Distributed Computing in Shared Memory and Networks

Class 2: Consensus

WEP 2018 KAUST

This class

Reaching agreement in shared memory:

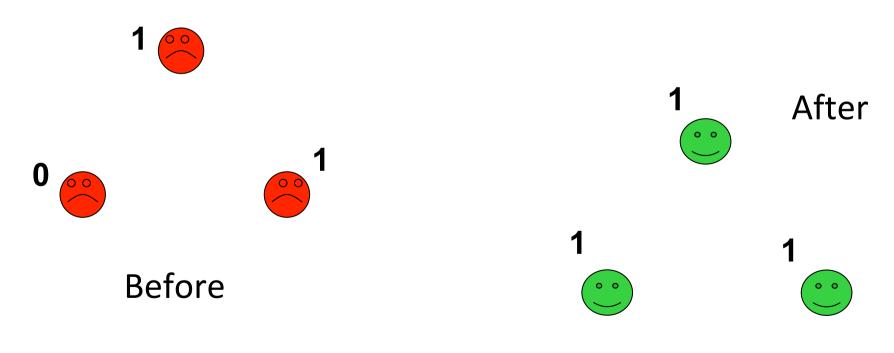
- Consensus
 - ✓ Impossibility of wait-free consensus
- 1-resilient consensus impossibility
- Universal construction

System model

- N asynchronous (no bounds on relative speeds) processes p₀,...,p_{N-1} (N≥2) communicate via atomic read-write registers
- Processes can fail by crashing
 - ✓ A crashed process takes only finitely many steps (reads and writes)
 - ✓ Up to t processes can crash: t-resilient system
 - ✓t=N-1: wait-free

Consensus

Processes *propose* values and must *agree* on a common decision value so that the decided value is a proposed value of some process



Consensus: definition

A process *proposes* an *input* value in V (IVI≥2) and tries to *decide* on an *output* value in V

- Agreement: No two processes decide on different values
- Validity: Every decided value is a proposed value
- Termination: No process takes infinitely many steps without deciding

(Every correct process decides)

Optimistic (0-resilient) consensus

Consider the case t=0, no process fails

Shared: 1WNR register D, initially T (default value not in V)

```
Upon propose(v) by process p_i:

if i = 0 then D.write(v) // if p_0 decide on v

wait until D.read() \neq T // wait until p_0 decides

return D
```

(every process decides on p₀'s input)

Impossibility of wait-free consensus [FLP85,LA87]

Theorem 1 No wait-free algorithm solves consensus

We give the proof for N=2, assuming that p_0 proposes 0 and p_1 proposes 1

Implies the claim for all N≥2

Proof of Theorem 1

- We show that no 2-process wait-free solution exists for iterated read-write memory: R₀[], R₁[]
- Code for p_i in round k: write to R_k[i] and read R_k[1-i]:

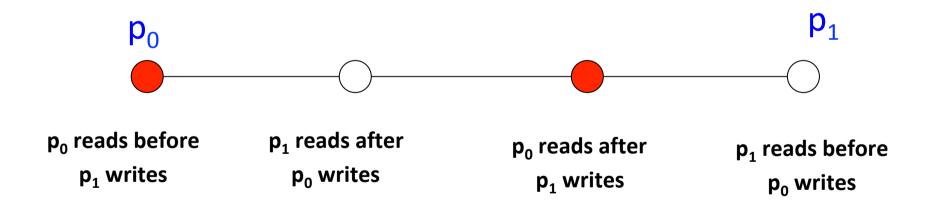
```
k := 0
repeat
k := k+1;
R_{k}[i].write(v_{i});
v_{i} := [v_{i}, R_{k}[1-i].read()];
until not decided(v_{i})
```

(until the current state does not map to a decision)

The iterated memory is equivalent to non-iterated one for solving consensus

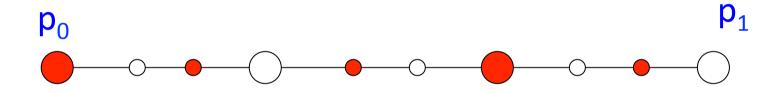
Proof of Theorem 1

Initially each p_i only knows its input One round of IIS:



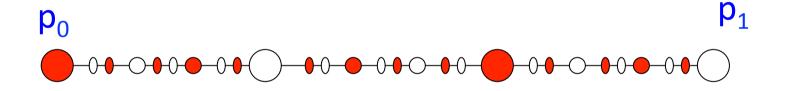
Proof sketch for Theorem 1

Two rounds:



Proof of Theorem 1

And so on...



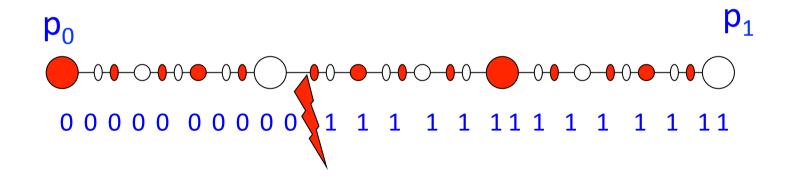
Solo runs remain connected - no way to decide!

Proof of Theorem 1

Suppose p_i (i=0,1) proposes i

p_i must decide i in a solo run!

Suppose by round r every process decides



There exists a run with conflicting decisions!

1-resilient consensus?

What if we have 1000000 processes and one of them can crash?

NO

We present a direct proof now

(an indirect proof by reduction to the wait-free impossibility also exists)

Impossibility of 1-resilient consensus [FLP85,LA87]

Theorem 2 No 1-resilient (assuming that one process might fail) algorithm solves consensus in read-write

Proof

By contradiction, suppose that an algorithm A solves 1-resilient binary consensus among $p_0, \dots p_{N-1}$

Proof

A run of A is a sequence of atomic *steps* (reads or writes) applied to the initial state

A run of A can be seen as and initial input configuration (one input per process) and a sequence of process ids $i_1, i_2, i_k,$ (all registers are atomic)

Every correct (taking sufficiently many steps) process decides!

Proof: valence

Let R be a finite run

- We say that R is v-valent (for v in {0,1}) if v is decided in every infinite extension of R
- We say that R is bivalent if R is neither 0-valent nor 1-valent (there exists a 0-valent extension of R and a 1-valent extension of R)

Proof: valence claims

Claim 1 Every finite run is 0-valent, or 1-valent, or bivalent. (by Termination)

Claim 2 Any run in which some process decides v is v-valent (by Agreement)

Corollary 1: No process can decide in a bivalent run (by Agreement).

Bivalent input

Claim 3 There exists a bivalent input configuration (empty run)

Proof

Suppose not

Consider sequence of input configurations $C_0,...,C_N$:

 C_i : $p_0,...,p_{i-1}$ propose 1, and $p_i,...,p_{N-1}$ propose 0

- All C_i's are univalent
- C₀ is 0-valent (by Validity)
- C_N is 1-valent (by Validity)

Bivalent input

There exists i in $\{0,...N-1\}$ such that C_i is 0-valent and C_{i+1} is 1-valent!

 C_i and C_{i+1} differ only in the input value of p_i (it proposes 0 in C_i and 1 in C_{i+1})

Consider a run R starting from C_i in which p_i takes no steps (crashes initially): eventually all other processes decide 0

Consider R' that is like R except that it starts from C_{i+1}

- R and R' are indistinguishable!
- Thus, every process decides 0 in R' --- contradiction $(C_{i+1}$ is 1-valent)

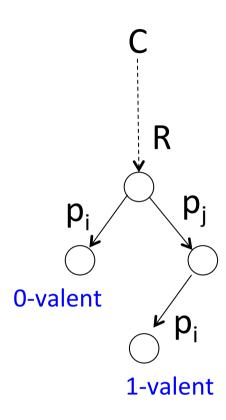
Critical run

Claim 4 There exists a finite run R and two processes p_i and p_j such that R.i is 0-valent and R.j.i is 1-valent (or vice versa)

(R is called critical)

Proof of Claim 4: By construction, take the bivalent empty run C (by Claim 3 it exists)

We construct an ever-extending fair (giving each process enough steps) run which results in R



Proof of Claim 4: critical run

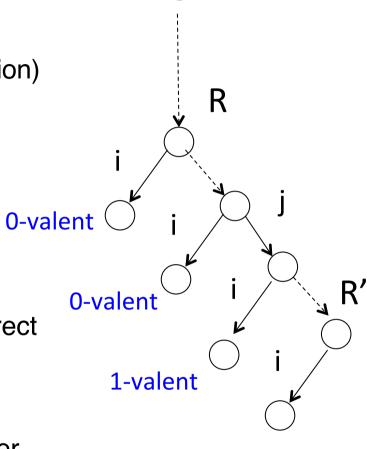
repeat forever

take the next process p_i (in round-robin fashion)

if for some R', an extension of R, R'.i is bivalent then R:=R'.i

else stop

- If never stops ever extending (infinite)
 bivalent runs in which every process is correct (takes infinitely many steps – contradiction with termination
- If stops (suppose R.i is 0-valent) consider a 1-valent extension
 - ✓ There is a critical run between R and R'



1-valent

Proof (contd.)

Take a critical run R (exists by Claim 4) such that:

- R.0 is 0-valent
- R.1.0 is 1-valent

(without loss of generality, we can always rename processes or inputs appropriately ©)

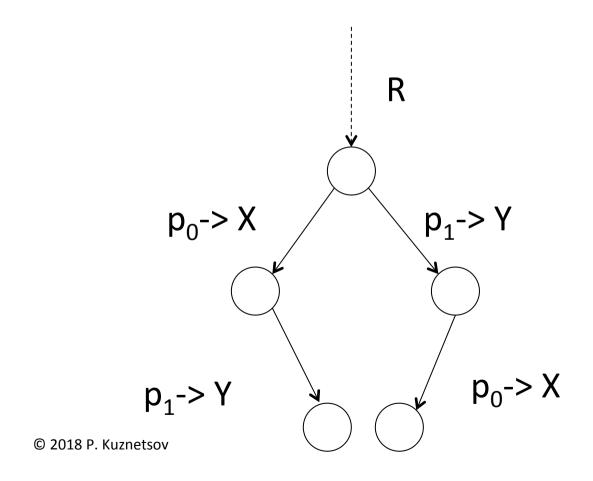
Proof (contd.): the next steps in R

Three cases, depending on the next steps of p₀ and p₁ in R

- p₀ and p₁ are about to access different objects in R
- p₁ reads X and p₀ reads X
- p₀ or p₁ writes in X

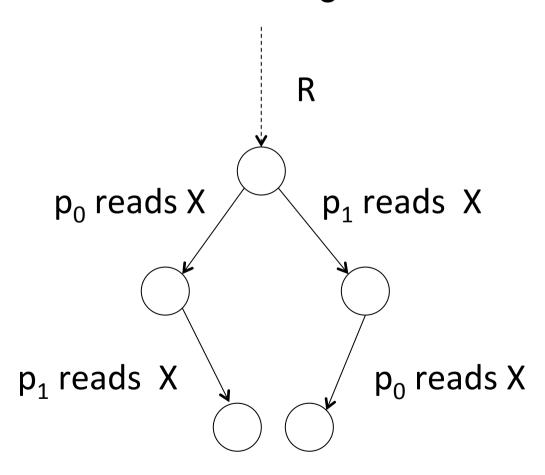
Proof (contd.): cases and contradiction

p₀ and p₁ are about to access different objects in R
 ✓R.0.1 and R.1.0 are indistinguishable



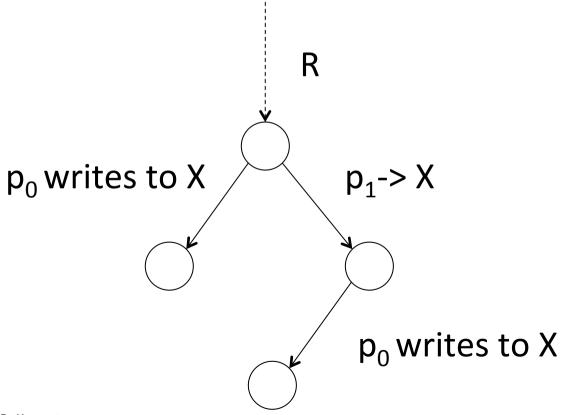
Proof (contd.): cases and contradiction

p₀ and p₁ are about to read the same object X
 R.0.1 and R.1.0 are indistinguishable



Proof (contd.): cases and contradiction

- p₀ is about to write to X (the case when p₁ writes is symmetric)
 - ✓ Extensions of R.0 and R.1.0 are indistinguishable for all except p₁ (assuming p₁ takes no more steps)



Thus

- No critical run exists
- A contradiction with Claim 4

⇒ 1-resilient consensus is impossible in read-write

Next

- Combining registers with stronger objects
 - √ Consensus and test-and-set (T&S)
 - ✓ Consensus and queues
- Universality of consensus
 - ✓ Consensus can be used to implement any object

Test&Set atomic objects

Exports one operation test&set() that returns a value in {0,1}

Sequential specification:

The first atomic operation on a T&S object returns 0, all other operations return 1

2-process consensus with T&S

Shared objects:

```
T&S TS
```

Atomic registers R[0] and R[1]

Upon propose(v) by process p_i (i=0,1):

```
R[i] := v
if TS.test&set()=0 then
    return R[i]
else
    return R[1-i]
```

FIFO Queues

Exports two operations enqueue() and dequeue()

- enqueue(v) adds v to the end of the queue
- dequeue() returns the first element in the queue

(LIFO queue returns the last element)

2-process consensus with queues

Shared:

```
Queue Q, initialized (winner,loser)
Atomic registers R[0] and R[1]
```

Upon propose(v) by process p_i (i=0,1):

```
R[i] := v
if Q.dequeue()=winner then
return R[i]
else
return R[1-i]
```

Quiz 2.1: uninitialized queues

The algorithm assumes that the queue is initialized to (winner,loser).

 Can we solve consensus using (initially) empty queues?

But why consensus is interesting?

Because it is universal!

 If we can solve consensus among N processes, then we can implement any object shared by N processes

√T&S and queues are universal for 2 processes

 A key to implement a generic fault-tolerant service (replicated state machine)

What is an *object*?

Object O is defined by the tuple (Q,O,R,σ) :

- Set of states Q
- Set of operations O
- Set of outputs R
- Sequential specification σ, a subset of OxQxRxQ:
 - ✓ (o,q,r,q') is in $\sigma \Leftrightarrow$ if operation o is applied to an object in state q, then the object *can* return r and change its state to q'
 - √Total on OxQ (defined for all o and q)

Deterministic objects

 An operation applied to a *deterministic* object results in exactly one (output,state) in RxQ, i.e., σ can be seen a function OxQ -> RxQ

- E.g., queues, counters, T&S are deterministic
- Unordered set (put/get) non-deterministic

Example: queue

Let V be the set of possible elements of the queue

 $Q=V^* \cup \{\emptyset\}$ (all sequences with elements in V and the empty state)

 $O=\{enq(v)_{v in V}, deq()\}$

 $R=V U \{\emptyset\} U \{ok\}$

 $\sigma(enq(v),q)=(ok,q.v)$

 $\sigma(deq(),v.q)=(v,q)$

 $\sigma(\text{deq}(), \emptyset) = (\emptyset, \emptyset)$

Implementation: definition

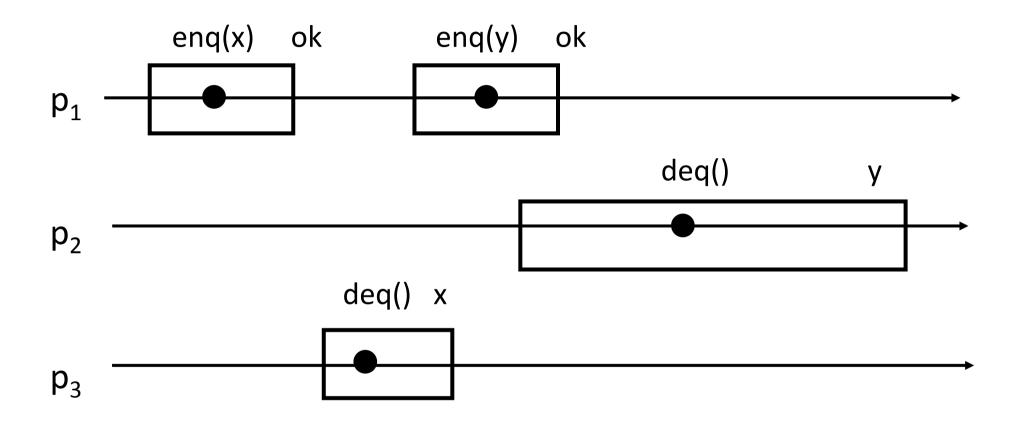
A distributed algorithm A that, for each operation o in O and for every p_i, describes a concurrent procedure o_i using base objects

A run of A is *well-formed* if no process invokes a new operation on the implemented object before returning from the old one (we only consider well-formed runs)

Implementation: correctness

- A (wait-free) implementation A is correct if in every well-formed run of A
- Wait-freedom: every operation run by p_i returns in a finite number of steps of p_i
- Linearizability ≈ operations "appear" instantaneous (the corresponding *history* is *linearizable*)

Linearization



$$p_1$$
-enq(x); p_1 -ok; p_3 -deq(); p_3 -x; p_1 -enq(y); p_1 -ok; p_2 -dequeue(); p_2 -y

Universal construction

Theorem 1 [Herlihy, 1991] If N processes can solve consensus, then N processes can (wait-free) implement every object $O=(Q,O,R,\sigma)$

Suppose you are given an unbounded number of consensus objects and atomic read-write registers

You want to implement an object $O=(Q,O,R,\sigma)$

How would you do it?

Universal construction: idea

Every process that has a pending operation does the following:

- Publish the corresponding request
- Collect published requests and use consensus instances to serialize them: the processes agree on the order in which the requests are executed
- Processes agree on the order in which the published requests are executed

Universal construction: variables

```
Shared abstractions:
  N atomic registers R[0,...,N-1], initially Ø
  N-process consensus instances C[1], C[2], ...
Local variables for each process p<sub>i</sub>:
  integer seg, initially 0
             // the number of p<sub>i</sub>'s requests executed so far
  integer k, initially 0
             // the number of batches of
             // all requests executed so far
  sequence linearized, initially empty
             //the serial order of executed requests
```

Universal construction: algorithm

Code for each process p_i: implementation of operation op

```
seq++
R[i] := (op,i,seq)
                                      // publish the request
repeat
         V := read R[0,...,N-1]
                                               // collect all requests
         requests := V-{linearized} //choose not yet linearized requests
         if requests≠Ø then
             k++
             decided:=C[k].propose(requests)
             linearized := linearized.decided
             //append decided request in some deterministic order
until (op,i,seq) is in linearized
return the result of (op,i,seq) in linearized
             // using the sequential specification \sigma
```

Universal construction: correctness

- Linearization of a given run: the order in which operations are put in the *linearized list*
 - ✓ Agreement of consensus: all *linearized* lists are related by containment (one is a prefix of the other)
- Real-time order: if op1 precedes op2, then op2 cannot be linearized before op1
 - √ Validity of consensus: a value cannot be decided unless it was previously proposed

Universal construction: correctness

Wait-freedom:

✓ Termination and validity of consensus: there exists k such that the request of p_i gets into req list of every processes that runs C[k].propose(req)

Another universal abstraction: CAS

Compare&Swap (CAS) stores a *value* and exports operation CAS(u,v) such that:

- If the current value is u, CAS(u,v) replaces it with v and returns u
- Otherwise, CAS(u,v) returns the current value

A variation: CAS returns a boolean (whether the replacement took place) and an additional operation read() returns the value

N-process consensus with CAS

```
Shared objects:
   CAS CS initialized Ø
  // Ø cannot be an input value
Code for each process p_i (i=0,...,N-1):
  v_i := input value of p_i
  V := CS.CAS(\emptyset, V_i)
  if v = \emptyset
            return v<sub>i</sub>
   else
            return v
```

N-consensus object

N-consensus stores a value in {Ø} U V and exports operation propose(v), v in V:

For 1st to Nth propose() operations:

- If the value is Ø, then propose(v) sets the value to v and returns v
- Otherwise, returns the value

All other operations do not change the value and return Ø

N-process consensus with N-consensus

Immediate: every process pi simply invokes C.propose(input of pi) and returns the result of it

(N+1)-consensus using N-consensus?

Consensus number

An object O has consensus number k (we write cons(O)=k) if

 k-process consensus can be solved using registers and any number of copies of O but (k+1)-consensus cannot

If no such number k exists for O, then cons(O)=∞

(k=cons(O) is the maximal number of processes that can be synchronized using copies of O and registers)

Consensus power

- cons(register)=1
- cons(T&S)=cons(queue)=2
- **...**
- cons(N-consensus)=N
 ✓N-consensus is N-universal!
- ...
- cons(CAS)=∞

Quiz 2.2: consensus power

Show that T&S has consensus power at most 2, i.e., it cannot be, combined with atomic registers, used to solve 3-process consensus

Possible outline:

- Consider the critical bivalent run R of A: every one-step extension of R is univalent (show first that it exists)
- Show that all steps enabled at R are on the same T&S object
- Show that there are two extensions of opposite valences that some process cannot distinguish

Open questions

Robustness

Suppose we have two objects A and B, cons(A)=cons(B)=k

Can we solve (k+1)-consensus using registers and copies of A and B?

 Can we implement an object of consensus power k shared by N processes (N≥k) using kconsensus objects?