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Human-machine future
« When people who can’t think logically design large 
systems, those systems become incomprehensible. And 
we start thinking of them as biological systems. And 
since biological systems are too complex to understand, 
it seems perfectly natural that computer programs 
should be too complex to understand. 

We should not accept this. » 

Leslie Lamport, “Future of Computing: Logic or Biology”, 
2003 
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Roadmap
§  Consistency: safety and liveness
§  Consensus and universal construction
§  Distributed services: Paxos, BFT, Blockchains 

Slides and exercises: 
https://perso.telecom-paristech.fr/kuznetso/

WEP2018
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This course is about distributed 
computing:

independent sequential processes 
that communicate

©	2018	P.	Kuznetsov		
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Concurrency is everywhere!

§  Multi-core processors
§  Sensor networks
§  Internet
§  …

©	2018	P.	Kuznetsov		
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Communication models
§  Shared memory

ü Processes apply operations on 
shared variables

ü Failures and asynchrony
§  Message passing

ü Processes send and receive 
messages 

ü Communication graphs
ü Message delays

©	2018	P.	Kuznetsov		
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Moore’s	Law	and	CPU	speed	
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§  Single-processor performance does 
not improve

§  But we can add more cores
§  Run concurrent code on multiple 

processors

Can we expect a proportional 
speedup? (ratio between sequential 
time and parallel time for executing 
a job)

©	2018	P.	Kuznetsov		
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Amdahl’s Law

§  p – fraction of the work that can be done in 
parallel (no synchronization)

§  n -  the number of processors
§  Time one processor needs to complete the 

job = 1
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Challenges

§  What is a correct implementation?
ü Safety and liveness

§  What is the cost of synchronization?
ü Time and space lower bounds

§  Failures/asynchrony
ü Fault-tolerant concurrency?

§  How to distinguish possible from impossible? 
ü Impossibility results

©	2018	P.	Kuznetsov		
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Distributed ≠ Parallel

§  The main challenge is synchronization

§  “you know you have a distributed system 
when the crash of a computer you’ve never 
heard of stops you from getting any work 
done” (Lamport)
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History	

§  Dining	philosophers,	mutual	exclusion	
(Dijkstra	)~60’s	

§  Distributed	computing,	logical	clocks	(Lamport),	
distributed	transactions	(Gray)	~70’s	

§  Consensus	(Lynch)	~80’s	
§  Distributed	programming	models,		since	~90’s	
§  Multicores	and	large-scale	distributed	services	
now	
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Real concurrency--in which one program actually 
continues to function while you call up and use 
another--is more amazing but of small use to the 
average person. How many programs do you have that 
take more than a few seconds to perform any task?

New York Times, 25 April 1989, in an article on 
new operating systems for IBM PC

© 2018 P. Kuznetsov 
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Why synchronize ?
§  Concurrent access to a shared resource may lead to an 

inconsistent state 
ü E. g., concurrent file editing
ü Non-deterministic result (race condition): the resulting 

state depends on the scheduling of processes 

§  Concurrent accesses need to be synchronized
ü E. g., decide who is allowed to update a given part of the 

file at a given time

§  Code leading to a race condition is called critical 
section
ü Must be executed sequentially

§  Synchronization problems: mutual exclusion, readers-
writers, producer-consumer, …

© 2018 P. Kuznetsov 
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Dining philosophers 
(Dijkstra, 1965)

© 2018 P. Kuznetsov 

§  To make progress (to eat) each process 
(philosopher) needs two resources (forks)

§  Mutual exclusion: no fork can be shared 
§  Progress conditions:

ü Some philosopher does not starve (deadlock-
freedom)

ü No philosopher starves (starvation-freedom)

Edsger Dijkstra
1930-2002
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Mutual exclusion

§  No two processes are in their critical sections (CS) at the same 
time

+
§  Deadlock-freedom: at least one process eventually enters its CS
§  Starvation-freedom: every process eventually enters its CS

ü Assuming no process blocks in CS or Entry section

§  Originally: implemented by reading and writing
ü Peterson’s lock, Lamport’s bakery algorithm

§  Currently: in hardware (mutex, semaphores)

© 2018 P. Kuznetsov 
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Peterson’s lock: 2 processes

P0: 

flag[0] = true;
turn = 1;
while (flag[1] and turn==1)
{     

// busy wait
}
// critical section
…
// end of critical section
flag[0] = false;

© 2018 P. Kuznetsov 

P1: 

flag[1] = true;
turn = 0;
while (flag[0] and turn==0)
{     

// busy wait
}
// critical section
…
// end of critical section
flag[1] = false;

bool flag[0]   = false;
bool flag[1]   = false;
int turn;
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Peterson’s lock: N ≥ 2 processes
// initialization
level[0..N-1] = {-1};     // current level of processes 0...N-1
waiting[0..N-2] = {-1}; // the waiting process in each level 

// 0...N-2
 
// code for process i that wishes to enter CS
for (m = 0; m < N-1; ++m) { 
    level[i] = m;
    waiting[m] = i;
    while(waiting[m] == i &&(exists k ≠ i: level[k] ≥ m)) {
        // busy wait
    }
} 
// critical section
level[i] = -1; // exit section

© 2018 P. Kuznetsov 



19 

Bakery [Lamport’74,simplified]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS

flag[i] = true; //enter the “doorway”
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
//leave the “doorway”
while (for some k ≠ i: flag[k] and (label[k],k)<<(label[i],i));
// wait until all processes “ahead” are served
…
// critical section
…
flag[i] = false; // exit section

© 2018 P. Kuznetsov 

Processes are served in the “ticket order”: first-come-first-serve
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Bakery [Lamport’74,original]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS
flag[i] = true; //enter the doorway
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
flag[i] = false; //exit the doorway
for j=1 to N do {

while (flag[j]); //wait until j is not in the doorway
while (label[j]≠0 and (label[j],j)<<(label[i],i));
// wait until j is not “ahead”

}
…
// critical section
…
label[i] = 0; // exit section

© 2018 P. Kuznetsov 

Ticket withdrawal is “protected” with flags: a very useful trick: 
works with “safe” (non-atomic) shared variables
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Black-White Bakery [Taubenfeld’04]

© 2018 P. Kuznetsov 

Colored tickets => bounded variables!

// initialization
color: {black,white}; 
flag: array [1..N] of bool = {false};
label[1..N]: array of type {0,…,N} = {0}  //bounded ticket numbers
mycolor[1..N]: array of type {black,white}

// code for process i that wishes to enter CS
flag[i] = true; //enter the “doorway”
mycolor[i] =color; 
label[i] = 1 + max({label[j]| j=1,…,N: mycolor[i]=mycolor[j]}); 
flag[i] = false; //exit the “doorway”
for j=1 to N do
   while (flag[j]);
   if mycolor[j]=mycolor[i] then
      while (label[j]≠0 and (label[j],j)<<(label[i],i) and mycolor[j]=mycolor[i]  );
   else
      while (label[j]≠0 and mycolor[i]=color and mycolor[j] ≠ mycolor[i]);
// wait until all processes “ahead” of my color are served
…
// critical section
…
if mycolor[i]=black then color = white else color = black;
label[i] = 0; // exit section
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Quiz 1.1
§  What if we reverse the order of the first two lines the 

2-process Peterson’s algorithm 

    Would it work?
§  Prove that Peterson’s N-process algorithm ensures:

ü mutual exclusion: no two processes are in the critical 
section at a time 

ü starvation freedom: every process in the trying section 
eventually reaches the critical section (assuming no 
process fails in the trying, critical, or exit sections)

© 2018 P. Kuznetsov 

P0: 
turn = 1;
flag[0] = true;
…

P1: 
turn = 0;
flag[1] = true;
…
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How to treat a (computing) system 
formally 

§  Define models (tractability, realism)
§  Devise abstractions for the system design 

(convenience, efficiency)
§  Devise algorithms and determine complexity bounds
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Basic abstractions

§  Process abstraction – an entity  performing 
independent computation

§  Communication 
ü Message-passing: channel abstraction
ü Shared memory: objects

© 2018 P. Kuznetsov 
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Processes
§  Automaton Pi (i=1,...,N): 

ü States
ü Inputs
ü Outputs
ü Sequential specification 

Algorithm = {P1,…,PN}
§  Deterministic algorithms
§  Randomized algorithms

 
Pi 
 

Communication 
media 

Application 
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Shared memory
§  Processes communicate by applying operations on 

and receiving responses from shared objects
§  A shared object instantiates a state machine

ü States
ü Operations/Responses
ü Sequential specification

§  Examples: read-write registers, TAS,CAS,LL/SC,…

P1 

P2 

P3 

O1 Oj OM … … 
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Implementing an object
Using base objects, create an illusion that an object O 

is available

deq()	

x	

enq(x)	

ok	

empty	deq()	
Queue	

Base		
objects	

©	2018	P.	Kuznetsov		
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Correctness
What does it mean for an implementation to be 

correct?

§  Safety ≈ nothing bad ever happens
ü Can be violated in a finite execution, e.g., by 

producing a wrong output or sending an incorrect 
message

ü What the implementation is allowed to output

§  Liveness ≈ something good eventually happens
ü Can only be violated in an infinite execution, e.g.,
by never producing an expected output 
ü Under which condition the implementation outputs

©	2018	P.	Kuznetsov		
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In our context
Processes access an (implemented) abstraction 

(e.g., read-write buffer, a queue, a mutex) by 
invoking operations

§  An operation is implemented using a 
sequence of accesses to base objects 
§ E.g.: a  queue using reads, writes, TAS, etc. 

§  A process that never fails (stops taking steps) 
in the middle of its operation is called correct
§ We typically assume that a correct process 

invokes infinitely many operations, so a process is 
correct if it takes infinitely many steps

©	2018	P.	Kuznetsov		
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Runs
A system run is a sequence of events

ü E.g., actions that processes may take

Σ –  event alphabet
ü  E.g., all possible actions

Σω is the set all finite and infinite runs

A property P is a subset of Σω 
An implementation satisfies P if every its run is 

in P 

©	2018	P.	Kuznetsov		
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Safety properties
P is a safety property if:

§  P is prefix-closed: if σ is in P, then each prefix of 
σ is in P

§  P is limit-closed:  for each infinite sequence of 
traces σ0, σ1, σ2,…, such that each σi is a prefix 
of σi+1 and each σi is in P, the limit trace σ is in P

(Enough to prove safety for all finite traces of an 
algorithm)

©	2018	P.	Kuznetsov		
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Liveness properties

P is a liveness property if every finite σ (in Σ*, 
the set of all finite histories) has an extension 
in P  

(Enough to prove liveness for all infinite runs) 

A liveness property is dense: intersects with 
extensions of every finite trace  

©	2018	P.	Kuznetsov		
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Safety? Liveness?

§  Processes propose values and decide on values 
(distributed tasks):

Σ=Ui,v{proposei(v),decidei(v)}U{base-object accesses}

ü Every decided value was previously proposed
ü No two processes  decide differently
ü Every correct (taking infinitely many steps) 

process eventually decides
ü No two correct processes decide differently

©	2018	P.	Kuznetsov		
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Quiz 1.2: safety

1.  Let S be a safety property. Show that if all finite 
runs of an implementation I are safe (belong to 
S) then all runs of I are safe

2.  Show that every unsafe run σ has an unsafe 
finite prefix σ’: every extension of σ’ is unsafe

3.  Show that every property is an intersection of a 
safety property and a liveness property

©	2018	P.	Kuznetsov		
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How to distinguish safety and liveness: 
rules of thumb

Let P be a property (set of runs)
§  If every run that violates P is infinite

ü P is liveness
§  If every run that violates P has a finite prefix 

that violates P 
ü P is safety

§  Otherwise, P is a mixture of safety and 
liveness

© 2018 P. Kuznetsov 
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Example: implementing a 
concurrent queue

What is a concurrent FIFO queue?

ü FIFO means strict temporal order
ü Concurrent means ambiguous temporal order
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When we use a lock…
shared  

 items[]; 
 tail, head := 0  

 
deq() 
 
  lock.lock();                    
    if (tail = head)         
       x := empty; 
    else  
       x := items[head];       
       head++;       
  lock.unlock(); 
  return x;       
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Intuitively…
deq() 
 
  lock.lock();                    
    if (tail = head)         
       x := empty; 
    else  
       x := items[head];       
       head++;       
  lock.unlock(); 
  return x;       
     
  

All	modifications		
of	queue	are	done		
in	mutual	exclusion	
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time 

It Works

q.deq 

q.enq 

 enq  deq 

   lock() unlock() 

lock() unlock() 
Behavior	is	
“Sequential”	

enq 

deq 

We	describe	
the	concurrent	via	the	sequential		

© Nir Shavit 
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Linearizability (atomicity):  
A Safety Property

§  Each complete operation should
ü “take effect”
ü Instantaneously
ü Between invocation and response events

§  The history of a concurrent execution is 
correct if its “sequential equivalent” is correct

§  Need to define histories first
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Histories

A history is a sequence of invocation and 
responses
E.g., p1-enq(0), p2-deq(),p1-ok,p2-0,…

A history is sequential if every invocation is 
immediately followed by a corresponding 
response
E.g., p1-enq(0), p1-ok, p2-deq(),p2-0,…

(A sequential history has no concurrent operations)
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Histories

p1 

p2 

p3 

 enq(1)     ok 

deq()               0 

 enq(0)     ok 

 deq()   0  deq()     

	History:		
p1-enq(0);	p1-ok;	p3-deq();	p1-enq();	p3-0;				p3-deq();	p1-ok;	p2-

deq();	p2-0	
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Histories

p1 

p2 

p3 

 enq(1)      ok 

deq()       1 

 enq(0)      ok 

 deq()    0  deq() 

	History:		
p1-enq(0);	p1-ok;	p3-deq();	p3-0;	p1-enq(1);				p1-ok;	p2-deq();	p2-1;	

p3-deq();		
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Legal histories

A sequential history is legal if it satisfies the sequential 
specification of the shared object

§  (FIFO) queues:
Every deq returns the first not yet dequeued value

§  Read-write registers:
Every read returns the last written value 

(well-defined for sequential histories)
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Complete operations and completions

Let  H be a history
An operation op is complete in H if H contains 

both the invocation and the response of op
A completion of H is a history H’ that includes 

all complete operations of H and a subset of 
incomplete operations of H followed with 
matching responses  
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Complete operations and completions

p1 

p2 

p3 

 enq(1)      ok 

deq()             1 

 enq(0)     ok 

 enq(3)     ok  deq() 

 p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok;         
p3-deq(); p1 –ok; p2-deq(); p2-1;  
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Complete operations and completions

p1 

p2 

p3 

 enq(1)      ok 

deq()             1 

 enq(0)     ok 

 enq(3)     ok  deq() 

 p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok;         
p3-deq(); p1 –ok; p2-deq(); p2-1; p3-100 

 

 100 
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Complete operations and completions

p1 

p2 

p3 

 enq(1)      ok 

deq()             1 

 enq(0)     ok 

 enq(3)     ok 

 p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok;          
p1 –ok; p2-deq(); p2-1;  

 



50 

Equivalence
Histories H and H’ are equivalent if for all pi 

H | pi = H’| pi

E.g.:

H=p1-enq(0); p1-ok; p3-deq(); p3-3
H’=p1-enq(0); p3-deq(); p1-ok; p3-3
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Linearizability (atomicity)

A history H is linearizable if there exists a sequential 
legal history S such that:

§  S is equivalent to some completion of H
§  S preserves the precedence relation of H:

op1 precedes op2 in H => op1 precedes op2  in S 

What if: define a completion of H as any complete 
extension of H?
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Linearization points
An implementation is linearizable if every history 

it produces is linearizable

Informally, the complete operations (and some 
incomplete operations) in a history are seen 
as taking effect instantaneously at some time 
between their invocations and responses

Operations ordered by their linearization points 
constitute a legal (sequential) history 



53 ©	2018	P.	Kuznetsov		

Linearizable?

p1 

p2 

p3 

 enq(1)         ok 

deq()             2 

 enq(0)    ok 

 deq()     0  deq()     1 

 enq(2)         ok 



54 ©	2018	P.	Kuznetsov		

Linearizable?

p1 

p2 

p3 

 write(1)    ok 

read()      1 

 write(0)  ok 

 read()  0 write(3) ok 
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Linearizable?

p1 

p2 

p3 

 write(1)    ok 

read()      1 

 write(0)  ok 

 read()  0 write(3) ok 
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Linearizable?

p1 

p2 

p3 

 write(1)    ok 

read()      1 

 write(0)  ok 

 read() 0 write(3) ok 
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Linearizable?

p1 

p2 

p3 

 write(1)  ok 

read()       1 

 write(0)  ok 

 read()  0 write(3) ok Incorrect value! 



58 

Linearizable?

p1 

p2 

p3 

 write(1) ok 

read()         1 

 write(0)  ok 

 read()  1 write(3) 
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Linearizable?

p1 

p2 

p3 

 write(1)   ok 

read()         3 

 write(0) ok 

 read() 1 write(3) 
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Linearizable?

p1 

p2 

p3 

write(1)                        ok 

read()          0 

 write(0) ok 

 read()   1 
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Sequential consistency
A history H is sequentially consistent if there exists a 

sequential legal history S such that:
§  S is equivalent to some completion of H
§  S preserves the per-process order of H:

pi executes op1 before op2 in H => pi executes op1 
before op2 in S 

Why (strong) linearizability and not (weak) 
sequential consistency? 

©	2018	P.	Kuznetsov		
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Linearizability is compositional!
§  Any history on two linearizable objects A and B is a 

history of a linearizable composition (A,B)

§  A composition of two registers A and B is a two-field 
register (A,B)

p1 

p2 

 write(B,1)   ok 

read(A)          1 

 write(A,1)  ok 

 read(B)       1 
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Sequential consistency is not!
§  A composition of sequential consistent objects 

is not always sequentially consistent!

p1 

p2 

 write(B,1)   ok 

read(A)          0 

 write(A,1)  ok 

 read(B)      1 
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Linearizability is nonblocking
Every incomplete operation in a finite history 
can be independently completed

What safety property is blocking?

©	2018	P.	Kuznetsov		

p1 

p2 

enq(2)          ok 

 enq(1)   ok  deq() 
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Linearizability as safety
§  Prefix-closed: every prefix of a linearizable 

history is linearizable
§  Limit-closed: the limit of a sequence of 

linearizable histories is linearizable

(see Chapter 2 of the lecture notes)

An implementation is linearizable if and only if 
all its finite histories are linearizable

©	2018	P.	Kuznetsov		
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Why not using one lock?
§  Simple – automatic transformation of the 

sequential code
§  Correct – linearizability for free
§  In the best case, starvation-free: if the lock is 
“fair” and every process cooperates, every 
process makes progress  

§  Not robust to failures/asynchrony
ü  Cache misses, page faults, swap outs

§  Fine-grained locking?
ü  Complicated/prone to deadlocks 

©	2018	P.	Kuznetsov		



67 

Liveness properties
§  Deadlock-free:

ü If every process is correct*, some process makes progress** 
§  Starvation-free: 

ü If every process is correct, every process makes progress 

§  Lock-free (sometimes called non-blocking): 
ü Some correct process makes progress

§  Wait-free: 
ü Every correct process makes progress

§  Obstruction-free:  
ü Every process makes progress if it executes in isolation (it is the only 

correct process)

* A process is correct if it takes infinitely many steps. 
** Completes infinitely many operations.

©	2018	P.	Kuznetsov		
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Periodic table of liveness properties  
[©	2013	Herlihy&Shavit]

© 2018 Kuznetsov

independent   
non-blocking

dependent 
non-blocking

dependent
blocking

every process 
makes progress

wait-freedom obstruction-
freedom

starvation-freedom

some process 
makes progress

lock-freedom ? deadlock-freedom

What are the relations (weaker/stronger) between these 
progress properties?
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Quiz 1.3: liveness

§  Show how the elements of the “periodic table of 
progress” are related to each other

ü Hint: for each pair of properties, A and B, check if any run 
of A is a run of B (A is stronger than B), or if there exists a 
run of A that is not in B (A is not stronger than B)

ü Can be shown by transitivity: if A is stronger than B and B 
is stronger than C, then A is stronger than C 

   
© 2018 P. Kuznetsov 



70 

Liveness properties: relations
Property A is stronger than property B if every run satisfying A also satisfies B (A is a 
subset of B).
A is strictly stronger than B if, additionally, some run in B does not satisfy A, i.e., A is 
a proper subset of B.

For example:

§  WF is stronger than SF 
Every run that satisfies WF also satisfies SF: every correct process makes 
progress (regardless whether processes cooperate or not).
WF is actually strictly stronger than SF. Why?

§  SF and OF are incomparable (none of them is stronger than the other) 
There is a run that satisfies SF but not  OF: the run in which p1 is the only 
correct process but does not make progress.
There is a run that satisfies OF but not  SF: the run in which every process is 
correct but no process makes progress

© 2018 P. Kuznetsov 
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Quiz 1.4: linearizability

§  Show that the sequential queue implementation 
considered before is linearizable and wait-free as 
is if used by two processes: one performing only 
enqueue operations and one performing only 
dequeue operations

§  Devise a simple queue implementation shared by 
any number of processes in which enqueue and 
dequeue operations can run concurrently (data 
races between these operations are allowed) 

© 2018 P. Kuznetsov 


