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Set of runs

Processes steps interleaving

De�ne rules on processes steps ordering:

• wait-free model

• t-resilience

• Adversaries

• . . .

k-concurrency

Between the �rst and last step of a process, at most k − 1 other
processes performed steps.
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Shared memory + distributed objects

Diversity of available objects

• Test-and-Set

• Stacks

• Compare-and-Swap

• . . .

k-set-consensus
Processes propose a value v , and, if correct, returns a decision,
such that, a decision is a proposed value and at most k distinct
values are returned.
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Model as (a�ne) tasks

Takeaway

A (long-lived, non-compact) model can be matched by a (one-shot,
compact) task.

Fair Adversaries
have a matching a�ne task.

Superseeds a�ne tasks for t-resilience [SHG16] and
k-concurrency [GHKR16].
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1 Agreement functions
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4 Sketch Proof of the Equivalence

Introduction 6



1 Agreement functions

2 Topological Representations and the IIS Model

3 A�ne Tasks for Fair Adversaries

4 Sketch Proof of the Equivalence

Agreement functions 7



Agreement function

Agreement function:

The agreement function of a model M is a function α : 2Π →
{0, . . . , n}, such that for each P ∈ 2Π, in the set of runs of M

in which no process in Π \ P participates, iterations of α(P)-set
consensus can be solved, but (α(P)− 1)-set consensus cannot.
By convention it is equal to 0, if no (in�nite) runs with participating
set P exists in M.

Monotonicity: For any model, if P ⊆ P ′ then α(P) ≤ α(P ′).
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Generic agreement function model

α-model:

The α-model is the set of runs in which, the participating set P is
such that:
• alpha(P) ≥ 1;

• at most α(P)− 1 participating processes are faulty.
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Universality of the α-model

[KR17]

Monotonic α-model belong to the weakest class of models with
agreement function α.

Proof sketch:

• The agreement function of the α-model is α;

• A model with agreement function α can solve an α-adaptive
set consensus.

• Any task solvable in the α-model can be solved in a model M
with agreement function α.
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Fair Adversaries

Adversaries[DFGT09]:

• An adversary A is a set of processes sets, called live-sets.

• An A-compliant run is an in�nite run where the set of correct
processes is a live set of A.

• The adversarial A-model is the set of A-compliant runs.

• The agreement function of an adversary is
αA = setcon(A|P) [GK10].

Fair adveraries:

An adversary A is fair if and ony if:
∀P,Q ⊆ Π, setcon({L ∈ A|P , L∩Q 6= ∅}) = min(setcon(A|P), |Q|).
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Equivalence with α-model[KR17]

Symmetric and superset-closed adversaries are fair adversaries.

A fair adversary with agreement function α is equivalent to the α-
model.

The agreement function α of an adversary is regular:
∀P,Q ⊆ Π,P ∪ Q = ∅, α(P ∪ Q) ≤ α(P) + |Q|.
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Immediate snapshot object

An object with a single operation:

• Takes a value vi ;

• Returns a set of submitted values Vir .

Immediate Snapshot Properties:

• self-inclusion: vi ∈ Vir ;

• containment: (Vir ⊆ Vjr ) ∨ (Vjr ⊆ Vir );

• immediacy: vi ∈ Vjr ⇒ Vir ⊆ Vjr .
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Immediate snapshot algorithm
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Topological representation

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

Standard chromatic subdivision
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Example of IS runs

p1 p2 p3 p3

p1 p2 p1

p2 p2

Ordered run:
{p2}, {p1}, {p3}
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Example of IS runs

p1 p2 p3

p3

p1

p2 Synchronous
run: {p1, p2, p3}
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Tasks

Distributed task (I,O,∆):

• I: Input complex, i.e., set of valid inputs combinations;

• O: Output complex, i.e., set of valid outputs combinations;

• ∆: Carrier map, function from I to 2O:
Subset of outputs valid for an input combination.
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Simplex agreement task

I : O :

Topological Representations and the IIS Model 19



Simplex agreement task

I : O :
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Simplex agreement task

I : O :
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IIS as iteration of the task

Going through a sequence of immediate snapshots

(IIS) consists in an in�nite sequence of memories that can each be
accessed only once by any process.

IS1, IS2, . . . , ISm, . . .
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Iterated subdivisions

2nd Iteration of the standard chromatic subdivision
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Wait-free task computability

Read-write (RW) model and IIS are equiva-
lent[BG93,BG97,GR10]

A task is solvable in IIS if and only if it is wait-free solvable in RW.

Asynchronous computability theorem[HS93]

A task (I,O,∆) is wait-free read-write solvable if and only if there
is a chromatic simplicial map from a subdivision χ(I) to O carried
by ∆.
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A�ne tasks

IS is the matching task for wait-free runs

What about model stronger than wait-free?

Use restrictions of the wait-free task

A task de�ned as the simplex agreement
task:

• I: n-dimensional simplex s.

• O: L ⊂ Chrm(s).

• ∆: ∆(σ) = {σ′ ∈ O, |σ′| ⊆ |σ|}.
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Multiple Iterations (may be) required

1-OF adversary cannot be captured as an a�ne task of
Chr(s):

Ordered run:
{p2}, {p1}, {p3}

⇒
The corners remain connected under iterations.
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Contention Simplices.

2-Contention simplex:

σ ∈ Chr2s such that: ∀v , v ′ ∈ σ, v 6= v ′ :
((View1(v) ( View1(v ′)) ∧ (View2(v ′) ( View2(v)))∨
((View1(v ′) ( View1(v)) ∧ (View2(v) ( View2(v ′))).

Set of vertices with a reverse inclusion ordering in the two levels of
subdivision.
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Contention Simplices for 3 Processes
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Critical Simplices.

Critical simplex:

σ ∈ Chrs such that:
(∀v ∈ σ : carrier(v , s) = carrier(σ, s))∧

(α(χ(carrier(σ, s)) \ χ(σ)) < α(χ(carrier(σ, s)))).

Set of vertices of the �rst subdivision acting as a "joint" leader.
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Critical Simplices Example

Critical simplices for the 1-Obstruction free adversary.
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Critical Simplices Example

Critical simplices for the superset-closed adversary induced by {p1}
and {p2, p3}.
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Induced Concurrency Map

Concurrency map for the 1-Obstruction free adversary.
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Induced Concurrency Map

Concurrency map for the superset-closed adversary induced by {p1}
and {p2, p3}.
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A�ne task for regular α-models.

A�ne task Rα:

σ ∈ Chr2s, dim(σ) = n − 1 : σ ∈ Rα if and only if:
∀θ ⊆ σ, θ′ = carrier(θ,Chrs) :

(θ ∈ Cont2) ∧ (χ(θ) ∩ (χ(CSMα(carrier(σ,Chrs))) ∪ χ(CSVα(θ′))) = ∅
=⇒ dim(θ)− 1 ≤ Concα(θ′).

• With CSMα the set of critical simplices "members".

• With CSVα the "view" associated to a critical simplex.
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Example of Rα (1/2)

A�ne task for the 1-Obstruction free adversary.
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Example of Rα (2/2)

A�ne task for the superset-closed adversary induced by {p1} and
{p2, p3}.
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Solving Rα

A simple algorithm:

1 Execute First Immedate Snapshot Algorithm;

2 Write Result to Shared Memory;

3 Wait Until Condition is Satis�ed;

4 Execute Second Immedate Snapshot Algorithm;

5 Write Result to Shared Memory;
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Wait Condition

The wait condition is satis�ed when eiter:

• Outputs of IS1 indicate that p is a critical simplex member.

• The following conditions are all satis�ed:
• All members of a critical simplex "associated to" a

concurrency level of k. have written an IS2 output.
• The number of processes without an IS2 output in p IS1 view

which are not a critical simplex member is stricly smaller than

k.
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Validity of the algorithms.

The safety property directly derives from the fact that the wait
condition is "stricter" than the required properties:

A�ne task Rα:

σ ∈ Chr2s, dim(σ) = n − 1 : σ ∈ Rα if and only if:

∀θ ⊆ σ, θ′ = carrier(θ,Chrs) :
(θ ∈ Cont2) ∧ (χ(θ) ∩ (χ(CSMα(carrier(σ,Chrs))) ∪ χ(CSVα(θ′))) = ∅

=⇒ dim(θ)− 1 ≤ Concα(θ′).
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Algorithm Liveness

Intuition of the liveness validity:

• A process failure can block in IS1 a limited number of critical
simplexes.
(The minimal hitting set size of critical simplices is greater
than the resilience level.)

• A process failure cannot block critical simplex members are
non-critical simplex number at the same time.

⇒ The number of correct processes with a smaller IS1 view "scales"
with the concurrency provided with terminated critical simplexes.
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From Rα to the α-Model

Shared memory simulation:

• Shared memory is simulated using the algorithm from [GR10]
using iterated snapshots.

• It is executed on Rα outputs views, all processes observed
directly or indirectly in IS2.

• If a process does not know what to write, it re-write the last
written value.

• Processes stop participating when they have obtain a task
output.

The simulation [GR10], ensures that eventually, all processes with
the smallest round snapshot complete a new memory operation.
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From Rα to the α-Model

α-adaptive set-consensus among active processes A:

At every round, processes execute this algorithm:
• Share every agreement operation current decision estimate to
Rα;

• If there is a process in µA with a proposal then :
• Adopt the minimal proposal in µA;

• If every process in µA ∩ A has a set consensus proposal for a
given agreement, then:

• Write the initial state of every process in µA to the shared

memory;
• return the minimal proposal in µA;
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Simplicial map µA:

µA(v) = if (χ(CSVα(carrier(v ,Chrs))) ∩ A 6= ∅)

then χ(min({carrier(σ′, s) : (σ′ ∈ CSα(carrier(v ,Chrs)) :
χ(carrier(σ′, s)) ∩ A 6= ∅)})

else χ(min({carrier(v ′, s) : (v ′ ∈ carrier(v ,Chrs))∧
(dim(v ′) = 1) ∧ (carrier(v ′, s) ∩ A 6= ∅)}).
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Topological Characterization of Task Solvability

Regular α-Model ACT

A task (I,O,∆) is solvable in a regular α-model if and only if there
exists N ∈ N and a chromatic simplicial map φ that maps from
RN

α (I) to O and is carried by ∆.

Fair Adversaries ACT

A task (I,O,∆) is solvable in an adversarial A-model if and only
if there exists N ∈ N and a chromatic simplicial map φ that maps
from RN

αA(I) to O and is carried by ∆.

Sketch Proof of the Equivalence 46



Conclusion

Compact representation of non-compact models:

• k-concurrency and k-set-agreement[GHKR16];

• t-resilience[SHG16];

• Fair adversaries;

• Regular α-models;

• General Adversaries?

• Collection of k-set-consensus?

Conjecture: possible for all �natural models�.

3-process, R/W wait-free solvability of tasks are
undecidable[GK95,HR97]

Conjecture: relations between models (a�ne tasks) are decidable.
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Questions?

Thank You!
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