
© 2018 P. Kuznetsov

Distributed Computing in Shared
Memory and Networks 

WEP 2018
KAUST

2

Human-machine future
« When people who can’t think logically design large
systems, those systems become incomprehensible. And
we start thinking of them as biological systems. And
since biological systems are too complex to understand,
it seems perfectly natural that computer programs
should be too complex to understand.

We should not accept this. »

Leslie Lamport, “Future of Computing: Logic or Biology”,
2003

© 2017 P. Kuznetsov

3

Roadmap
§  Consistency: safety and liveness
§  Consensus and universal construction
§  Distributed services: Paxos, BFT, Blockchains

Slides and exercises:
https://perso.telecom-paristech.fr/kuznetso/

WEP2018

© 2018 P. Kuznetsov

4

This course is about distributed
computing:

independent sequential processes
that communicate

©	2018	P.	Kuznetsov		

5

Concurrency is everywhere!

§  Multi-core processors
§  Sensor networks
§  Internet
§  …

©	2018	P.	Kuznetsov		

6

Communication models
§  Shared memory

ü Processes apply operations on
shared variables

ü Failures and asynchrony
§  Message passing

ü Processes send and receive
messages

ü Communication graphs
ü Message delays

©	2018	P.	Kuznetsov		

7

Moore’s	Law	and	CPU	speed	

©	2018	P.	Kuznetsov		

8

§  Single-processor performance does
not improve

§  But we can add more cores
§  Run concurrent code on multiple

processors

Can we expect a proportional
speedup? (ratio between sequential
time and parallel time for executing
a job)

©	2018	P.	Kuznetsov		

9

Amdahl’s Law

§  p – fraction of the work that can be done in
parallel (no synchronization)

§  n - the number of processors
§  Time one processor needs to complete the

job = 1

10

Challenges

§  What is a correct implementation?
ü Safety and liveness

§  What is the cost of synchronization?
ü Time and space lower bounds

§  Failures/asynchrony
ü Fault-tolerant concurrency?

§  How to distinguish possible from impossible?
ü Impossibility results

©	2018	P.	Kuznetsov		

11

Distributed ≠ Parallel

§  The main challenge is synchronization

§  “you know you have a distributed system
when the crash of a computer you’ve never
heard of stops you from getting any work
done” (Lamport)

12

History	

§  Dining	philosophers,	mutual	exclusion	
(Dijkstra)~60’s	

§  Distributed	computing,	logical	clocks	(Lamport),	
distributed	transactions	(Gray)	~70’s	

§  Consensus	(Lynch)	~80’s	
§  Distributed	programming	models,		since	~90’s	
§  Multicores	and	large-scale	distributed	services	
now	

13

Real concurrency--in which one program actually
continues to function while you call up and use
another--is more amazing but of small use to the
average person. How many programs do you have that
take more than a few seconds to perform any task?

New York Times, 25 April 1989, in an article on
new operating systems for IBM PC

© 2018 P. Kuznetsov

14

Why synchronize ?
§  Concurrent access to a shared resource may lead to an

inconsistent state
ü E. g., concurrent file editing
ü Non-deterministic result (race condition): the resulting

state depends on the scheduling of processes

§  Concurrent accesses need to be synchronized
ü E. g., decide who is allowed to update a given part of the

file at a given time

§  Code leading to a race condition is called critical
section
ü Must be executed sequentially

§  Synchronization problems: mutual exclusion, readers-
writers, producer-consumer, …

© 2018 P. Kuznetsov

15

Dining philosophers 
(Dijkstra, 1965)

© 2018 P. Kuznetsov

§  To make progress (to eat) each process
(philosopher) needs two resources (forks)

§  Mutual exclusion: no fork can be shared
§  Progress conditions:

ü Some philosopher does not starve (deadlock-
freedom)

ü No philosopher starves (starvation-freedom)

Edsger Dijkstra
1930-2002

16

Mutual exclusion

§  No two processes are in their critical sections (CS) at the same
time

+
§  Deadlock-freedom: at least one process eventually enters its CS
§  Starvation-freedom: every process eventually enters its CS

ü Assuming no process blocks in CS or Entry section

§  Originally: implemented by reading and writing
ü Peterson’s lock, Lamport’s bakery algorithm

§  Currently: in hardware (mutex, semaphores)

© 2018 P. Kuznetsov

17

Peterson’s lock: 2 processes

P0:

flag[0] = true;
turn = 1;
while (flag[1] and turn==1)
{

// busy wait
}
// critical section
…
// end of critical section
flag[0] = false;

© 2018 P. Kuznetsov

P1:

flag[1] = true;
turn = 0;
while (flag[0] and turn==0)
{

// busy wait
}
// critical section
…
// end of critical section
flag[1] = false;

bool flag[0] = false;
bool flag[1] = false;
int turn;

18

Peterson’s lock: N ≥ 2 processes
// initialization
level[0..N-1] = {-1}; // current level of processes 0...N-1
waiting[0..N-2] = {-1}; // the waiting process in each level

// 0...N-2

// code for process i that wishes to enter CS
for (m = 0; m < N-1; ++m) {
 level[i] = m;
 waiting[m] = i;
 while(waiting[m] == i &&(exists k ≠ i: level[k] ≥ m)) {
 // busy wait
 }
}
// critical section
level[i] = -1; // exit section

© 2018 P. Kuznetsov

19

Bakery [Lamport’74,simplified]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS

flag[i] = true; //enter the “doorway”
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
//leave the “doorway”
while (for some k ≠ i: flag[k] and (label[k],k)<<(label[i],i));
// wait until all processes “ahead” are served
…
// critical section
…
flag[i] = false; // exit section

© 2018 P. Kuznetsov

Processes are served in the “ticket order”: first-come-first-serve

20

Bakery [Lamport’74,original]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS
flag[i] = true; //enter the doorway
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
flag[i] = false; //exit the doorway
for j=1 to N do {

while (flag[j]); //wait until j is not in the doorway
while (label[j]≠0 and (label[j],j)<<(label[i],i));
// wait until j is not “ahead”

}
…
// critical section
…
label[i] = 0; // exit section

© 2018 P. Kuznetsov

Ticket withdrawal is “protected” with flags: a very useful trick:
works with “safe” (non-atomic) shared variables

21

Black-White Bakery [Taubenfeld’04]

© 2018 P. Kuznetsov

Colored tickets => bounded variables!

// initialization
color: {black,white};
flag: array [1..N] of bool = {false};
label[1..N]: array of type {0,…,N} = {0} //bounded ticket numbers
mycolor[1..N]: array of type {black,white}

// code for process i that wishes to enter CS
flag[i] = true; //enter the “doorway”
mycolor[i] =color;
label[i] = 1 + max({label[j]| j=1,…,N: mycolor[i]=mycolor[j]});
flag[i] = false; //exit the “doorway”
for j=1 to N do
 while (flag[j]);
 if mycolor[j]=mycolor[i] then
 while (label[j]≠0 and (label[j],j)<<(label[i],i) and mycolor[j]=mycolor[i]);
 else
 while (label[j]≠0 and mycolor[i]=color and mycolor[j] ≠ mycolor[i]);
// wait until all processes “ahead” of my color are served
…
// critical section
…
if mycolor[i]=black then color = white else color = black;
label[i] = 0; // exit section

22

Quiz 1.1
§  What if we reverse the order of the first two lines the

2-process Peterson’s algorithm

 Would it work?
§  Prove that Peterson’s N-process algorithm ensures:

ü mutual exclusion: no two processes are in the critical
section at a time

ü starvation freedom: every process in the trying section
eventually reaches the critical section (assuming no
process fails in the trying, critical, or exit sections)

© 2018 P. Kuznetsov

P0:
turn = 1;
flag[0] = true;
…

P1:
turn = 0;
flag[1] = true;
…

© 2018 P. Kuznetsov

Distributed Computing in Shared
Memory and Networks 

 
Correctness: safety and liveness

WEP 2018
KAUST

24 ©	2018	P.	Kuznetsov		

How to treat a (computing) system 
formally

§  Define models (tractability, realism)
§  Devise abstractions for the system design

(convenience, efficiency)
§  Devise algorithms and determine complexity bounds

25

Basic abstractions

§  Process abstraction – an entity performing
independent computation

§  Communication
ü Message-passing: channel abstraction
ü Shared memory: objects

© 2018 P. Kuznetsov

26 ©	2018	P.	Kuznetsov		

Processes
§  Automaton Pi (i=1,...,N):

ü States
ü Inputs
ü Outputs
ü Sequential specification

Algorithm = {P1,…,PN}
§  Deterministic algorithms
§  Randomized algorithms

Pi

Communication
media

Application

27 ©	2018	P.	Kuznetsov		

Shared memory
§  Processes communicate by applying operations on

and receiving responses from shared objects
§  A shared object instantiates a state machine

ü States
ü Operations/Responses
ü Sequential specification

§  Examples: read-write registers, TAS,CAS,LL/SC,…

P1

P2

P3

O1 Oj OM … …

28

Implementing an object
Using base objects, create an illusion that an object O

is available

deq()	

x	

enq(x)	

ok	

empty	deq()	
Queue	

Base		
objects	

©	2018	P.	Kuznetsov		

29

Correctness
What does it mean for an implementation to be

correct?

§  Safety ≈ nothing bad ever happens
ü Can be violated in a finite execution, e.g., by

producing a wrong output or sending an incorrect
message

ü What the implementation is allowed to output

§  Liveness ≈ something good eventually happens
ü Can only be violated in an infinite execution, e.g.,
by never producing an expected output
ü Under which condition the implementation outputs

©	2018	P.	Kuznetsov		

30

In our context
Processes access an (implemented) abstraction

(e.g., read-write buffer, a queue, a mutex) by
invoking operations

§  An operation is implemented using a
sequence of accesses to base objects
§ E.g.: a queue using reads, writes, TAS, etc.

§  A process that never fails (stops taking steps)
in the middle of its operation is called correct
§ We typically assume that a correct process

invokes infinitely many operations, so a process is
correct if it takes infinitely many steps

©	2018	P.	Kuznetsov		

31

Runs
A system run is a sequence of events

ü E.g., actions that processes may take

Σ – event alphabet
ü  E.g., all possible actions

Σω is the set all finite and infinite runs

A property P is a subset of Σω
An implementation satisfies P if every its run is

in P

©	2018	P.	Kuznetsov		

32

Safety properties
P is a safety property if:

§  P is prefix-closed: if σ is in P, then each prefix of
σ is in P

§  P is limit-closed: for each infinite sequence of
traces σ0, σ1, σ2,…, such that each σi is a prefix
of σi+1 and each σi is in P, the limit trace σ is in P

(Enough to prove safety for all finite traces of an
algorithm)

©	2018	P.	Kuznetsov		

33

Liveness properties

P is a liveness property if every finite σ (in Σ*,
the set of all finite histories) has an extension
in P

(Enough to prove liveness for all infinite runs)

A liveness property is dense: intersects with
extensions of every finite trace

©	2018	P.	Kuznetsov		

34

Safety? Liveness?

§  Processes propose values and decide on values
(distributed tasks):

Σ=Ui,v{proposei(v),decidei(v)}U{base-object accesses}

ü Every decided value was previously proposed
ü No two processes decide differently
ü Every correct (taking infinitely many steps)

process eventually decides
ü No two correct processes decide differently

©	2018	P.	Kuznetsov		

35

Quiz 1.2: safety

1.  Let S be a safety property. Show that if all finite
runs of an implementation I are safe (belong to
S) then all runs of I are safe

2.  Show that every unsafe run σ has an unsafe
finite prefix σ’: every extension of σ’ is unsafe

3.  Show that every property is an intersection of a
safety property and a liveness property

©	2018	P.	Kuznetsov		

36

How to distinguish safety and liveness: 
rules of thumb

Let P be a property (set of runs)
§  If every run that violates P is infinite

ü P is liveness
§  If every run that violates P has a finite prefix

that violates P
ü P is safety

§  Otherwise, P is a mixture of safety and
liveness

© 2018 P. Kuznetsov

37

Example: implementing a
concurrent queue

What is a concurrent FIFO queue?

ü FIFO means strict temporal order
ü Concurrent means ambiguous temporal order

38 © Nir Shavit

When we use a lock…
shared

 items[];
 tail, head := 0

deq()

 lock.lock();
 if (tail = head)
 x := empty;
 else
 x := items[head];
 head++;
 lock.unlock();
 return x;

39 © Nir Shavit

Intuitively…
deq()

 lock.lock();
 if (tail = head)
 x := empty;
 else
 x := items[head];
 head++;
 lock.unlock();
 return x;

All	modifications		
of	queue	are	done		
in	mutual	exclusion	

40

time

It Works

q.deq

q.enq

 enq deq

 lock() unlock()

lock() unlock()
Behavior	is	
“Sequential”	

enq

deq

We	describe	
the	concurrent	via	the	sequential		

© Nir Shavit

41

Linearizability (atomicity):  
A Safety Property

§  Each complete operation should
ü “take effect”
ü Instantaneously
ü Between invocation and response events

§  The history of a concurrent execution is
correct if its “sequential equivalent” is correct

§  Need to define histories first

42 ©	2018	P.	Kuznetsov		

Histories

A history is a sequence of invocation and
responses
E.g., p1-enq(0), p2-deq(),p1-ok,p2-0,…

A history is sequential if every invocation is
immediately followed by a corresponding
response
E.g., p1-enq(0), p1-ok, p2-deq(),p2-0,…

(A sequential history has no concurrent operations)

43 ©	2018	P.	Kuznetsov		

Histories

p1

p2

p3

 enq(1) ok

deq() 0

 enq(0) ok

 deq() 0 deq()

	History:		
p1-enq(0);	p1-ok;	p3-deq();	p1-enq();	p3-0;				p3-deq();	p1-ok;	p2-

deq();	p2-0	

44 ©	2018	P.	Kuznetsov		

Histories

p1

p2

p3

 enq(1) ok

deq() 1

 enq(0) ok

 deq() 0 deq()

	History:		
p1-enq(0);	p1-ok;	p3-deq();	p3-0;	p1-enq(1);				p1-ok;	p2-deq();	p2-1;	

p3-deq();		

45

Legal histories

A sequential history is legal if it satisfies the sequential
specification of the shared object

§  (FIFO) queues:
Every deq returns the first not yet dequeued value

§  Read-write registers:
Every read returns the last written value

(well-defined for sequential histories)

46

Complete operations and completions

Let H be a history
An operation op is complete in H if H contains

both the invocation and the response of op
A completion of H is a history H’ that includes

all complete operations of H and a subset of
incomplete operations of H followed with
matching responses

47

Complete operations and completions

p1

p2

p3

 enq(1) ok

deq() 1

 enq(0) ok

 enq(3) ok deq()

 p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok;
p3-deq(); p1 –ok; p2-deq(); p2-1;

48

Complete operations and completions

p1

p2

p3

 enq(1) ok

deq() 1

 enq(0) ok

 enq(3) ok deq()

 p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok;
p3-deq(); p1 –ok; p2-deq(); p2-1; p3-100

 100

49

Complete operations and completions

p1

p2

p3

 enq(1) ok

deq() 1

 enq(0) ok

 enq(3) ok

 p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok;
p1 –ok; p2-deq(); p2-1;

50

Equivalence
Histories H and H’ are equivalent if for all pi

H | pi = H’| pi

E.g.:

H=p1-enq(0); p1-ok; p3-deq(); p3-3
H’=p1-enq(0); p3-deq(); p1-ok; p3-3

51

Linearizability (atomicity)

A history H is linearizable if there exists a sequential
legal history S such that:

§  S is equivalent to some completion of H
§  S preserves the precedence relation of H:

op1 precedes op2 in H => op1 precedes op2 in S

What if: define a completion of H as any complete
extension of H?

52 ©	2018	P.	Kuznetsov		

Linearization points
An implementation is linearizable if every history

it produces is linearizable

Informally, the complete operations (and some
incomplete operations) in a history are seen
as taking effect instantaneously at some time
between their invocations and responses

Operations ordered by their linearization points
constitute a legal (sequential) history

53 ©	2018	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 enq(1) ok

deq() 2

 enq(0) ok

 deq() 0 deq() 1

 enq(2) ok

54 ©	2018	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok

55 ©	2018	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok

56 ©	2018	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok

57 ©	2018	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok Incorrect value!

58

Linearizable?

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 1 write(3)

59 ©	2018	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 write(1) ok

read() 3

 write(0) ok

 read() 1 write(3)

60 ©	2018	P.	Kuznetsov		

Linearizable?

p1

p2

p3

write(1) ok

read() 0

 write(0) ok

 read() 1

61

Sequential consistency
A history H is sequentially consistent if there exists a

sequential legal history S such that:
§  S is equivalent to some completion of H
§  S preserves the per-process order of H:

pi executes op1 before op2 in H => pi executes op1
before op2 in S

Why (strong) linearizability and not (weak)
sequential consistency?

©	2018	P.	Kuznetsov		

62

Linearizability is compositional!
§  Any history on two linearizable objects A and B is a

history of a linearizable composition (A,B)

§  A composition of two registers A and B is a two-field
register (A,B)

p1

p2

 write(B,1) ok

read(A) 1

 write(A,1) ok

 read(B) 1

63

Sequential consistency is not!
§  A composition of sequential consistent objects

is not always sequentially consistent!

p1

p2

 write(B,1) ok

read(A) 0

 write(A,1) ok

 read(B) 1

64

Linearizability is nonblocking
Every incomplete operation in a finite history
can be independently completed

What safety property is blocking?

©	2018	P.	Kuznetsov		

p1

p2

enq(2) ok

 enq(1) ok deq()

65

Linearizability as safety
§  Prefix-closed: every prefix of a linearizable

history is linearizable
§  Limit-closed: the limit of a sequence of

linearizable histories is linearizable

(see Chapter 2 of the lecture notes)

An implementation is linearizable if and only if
all its finite histories are linearizable

©	2018	P.	Kuznetsov		

66

Why not using one lock?
§  Simple – automatic transformation of the

sequential code
§  Correct – linearizability for free
§  In the best case, starvation-free: if the lock is
“fair” and every process cooperates, every
process makes progress

§  Not robust to failures/asynchrony
ü  Cache misses, page faults, swap outs

§  Fine-grained locking?
ü  Complicated/prone to deadlocks

©	2018	P.	Kuznetsov		

67

Liveness properties
§  Deadlock-free:

ü If every process is correct*, some process makes progress**
§  Starvation-free:

ü If every process is correct, every process makes progress

§  Lock-free (sometimes called non-blocking):
ü Some correct process makes progress

§  Wait-free:
ü Every correct process makes progress

§  Obstruction-free:
ü Every process makes progress if it executes in isolation (it is the only

correct process)

* A process is correct if it takes infinitely many steps.
** Completes infinitely many operations.

©	2018	P.	Kuznetsov		

68

Periodic table of liveness properties  
[©	2013	Herlihy&Shavit]

© 2018 Kuznetsov

independent
non-blocking

dependent
non-blocking

dependent
blocking

every process
makes progress

wait-freedom obstruction-
freedom

starvation-freedom

some process
makes progress

lock-freedom ? deadlock-freedom

What are the relations (weaker/stronger) between these
progress properties?

69

Quiz 1.3: liveness

§  Show how the elements of the “periodic table of
progress” are related to each other

ü Hint: for each pair of properties, A and B, check if any run
of A is a run of B (A is stronger than B), or if there exists a
run of A that is not in B (A is not stronger than B)

ü Can be shown by transitivity: if A is stronger than B and B
is stronger than C, then A is stronger than C

© 2018 P. Kuznetsov

70

Liveness properties: relations
Property A is stronger than property B if every run satisfying A also satisfies B (A is a
subset of B).
A is strictly stronger than B if, additionally, some run in B does not satisfy A, i.e., A is
a proper subset of B.

For example:

§  WF is stronger than SF
Every run that satisfies WF also satisfies SF: every correct process makes
progress (regardless whether processes cooperate or not).
WF is actually strictly stronger than SF. Why?

§  SF and OF are incomparable (none of them is stronger than the other)
There is a run that satisfies SF but not OF: the run in which p1 is the only
correct process but does not make progress.
There is a run that satisfies OF but not SF: the run in which every process is
correct but no process makes progress

© 2018 P. Kuznetsov

71

Quiz 1.4: linearizability

§  Show that the sequential queue implementation
considered before is linearizable and wait-free as
is if used by two processes: one performing only
enqueue operations and one performing only
dequeue operations

§  Devise a simple queue implementation shared by
any number of processes in which enqueue and
dequeue operations can run concurrently (data
races between these operations are allowed)

© 2018 P. Kuznetsov

