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So far…

Shared-memory computing:
§  Wait-freedom and linearizability
§  Lock-based and lock-free synchronization
§  Consensus and universality 
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Message-passing

§  Consider a network where every two 
processes are connected via a reliable 
channel 
ü no losses, no creation, no duplication

§  Which shared-memory results translate into 
message-passing?

§  Implementing a distributed service
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Implementing message-passing

Theorem 1 A reliable message-passing 
channel between two processes can be 
implemented using two one-writer one-reader 
(1W1R) read-write registers 

Corollary 1 Consensus is impossible to solve in 
an asynchronous message-passing system if 
at least one process may crash
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ABD algorithm:  
implementing shared memory

Theorem 2[ABD] A 1W1R read-write register 
can be implemented in a (reliable) message-
passing model where a majority of processes 
are correct
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Implementing a 1W1R register
Upon write(v)
t++
send [v,t] to all
wait until received [ack,t] from a majority
return ok

Upon read()
r++

 send [?,r] to all
wait until received {(t’,v’,r)} from a 
majority
return v’ with the highest t’

©	2012	P.	Kuznetsov		
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Implementing a 1W1R register, contd.
Upon receive [v,t]
if t>ti then

vi := v
ti := t
send [ack,t] to the writer

Upon receive [?,r]  
send [vi,ti,r] to the reader

©	2012	P.	Kuznetsov		
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A correct majority is necessary
Otherwise, the reader may miss the latest written value  

The quorum (set of involved processes) of any write 
operation must intersect with the quorum of any read 
operation: 

W	writes	v	 R	reads	v	
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How to build  
a consistent and reliable system?

Service accepts requests 
from clients and returns 
responses

§  Liveness: every persistent 
client receives a response

§  Safety: responses 
constitute a total order 
w.r.t. the service’s 
sequential specification 

Service 

Clients 

debit($100) ok 
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How to build a fault-tolerant system?

Replication:

§  Service = collection of 
servers 

§  Some servers may fail

Service 

Clients 

debit($100) ok 
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“CAP theorem” [Brewer 2000]
No system can combine:
§  Consistency: all servers observe the same 

evolution of the system state
§  Availability: every client’s request is eventually 

served
§  Partition-tolerance: the system operates 

despite a partial failure or loss of 
communication

Sounds familiar, no?

©	2017	P.	Kuznetsov		
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Strongly consistent  
replicated state machine

Universal construction in message-passing:
§  Clients access the service via a standard 

interface
§  Servers run replicas of the (sequential) 

service
§  (A subset of) faulty servers do not affect 

consistency and availability

Leslie Lamport: The Part-Time Parliament. 
ACM Trans. Comput. Syst. 16(2): 133-169 
(1998)

©	2017	P.	Kuznetsov		
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Paxos: some history
§  Late 80s:  a three-phase 

consensus algorithm
ü A Greek parliament reaching 

agreement
§  1989: a Paxos-based fault-

tolerant distributed database 
§  1990: rejected from TOCS

 “All three referees said that the 
paper was mildly interesting, though 
not very important, but that all the 

Paxos stuff had to be removed.” 

13	
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   This submission was recently discovered behind a 
filing cabinet in the TOCS editorial office. 
Despite its age, the editor-in-chief felt that it 
was worth publishing. Because the author is 
currently doing field work in the Greek isles and 
cannot be reached, I was asked to prepare it for 
publication. 
   The author appears to be an archeologist with 
only a passing interest in computer science. This 
is unfortunate; even though the obscure ancient 
Paxon civilization he describes is of little 
interest to most computer scientists, its 
legislative system is an excellent model for how 
to implement a distributed computer system in an 
asynchronous environment. 
… 

Keith Marzullo
University of California, San Diego
(preface for the TOCS 1998 paper) 

14	
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Paxos today

§  Underlies a large number of practical system 
when strong consistency is needed
ü Google Megastore, Google Spanner
ü Yahoo Zookeeper
ü Microsoft Azure 
ü ….

§  ACM SIGOPS Hall of Fame Award in 2012
§  Turing award 2015

15	
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Consensus: recall the definition

A process proposes an input value in V (|V|≥2) and tries to 
decide on an output value in V

§  Agreement: No two process decide on different values
§  Validity: Every decided value is a proposed value
§  Termination: No process takes infinitely many steps without 

deciding
(Every correct process decides)
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Model

§  Asynchronous system
§  Reliable communication channels
§  Processes fail by crashing 
§  A majority of correct processes

But we proved that 1-resilient consensus is 
impossible even with shared memory!
“CAP theorem” is violated! 

Where is the trick?

©	2017	P.	Kuznetsov		
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Ω: an oracle
§  Eventual leader failure detector
§  Produces (at every process) events:

ü ‹Ω, leader, p›  
ü We also write p=leader() 

§  Eventually, all correct processes output the same 
correct process as the leader

Can be implemented in eventually synchronous 
system:

ü There is a bound on communication delays and 
processing that holds only eventually

ü There is an a priori unknown bound in every run
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Leader	election	Ω:	example	

There	is	a	time	after	which	the	same	correct	process	
is	considered	leader	by	everyone.	

(Sufficient	to	output	a	binary	flag	leader/not	leader)	

p1 
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Paxos/Synod algorithm

§  Let’s try to decouple liveness (termination) 
from safety (agreement)

§  Synod made out of two components:
ü Ω - the eventual leader oracle
ü (ofcons) obstruction-free consensus
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Obstruction-free Consensus (ofcons)
§  Similar to consensus 

ü except for Termination 
ü ability to abort

§  Request: 
ü ‹ofcons, propose, v›  

§  Indications: 
ü ‹ofcons,decide, v’› 
ü ‹ofcons,abort› 

21	
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Obstruction-free Consensus
§  C1. Validity: 

ü Any value decided is a value proposed 
§  C2. Agreement: 

ü No two correct processes decide differently 
§  C3. Obstruction-Free Termination: 

ü If a correct process p proposes, it eventually 
decides or aborts.

ü If a correct process decides, no correct process 
aborts infinitely often.

ü If a single correct process proposes a value 
sufficiently many times, p eventually decides.

22	
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Consensus vs. OF-Consensus
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Consensus vs. OF-Consensus
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Consensus using Ω and ofcons
§  Straightforward

ü Assume that in cons everybody proposes

upon ‹cons, propose, v› 
while not(decided)
    if  self=leader() then

result = ofcons.propose(v) 
if result=(decide,v’) then  

return v’
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Link to Paxos/Synod

§  External cons.propose events come in a state 
machine replication algorithm as requests 
from clients
ü As in universal construction

§  Focus now on implementing OFCons
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OFCons
§  Not subject to FLP impossibility!
§  Can be implemented in fully asynchronous 

system 
ü Using the correct-majority assumption
ü Or read-write 

§  Synod OFCons: a 2-phase algorithm
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Synod OFCons I
Code of every process pi:

Initially: 
ballot:=i-n; proposal:=nil; readballot:=0; imposeballot:=0; 
estimate:= nil; states:=[nil,0]n

upon ‹ofcons, propose, v› 
proposal := v; ballot:=ballot + n; states:=[nil,0]n

send [READ, ballot] to all

upon receive [READ,ballot’] from pj 
if readballot ≥ ballot’ or  imposeballot ≥ ballot’ then

send [ABORT, ballot’] to pj
else

readballot:=ballot’
send [GATHER, ballot’, imposeballot, estimate] to pj

upon receive [ABORT, ballot] from some process
return abort
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Synod OFCons II
upon receive [GATHER, ballot, estballot, est] from pj

states[pj]:=[est,estballot] 

upon  #states ≥ majority //collected a majority of responses
if ∃ states[pk]≠[nil,0] then
   select states[pk]=(est,estballot) with highest estballot
   proposal:=est; 
states:=[nil,0]n

send [IMPOSE, ballot, proposal] to all

upon receive [IMPOSE,ballot’,v] from pj 
 if readballot > ballot’ or  imposeballot > ballot’ then

 send [ABORT, ballot’] to pj 
else

estimate := v; imposeballot:=ballot’
     send [ACK, ballot’] to pj
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Synod OFCons III

upon received [ACK, ballot] from majority

send [DECIDE, proposal] to all

upon receive [DECIDE, v] 

 send [DECIDE, v] to all

   return [decide, v]
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Correctness
§  Validity

ü Immediate

§  Agreement (try to do it yourselves)
ü When is the decided value determined? 

§  OF Termination
ü Show that a correct process that proposes either decides 

or aborts
ü If a single process keeps going

●  It will eventually propose with a highest ballot number not seen so 
far

●  This process will not abort with such a ballot number
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Quiz 3.1
§  Does the ABD algorithm run by one writer and 

multiple readers implement an atomic 
(linearizable) register?

§  Prove that Synod satisfies Agreement: 
ü No two processes decide differ

©	2017	P.	Kuznetsov		
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Time Complexity
§  Fault-free time complexity: 4 message delays

+ 1 communication step for decision relaible 
broadcast 

§  Optimizations
ü Getting rid of the first READ phase

§  Allow a single process (presumed leader, say 
p1) to skip the READ phase in its 1st ballot
ü Reduces fault-free/sync time complexity to 2

33	
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From Synod to Paxos

§  Paxos is a state-machine replication (SMR) protocol
ü i.e., a universal construction given a sequential object

§  Implemented as totally-ordered broadcast: exports 
one operation toBroadcast(m) and issues toDeliver(m’) 
notifications

34	
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From Synod to Paxos: TO-Broadcast

§  Every message m (to)broadcast by a correct process 
pi is eventually (to)delivered by pi

§  Every message m delivered by a process pi is 
eventually delivered by every correct process

§  No message is delivered unless it was previously 
broadcast

§  No message is delivered twice
§  The messages are delivered in the same order at all 

processes

Implies totally ordered (linearizable) execution of clients’ 
requests

35	
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From Synod to Paxos

§  But consensus (Synod) is one shot…
ü How to most efficiently transform Synod to 

toBroadcast (Paxos)?

§  Shared-memory universal construction?

36	
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Paxos SMR
§  Clients initiate requests
§  Servers run consensus

ü Multiple instances of consensus (Synod)
ü Synod instance 25 used to agree on the 25th 

request to be ordered
§  Both clients and servers have the (unreliable) 

estimate of the current leader (some server)
§  Clients send requests to the leader
§  The leader replies to the client

37	
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Paxos failure-free/sync message flow
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Observation
§  READ phase involves no updates/new 

consensus proposals
ü Makes the leader catch up with what happened 

before
§  Most of the time the leader will remain the 

same
ü + nothing happened before (e.g., new requests)

39	
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Optimization
§  Run READ phase only when the leader changes

ü and for multiple Synod instances simultaneously
§  Use the same ballot number for all future Synod 

instances 
ü run only IMPOSE phases in future instances
ü Each message includes ballot number (from the last 

READ phase) and ReqNum, e.g.,  ReqNum = 11 when 
we’re trying to agree what the 11th operation should be

§  When a process increments a ballot number it 
also READs
ü e.g., when leader changes

40	
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Paxos Failure-Free Message Flow
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Potential Issues?
§  Holes/gaps detected in the READ phase

ü The leader detected a value in READ/GATHER 
for requests 1-12, 14, and 17

ü but not for 13, 15 and 16
§  The leader then runs the IMPOSE phase for 

instances 13, 15 and 16 with a special 
proposal
ü A noop value (“do nothing”)

42	
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Context: Replication

§  Assumptions
ü Network: synchronous/asynchronous
ü Digital signatures (availability trusted CA)
ü Failure Model – Benign (stopping) vs. Byzantine 

(arbitrary)

replicated service 

client 

server 
replicas 

unreplicated service  

client 

server 
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State-Machine Replication

§  Replicated deterministic state machine
§  Correct clients “see” replicated service as 

one correct server
ü Requests are totally ordered
ü Every request by a correct client is 

eventually served

Replicas Client 
Request Reply 



46 

Byzantine Generals  
[Lamport, Shostak, Pease, 1982] 

N armies face an enemy: an agreement should be reached 
on attack or retreat 
§  Agreement: no two correct processes decide differently
§  Validity: if every correct process propose v, then  v must 

be decided
§  Termination: every correct process decides 

Model: Byzantine faults (some generals can be traitors), 
synchronous, no crypto

©	2017	P.	Kuznetsov		
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The 2/3 bound 
Split the armies in three 
groups: Commander, 
Lieutenant 1, Lieutenant 2.

Without signatures, the 
traitor may lie about 
received messages.

The two runs are 
indistinguishable to 
Lieutenant 1:
§  Commander is faulty
§  Leutenant 2 is faulty  

©	2017	P.	Kuznetsov		
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Signatures?
§  Without crypto: both synchrony and >2/3 

correct servers are needed
§  With crypto: only 2/3  

ü Why? Every two requests should involve at 
least one common correct server

A goes first B goes first 

A B 
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Safety vs. liveness 

n – number of servers
q – quorum size (number of servers involved in processing a 

request)
f – upper bound on the number of faulty servers

2q-n ≥ f+1  or  q ≥ (n+f+1)/2 (safety)
          ⇒ n ≥ 3f+1

n-f ≥ q (liveness)

q q 

2q-n 

n 



50 

PBFT: Castro-Liskov
Pracrical Byzantine Fault-Tolerance (with 
Proactive Recovery), OSDI 1999

§  A request (a batch of requests) involves a 
three-phase agreement protocol 

§  The system is eventually synchronous 
§  >2/3 of the service replicas (servers) must be 

correct
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BFT: normal mode of operation

©	2017	P.	Kuznetsov		

408 • M. Castro and B. Liskov

Fig. 1. Normal case operation: the primary (replica 0) assigns sequence number n to request m in
its current view v and multicasts a PRE-PREPARE message with the assignment. If a backup agrees
with the assignment, it multicasts a matching PREPARE message. When a replica receives messages
that agree with the assignment from a quorum, it sends a COMMIT message. Replicas execute m
after receiving COMMIT messages from a quorum.

Like PRE-PREPAREs, the PREPARE and COMMIT messages sent in the other phases
also contain n and v. A replica only accepts one of these messages provided that
it is in view v; that it can verify the authenticity of the message; and that n
is between a low water mark h and a high water mark H. The last condition
is necessary to enable garbage collection and to prevent a faulty primary from
exhausting the space of sequence numbers by selecting a very large one. We
discuss how H and h advance in Section 4.4.

A backup i accepts the PRE-PREPARE message provided (in addition to the
conditions above) it has not accepted a PRE-PREPARE for view v and sequence
number n containing a different digest. If a backup i accepts the PRE-PREPARE

and it has request m in its log, it enters the prepare phase by multicasting a
⟨PREPARE, v, n, D(m), i⟩αi message with m’s digest to all other replicas; in addi-
tion, it adds both the PRE-PREPARE and PREPARE messages to its log. Otherwise,
it does nothing. The PREPARE message signals that the backup agreed to assign
sequence number n to m in view v. We say that a request is pre-prepared at a
particular replica if the replica sent a PRE-PREPARE or PREPARE message for the
request.

Then each replica collects messages until it has a quorum certificate with the
PRE-PREPARE and 2 f matching PREPARE messages for sequence number n, view
v, and request m. We call this certificate the prepared certificate and we say
that the replica prepared the request. This certificate proves that a quorum
has agreed to assign number n to m in v. The protocol guarantees that it is not
possible to obtain prepared certificates for the same view and sequence number
and different requests.

It is interesting to reason why this is true because it illustrates one use of
quorum certificates. Assume that it were false and there existed two distinct
requests m and m′ with prepared certificates for the same view v and sequence
number n. Then the quorums for these certificates would have at least one non-
faulty replica in common. This replica would have sent PRE-PREPARE or PREPARE

messages agreeing to assign the same sequence number to both m and m′ in
the same view. Therefore, m and m′ would not be distinct, which contradicts
our assumption.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

§  Client sends request to all servers 
§  Primary broadcasts a pre-prepare request (sequence number, 

view, message hash)
§  Servers exchange prepare messages    
§  Servers exchange commit messages
§  Servers send commited tuple to client 
§  Client computes the outcome

All phases require a quorum (>2/3) to terminate and all messages are  
signed
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BFT issues

§  >2/3 assumption is reasonable if faults are 
independent

§  Questionable for software bugs or attacks
§  An obstacle for scalability: unlikely to hold for 

large number of replica groups [Farsite, 
OceanStore]
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Another perspective
§  Prepare for the worst and hope for the best

ü Best case – small fraction of faulty nodes à 
ensure safety+liveness

ü Worst case – some groups may have very large 
fraction of faulty nodes (beyond 1/3) à ensure 
safety

ü Rare case –  a few nodes unavailable à  lose 
liveness
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Trading off liveness for safety
§  Every request involves at least (n+f+1)/2 servers ⇒  

safety is ensured as long as f or less servers fail
§  Liveness will be provided if not more than                        

n-(n+f+1)/2 = (n-f-1)/2 servers fail

§  n=10, f=7: liveness tolerates at most one failure 
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Quiz 3.2
§  The Byzantine generals setting assumes 

synchronous 
§  BFT assumes asynchronous system and 

digital signatures 
§  Both protocol assume >2/3 correct servers
Can you devise a synchronous state machine 
replication protocol with signatures that tolerate 
any number of faulty servers?

©	2017	P.	Kuznetsov		
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Chronology

©	2017	P.	Kuznetsov		

1982 Byzantine 
Generals 
1990 Paxos
1992 “ProofOfWork” 
1999 PBFT
1995 Hashcash
2002 Sybil attack
2009 Bitcoin
…
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Distributed ledger?

©	2017	P.	Kuznetsov		

Shared data structure: linear record 
of (blocks of) transactions
§  Append-only
§  Backtrack verifiable
§  Consistent?

 

 

Open environment:
§  No static membership
§  No identities (public 

keys) 
§  Asynchronous?
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Verification: linked timestamping

©	2017	P.	Kuznetsov		

§  A change in a block affects all following blocks
ü  Originally with signatures: each block contains its 

signed predecessor
ü  Now: hashchains

§  Bitcoin: Merkle trees   
ü  Leafs: transactions
ü  Intermediate: hashes of children
ü  Roots: hashes of predecessor roots
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Consistency?

©	2017	P.	Kuznetsov		

§  Sybil attack: the adversary can own an 
arbitrarily large fraction of participants
ü  Why don’t good guys do the same? J

§  Classical consistent protocols don’t work

§  Assume a synchronous system
ü  Message delays are bounded by ± 
ü  Need to “slow down” updates (wrt  ±)
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 Proof of work

©	2017	P.	Kuznetsov		

Need to solve a (time-consuming) puzzle to be 
able to affect the state of the ledger 
(blockchain) 
§  Every process maintains a locally consistent 

copy of the ledger
ü  Hashchain/Merkle tree 

§  To update (to “mine” a new block of 
transactions): broadcast a new block 
B=<s,x,ctr> containing a puzzle solution
ü  H(ctr,G(s,x))<d (difficulty)
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(Bitcoin) blockchain

©	2017	P.	Kuznetsov		

§  Clients broadcast an 
update

§  Dedicated clients 
(miners) collect 
updates solve puzzles, 
update and broadcast 
their local ledgers

§  Clients always choose 
the longest (verifiable) 
ledger

§  Old enough blocks are 
considered consistent 

? 

Committed prefix 
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When it works

©	2017	P.	Kuznetsov		

“Nakamoto consensus”

§  Expected time to solve the puzzle >> ±
§  The adversary does not possess most 

of computing power

The probability of a fork drops 
exponentially with the staleness of blocks
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When it does not work

©	2017	P.	Kuznetsov		

§  Asynchronous/
eventually synchronous 
communication, or

§  An adversary controls 
half of computing 
resources, or

§  Even a small 
probability of error 
cannot be tolerated, or

§  Energy consumption is 
an issue



65 

When it is not needed?

©	2017	P.	Kuznetsov		

§  No Sybil attacks 
ü  Participation under control

§  No need for consensus
ü  Updates commute
ü  Eventual consistency is good enough
ü  Storage-like systems [ABD]
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What’s next? CAPES theorem?
Consistency /Availability/Partition-tolerance/
Energy-efficiency/Sybil-tolerance

Which combinations are possible?

§  Relaxing consistency: from strong universal 
(Paxos) to application-specific to eventual 
(Amazon’s Dynamo)

§  Allowing energy waste (bitcoin)
§  Relying on social studies (incentivizing)

©	2017	P.	Kuznetsov		
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Wrapping up

©	2017	P.	Kuznetsov		

§  Distributed computing becomes 
mainstream

§  But it is hard: CAPES arguments pop 
up in one way or another

§  Resources (time, memory, bandwidth, 
energy) are bounded

§  We need to understand systems we 
devise! 


