor-in-chief felt that it
was worth publishing. Because the author is
currently doing field work in the Greek isles and
cannot be reached, I was asked to prepare it for
publication.
 The author appears to be an archeologist with
only a passing interest in computer science. This
is unfortunate; even though the obscure ancient
Paxon civilization he describes is of little
interest to most computer scientists, its
legislative system is an excellent model for how
to implement a distributed computer system in an
asynchronous environment.
…

Keith Marzullo
University of California, San Diego
(preface for the TOCS 1998 paper)

14	

15

Paxos today

§  Underlies a large number of practical system
when strong consistency is needed
ü Google Megastore, Google Spanner
ü Yahoo Zookeeper
ü Microsoft Azure
ü ….

§  ACM SIGOPS Hall of Fame Award in 2012
§  Turing award 2015

15	

16

Consensus: recall the definition

A process proposes an input value in V (|V|≥2) and tries to
decide on an output value in V

§  Agreement: No two process decide on different values
§  Validity: Every decided value is a proposed value
§  Termination: No process takes infinitely many steps without

deciding
(Every correct process decides)

17

Model

§  Asynchronous system
§  Reliable communication channels
§  Processes fail by crashing
§  A majority of correct processes

But we proved that 1-resilient consensus is
impossible even with shared memory!
“CAP theorem” is violated!

Where is the trick?

©	2017	P.	Kuznetsov		

18

Ω: an oracle
§  Eventual leader failure detector
§  Produces (at every process) events:

ü ‹Ω, leader, p›
ü We also write p=leader()

§  Eventually, all correct processes output the same
correct process as the leader

Can be implemented in eventually synchronous
system:

ü There is a bound on communication delays and
processing that holds only eventually

ü There is an a priori unknown bound in every run

19 ©	2011	P.	Kouznetsov		

Leader	election	Ω:	example	

There	is	a	time	after	which	the	same	correct	process	
is	considered	leader	by	everyone.	

(Sufficient	to	output	a	binary	flag	leader/not	leader)	

p1

p2

p3

p4

p1

p2

p4

p4

p2

p4

p1

p3

p1

p4

p3

p3

p3

p3

p3

p3

p3

20

Paxos/Synod algorithm

§  Let’s try to decouple liveness (termination)
from safety (agreement)

§  Synod made out of two components:
ü Ω - the eventual leader oracle
ü (ofcons) obstruction-free consensus

21

Obstruction-free Consensus (ofcons)
§  Similar to consensus

ü except for Termination
ü ability to abort

§  Request:
ü ‹ofcons, propose, v›

§  Indications:
ü ‹ofcons,decide, v’›
ü ‹ofcons,abort›

21	

22

Obstruction-free Consensus
§  C1. Validity:

ü Any value decided is a value proposed
§  C2. Agreement:

ü No two correct processes decide differently
§  C3. Obstruction-Free Termination:

ü If a correct process p proposes, it eventually
decides or aborts.

ü If a correct process decides, no correct process
aborts infinitely often.

ü If a single correct process proposes a value
sufficiently many times, p eventually decides.

22	

23

Consensus vs. OF-Consensus

cons

ofcons

25 11

54

25 25

25

25 11
abort

abort

24

Consensus vs. OF-Consensus

cons

ofcons

25 11

54

25 25

25

11
25 25

25

25

Consensus using Ω and ofcons
§  Straightforward

ü Assume that in cons everybody proposes

upon ‹cons, propose, v›
while not(decided)
 if self=leader() then

result = ofcons.propose(v)
if result=(decide,v’) then

return v’

26

Link to Paxos/Synod

§  External cons.propose events come in a state
machine replication algorithm as requests
from clients
ü As in universal construction

§  Focus now on implementing OFCons

27

OFCons
§  Not subject to FLP impossibility!
§  Can be implemented in fully asynchronous

system
ü Using the correct-majority assumption
ü Or read-write

§  Synod OFCons: a 2-phase algorithm

28

Synod OFCons I
Code of every process pi:

Initially:
ballot:=i-n; proposal:=nil; readballot:=0; imposeballot:=0;
estimate:= nil; states:=[nil,0]n

upon ‹ofcons, propose, v›
proposal := v; ballot:=ballot + n; states:=[nil,0]n

send [READ, ballot] to all

upon receive [READ,ballot’] from pj
if readballot ≥ ballot’ or imposeballot ≥ ballot’ then

send [ABORT, ballot’] to pj
else

readballot:=ballot’
send [GATHER, ballot’, imposeballot, estimate] to pj

upon receive [ABORT, ballot] from some process
return abort

29

Synod OFCons II
upon receive [GATHER, ballot, estballot, est] from pj

states[pj]:=[est,estballot]

upon #states ≥ majority //collected a majority of responses
if ∃ states[pk]≠[nil,0] then
 select states[pk]=(est,estballot) with highest estballot
 proposal:=est;
states:=[nil,0]n

send [IMPOSE, ballot, proposal] to all

upon receive [IMPOSE,ballot’,v] from pj
 if readballot > ballot’ or imposeballot > ballot’ then

 send [ABORT, ballot’] to pj
else

estimate := v; imposeballot:=ballot’
 send [ACK, ballot’] to pj

30

Synod OFCons III

upon received [ACK, ballot] from majority

send [DECIDE, proposal] to all

upon receive [DECIDE, v]

 send [DECIDE, v] to all

 return [decide, v]

31

Correctness
§  Validity

ü Immediate

§  Agreement (try to do it yourselves)
ü When is the decided value determined?

§  OF Termination
ü Show that a correct process that proposes either decides

or aborts
ü If a single process keeps going

●  It will eventually propose with a highest ballot number not seen so
far

●  This process will not abort with such a ballot number

32

Quiz 3.1
§  Does the ABD algorithm run by one writer and

multiple readers implement an atomic
(linearizable) register?

§  Prove that Synod satisfies Agreement:
ü No two processes decide differ

©	2017	P.	Kuznetsov		

33

Time Complexity
§  Fault-free time complexity: 4 message delays

+ 1 communication step for decision relaible
broadcast

§  Optimizations
ü Getting rid of the first READ phase

§  Allow a single process (presumed leader, say
p1) to skip the READ phase in its 1st ballot
ü Reduces fault-free/sync time complexity to 2

33	

34

From Synod to Paxos

§  Paxos is a state-machine replication (SMR) protocol
ü i.e., a universal construction given a sequential object

§  Implemented as totally-ordered broadcast: exports
one operation toBroadcast(m) and issues toDeliver(m’)
notifications

34	

35

From Synod to Paxos: TO-Broadcast

§  Every message m (to)broadcast by a correct process
pi is eventually (to)delivered by pi

§  Every message m delivered by a process pi is
eventually delivered by every correct process

§  No message is delivered unless it was previously
broadcast

§  No message is delivered twice
§  The messages are delivered in the same order at all

processes

Implies totally ordered (linearizable) execution of clients’
requests

35	

36

From Synod to Paxos

§  But consensus (Synod) is one shot…
ü How to most efficiently transform Synod to

toBroadcast (Paxos)?

§  Shared-memory universal construction?

36	

37

Paxos SMR
§  Clients initiate requests
§  Servers run consensus

ü Multiple instances of consensus (Synod)
ü Synod instance 25 used to agree on the 25th

request to be ordered
§  Both clients and servers have the (unreliable)

estimate of the current leader (some server)
§  Clients send requests to the leader
§  The leader replies to the client

37	

38 38

Paxos failure-free/sync message flow

S1 S1 S1

S2

Sn

.

.

.

C

S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.

ACK

READ GATHER

C

Read phase Impose phase

request
reply

IMPOSE

39

Observation
§  READ phase involves no updates/new

consensus proposals
ü Makes the leader catch up with what happened

before
§  Most of the time the leader will remain the

same
ü + nothing happened before (e.g., new requests)

39	

40

Optimization
§  Run READ phase only when the leader changes

ü and for multiple Synod instances simultaneously
§  Use the same ballot number for all future Synod

instances
ü run only IMPOSE phases in future instances
ü Each message includes ballot number (from the last

READ phase) and ReqNum, e.g., ReqNum = 11 when
we’re trying to agree what the 11th operation should be

§  When a process increments a ballot number it
also READs
ü e.g., when leader changes

40	

41 41

Paxos Failure-Free Message Flow

S1 S1 S1

S2

Sn

.

.

.

C

S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.

ACK

READ GATHER

C

Read phase Impose phase

request
reply

IMPOSE

42

Potential Issues?
§  Holes/gaps detected in the READ phase

ü The leader detected a value in READ/GATHER
for requests 1-12, 14, and 17

ü but not for 13, 15 and 16
§  The leader then runs the IMPOSE phase for

instances 13, 15 and 16 with a special
proposal
ü A noop value (“do nothing”)

42	

©	2017	P.	Kuznetsov	
	

Fault-Tolerant Distributed
Services  

BFT

WEP 2018
KAUST

	

44

Context: Replication

§  Assumptions
ü Network: synchronous/asynchronous
ü Digital signatures (availability trusted CA)
ü Failure Model – Benign (stopping) vs. Byzantine

(arbitrary)

replicated service

client

server
replicas

unreplicated service

client

server

45

State-Machine Replication

§  Replicated deterministic state machine
§  Correct clients “see” replicated service as

one correct server
ü Requests are totally ordered
ü Every request by a correct client is

eventually served

Replicas Client
Request Reply

46

Byzantine Generals  
[Lamport, Shostak, Pease, 1982] 

N armies face an enemy: an agreement should be reached
on attack or retreat
§  Agreement: no two correct processes decide differently
§  Validity: if every correct process propose v, then v must

be decided
§  Termination: every correct process decides

Model: Byzantine faults (some generals can be traitors),
synchronous, no crypto

©	2017	P.	Kuznetsov		

47

The 2/3 bound 
Split the armies in three
groups: Commander,
Lieutenant 1, Lieutenant 2.

Without signatures, the
traitor may lie about
received messages.

The two runs are
indistinguishable to
Lieutenant 1:
§  Commander is faulty
§  Leutenant 2 is faulty

©	2017	P.	Kuznetsov		

48

Signatures?
§  Without crypto: both synchrony and >2/3

correct servers are needed
§  With crypto: only 2/3

ü Why? Every two requests should involve at
least one common correct server

A goes first B goes first

A B

49

Safety vs. liveness

n – number of servers
q – quorum size (number of servers involved in processing a

request)
f – upper bound on the number of faulty servers

2q-n ≥ f+1 or q ≥ (n+f+1)/2 (safety)
 ⇒ n ≥ 3f+1

n-f ≥ q (liveness)

q q

2q-n

n

50

PBFT: Castro-Liskov
Pracrical Byzantine Fault-Tolerance (with
Proactive Recovery), OSDI 1999

§  A request (a batch of requests) involves a
three-phase agreement protocol

§  The system is eventually synchronous
§  >2/3 of the service replicas (servers) must be

correct

51

BFT: normal mode of operation

©	2017	P.	Kuznetsov		

408 • M. Castro and B. Liskov

Fig. 1. Normal case operation: the primary (replica 0) assigns sequence number n to request m in
its current view v and multicasts a PRE-PREPARE message with the assignment. If a backup agrees
with the assignment, it multicasts a matching PREPARE message. When a replica receives messages
that agree with the assignment from a quorum, it sends a COMMIT message. Replicas execute m
after receiving COMMIT messages from a quorum.

Like PRE-PREPAREs, the PREPARE and COMMIT messages sent in the other phases
also contain n and v. A replica only accepts one of these messages provided that
it is in view v; that it can verify the authenticity of the message; and that n
is between a low water mark h and a high water mark H. The last condition
is necessary to enable garbage collection and to prevent a faulty primary from
exhausting the space of sequence numbers by selecting a very large one. We
discuss how H and h advance in Section 4.4.

A backup i accepts the PRE-PREPARE message provided (in addition to the
conditions above) it has not accepted a PRE-PREPARE for view v and sequence
number n containing a different digest. If a backup i accepts the PRE-PREPARE

and it has request m in its log, it enters the prepare phase by multicasting a
⟨PREPARE, v, n, D(m), i⟩αi message with m’s digest to all other replicas; in addi-
tion, it adds both the PRE-PREPARE and PREPARE messages to its log. Otherwise,
it does nothing. The PREPARE message signals that the backup agreed to assign
sequence number n to m in view v. We say that a request is pre-prepared at a
particular replica if the replica sent a PRE-PREPARE or PREPARE message for the
request.

Then each replica collects messages until it has a quorum certificate with the
PRE-PREPARE and 2 f matching PREPARE messages for sequence number n, view
v, and request m. We call this certificate the prepared certificate and we say
that the replica prepared the request. This certificate proves that a quorum
has agreed to assign number n to m in v. The protocol guarantees that it is not
possible to obtain prepared certificates for the same view and sequence number
and different requests.

It is interesting to reason why this is true because it illustrates one use of
quorum certificates. Assume that it were false and there existed two distinct
requests m and m′ with prepared certificates for the same view v and sequence
number n. Then the quorums for these certificates would have at least one non-
faulty replica in common. This replica would have sent PRE-PREPARE or PREPARE

messages agreeing to assign the same sequence number to both m and m′ in
the same view. Therefore, m and m′ would not be distinct, which contradicts
our assumption.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

§  Client sends request to all servers
§  Primary broadcasts a pre-prepare request (sequence number,

view, message hash)
§  Servers exchange prepare messages
§  Servers exchange commit messages
§  Servers send commited tuple to client
§  Client computes the outcome

All phases require a quorum (>2/3) to terminate and all messages are
signed

52

BFT issues

§  >2/3 assumption is reasonable if faults are
independent

§  Questionable for software bugs or attacks
§  An obstacle for scalability: unlikely to hold for

large number of replica groups [Farsite,
OceanStore]

53

Another perspective
§  Prepare for the worst and hope for the best

ü Best case – small fraction of faulty nodes à
ensure safety+liveness

ü Worst case – some groups may have very large
fraction of faulty nodes (beyond 1/3) à ensure
safety

ü Rare case – a few nodes unavailable à lose
liveness

54

Trading off liveness for safety
§  Every request involves at least (n+f+1)/2 servers ⇒

safety is ensured as long as f or less servers fail
§  Liveness will be provided if not more than

n-(n+f+1)/2 = (n-f-1)/2 servers fail

§  n=10, f=7: liveness tolerates at most one failure

55

Quiz 3.2
§  The Byzantine generals setting assumes

synchronous
§  BFT assumes asynchronous system and

digital signatures
§  Both protocol assume >2/3 correct servers
Can you devise a synchronous state machine
replication protocol with signatures that tolerate
any number of faulty servers?

©	2017	P.	Kuznetsov		

©	2017	P.	Kuznetsov	and	M.	Vukolic	
	

Fault-Tolerant Distributed
Services  

Blockchain basics

WEP 2018
KAUST

	

57

Chronology

©	2017	P.	Kuznetsov		

1982 Byzantine
Generals
1990 Paxos
1992 “ProofOfWork”
1999 PBFT
1995 Hashcash
2002 Sybil attack
2009 Bitcoin
…

58

Distributed ledger?

©	2017	P.	Kuznetsov		

Shared data structure: linear record
of (blocks of) transactions
§  Append-only
§  Backtrack verifiable
§  Consistent?

Open environment:
§  No static membership
§  No identities (public

keys)
§  Asynchronous?

59

Verification: linked timestamping

©	2017	P.	Kuznetsov		

§  A change in a block affects all following blocks
ü  Originally with signatures: each block contains its

signed predecessor
ü  Now: hashchains

§  Bitcoin: Merkle trees
ü  Leafs: transactions
ü  Intermediate: hashes of children
ü  Roots: hashes of predecessor roots

60

Consistency?

©	2017	P.	Kuznetsov		

§  Sybil attack: the adversary can own an
arbitrarily large fraction of participants
ü  Why don’t good guys do the same? J

§  Classical consistent protocols don’t work

§  Assume a synchronous system
ü  Message delays are bounded by ±
ü  Need to “slow down” updates (wrt ±)

61

 Proof of work

©	2017	P.	Kuznetsov		

Need to solve a (time-consuming) puzzle to be
able to affect the state of the ledger
(blockchain)
§  Every process maintains a locally consistent

copy of the ledger
ü  Hashchain/Merkle tree

§  To update (to “mine” a new block of
transactions): broadcast a new block
B=<s,x,ctr> containing a puzzle solution
ü  H(ctr,G(s,x))<d (difficulty)

62

(Bitcoin) blockchain

©	2017	P.	Kuznetsov		

§  Clients broadcast an
update

§  Dedicated clients
(miners) collect
updates solve puzzles,
update and broadcast
their local ledgers

§  Clients always choose
the longest (verifiable)
ledger

§  Old enough blocks are
considered consistent

?

Committed prefix

63

When it works

©	2017	P.	Kuznetsov		

“Nakamoto consensus”

§  Expected time to solve the puzzle >> ±
§  The adversary does not possess most

of computing power

The probability of a fork drops
exponentially with the staleness of blocks

64

When it does not work

©	2017	P.	Kuznetsov		

§  Asynchronous/
eventually synchronous
communication, or

§  An adversary controls
half of computing
resources, or

§  Even a small
probability of error
cannot be tolerated, or

§  Energy consumption is
an issue

65

When it is not needed?

©	2017	P.	Kuznetsov		

§  No Sybil attacks
ü  Participation under control

§  No need for consensus
ü  Updates commute
ü  Eventual consistency is good enough
ü  Storage-like systems [ABD]

66

What’s next? CAPES theorem?
Consistency /Availability/Partition-tolerance/
Energy-efficiency/Sybil-tolerance

Which combinations are possible?

§  Relaxing consistency: from strong universal
(Paxos) to application-specific to eventual
(Amazon’s Dynamo)

§  Allowing energy waste (bitcoin)
§  Relying on social studies (incentivizing)

©	2017	P.	Kuznetsov		

67

Wrapping up

©	2017	P.	Kuznetsov		

§  Distributed computing becomes
mainstream

§  But it is hard: CAPES arguments pop
up in one way or another

§  Resources (time, memory, bandwidth,
energy) are bounded

§  We need to understand systems we
devise!

