Affine tasks for distributed computing models

Petr Kuznetsov¹ and Thibault Rieutord¹ Joint work with Eli Gafni² and Yuan He²

¹ LTCI, Télécom ParisTech, Université Paris Saclay ² UCLA

8th of March 2017

A large diversity of models

Set of runs

Processes steps interleaving

Define rules on processes steps ordering:

- wait-free model
- *t*-resilience
- Adversaries
- •

k-concurrency

Between the first and last step of a process, at most k - 1 other processes performed steps.

Shared memory + distributed objects

Diversity of available objects

- Test-and-Set
- Stacks
- Compare-and-Swap
- •

k-set-consensus

Processes propose a value v, and, if correct, returns a decision, such that, a decision is a proposed value and at most k distinct values are returned.

Model as (affine) tasks

Takeaway

A (long-lived, non-compact) model can be matched by a (one-shot, compact) task.

Fair Adversaries have a matching affine task.

Superseeds affine tasks for *t*-resilience [SHG16] and *k*-concurrency [GHKR16].

Introduction

Overview of the Presentation

1 Agreement functions

2 Topological Representations and the IIS Model

3 Affine Tasks for Fair Adversaries

4 Sketch Proof of the Equivalence

1 Agreement functions

- **2** Topological Representations and the IIS Model
- **3** Affine Tasks for Fair Adversaries
- **4** Sketch Proof of the Equivalence

Agreement function

Agreement function:

The agreement function of a model M is a function $\alpha : 2^{\Pi} \rightarrow \{0, \ldots, n\}$, such that for each $P \in 2^{\Pi}$, in the set of runs of M in which no process in $\Pi \setminus P$ participates, iterations of $\alpha(P)$ -set consensus can be solved, but $(\alpha(P) - 1)$ -set consensus cannot. By convention it is equal to 0, if no (infinite) runs with participating set P exists in M.

Monotonicity: For any model, if $P \subseteq P'$ then $\alpha(P) \leq \alpha(P')$.

Generic agreement function model

α -model:

The α -model is the set of runs in which, the participating set P is such that:

- $alpha(P) \geq 1;$
- at most $\alpha(P)-1$ participating processes are faulty.

Universality of the α -model

[KR17]

Monotonic α -model belong to the *weakest class* of models with agreement function α .

Proof sketch:

- The agreement function of the α -model is α ;
- A model with agreement function α can solve an α -adaptive set consensus.
- Any task solvable in the α -model can be solved in a model M with agreement function α .

Fair Adversaries

Adversaries[DFGT09]:

- \bullet An adversary ${\cal A}$ is a set of processes sets, called live-sets.
- An *A*-compliant run is an infinite run where the set of correct processes is a live set of *A*.
- The adversarial \mathcal{A} -model is the set of \mathcal{A} -compliant runs.
- The agreement function of an adversary is $\alpha_{\mathcal{A}} = setcon(\mathcal{A}|_{\mathcal{P}})$ [GK10].

Fair Adversaries

Adversaries[DFGT09]:

- \bullet An adversary ${\cal A}$ is a set of processes sets, called live-sets.
- An *A*-compliant run is an infinite run where the set of correct processes is a live set of *A*.
- The adversarial A-model is the set of A-compliant runs.
- The agreement function of an adversary is $\alpha_{\mathcal{A}} = setcon(\mathcal{A}|_{\mathcal{P}})$ [GK10].

Fair adveraries:

An adversary \mathcal{A} is fair if and ony if: $\forall P, Q \subseteq \Pi, setcon(\{L \in \mathcal{A}|_P, L \cap Q \neq \emptyset\}) = min(setcon(\mathcal{A}|_P), |Q|).$

Agreement functions

Equivalence with α -model[KR17]

Symmetric and superset-closed adversaries are fair adversaries.

A fair adversary with agreement function α is equivalent to the $\alpha\text{-}$ model.

The agreement function α of an adversary is *regular*: $\forall P, Q \subseteq \Pi, P \cup Q = \emptyset, \alpha(P \cup Q) \le \alpha(P) + |Q|.$

Agreement functions

2 Topological Representations and the IIS Model

3 Affine Tasks for Fair Adversaries

4 Sketch Proof of the Equivalence

Immediate snapshot object

An object with a single operation:

- Takes a value v_i;
- Returns a set of submitted values Vir.

Immediate Snapshot Properties:

- self-inclusion: $v_i \in V_{ir}$;
- containment: $(V_{ir} \subseteq V_{jr}) \lor (V_{jr} \subseteq V_{ir});$
- immediacy: $v_i \in V_{jr} \Rightarrow V_{ir} \subseteq V_{jr}$.

Topological Representations and the IIS Model

Topological representation

Topological Representations and the IIS Model

Example of IS runs

Example of IS runs

Topological Representations and the IIS Model

Tasks

Distributed task $(\mathcal{I}, \mathcal{O}, \Delta)$:

- \mathcal{I} : Input complex, i.e., set of valid inputs combinations;
- O: Output complex, i.e., set of valid outputs combinations;
- Δ: Carrier map, function from I to 2^O: Subset of outputs valid for an input combination.

Simplex agreement task

Simplex agreement task

Topological Representations and the IIS Model

Simplex agreement task

IIS as iteration of the task

Going through a sequence of immediate snapshots

(IIS) consists in an infinite sequence of memories that can each be accessed only once by any process.

 $IS^{1}, IS^{2}, \ldots, IS^{m}, \ldots$

Iterated subdivisions

2nd Iteration of the standard chromatic subdivision

Wait-free task computability

Read-write (RW) model and IIS are equivalent[BG93,BG97,GR10]

A task is solvable in IIS if and only if it is wait-free solvable in RW.

Asynchronous computability theorem[HS93]

A task $(\mathcal{I}, \mathcal{O}, \Delta)$ is wait-free read-write solvable if and only if there is a chromatic simplicial map from a subdivision $\chi(\mathcal{I})$ to \mathcal{O} carried by Δ .

Agreement functions

2 Topological Representations and the IIS Model

3 Affine Tasks for Fair Adversaries

4 Sketch Proof of the Equivalence

Affine tasks

IS is the matching task for wait-free runs

What about model stronger than wait-free?

Use restrictions of the wait-free task

A task defined as the simplex agreement task:

- *I*: *n*-dimensional simplex *s*.
- \mathcal{O} : $L \subset Chr^m(s)$.
- $\Delta: \Delta(\sigma) = \{\sigma' \in \mathcal{O}, |\sigma'| \subseteq |\sigma|\}.$

Multiple Iterations (may be) required

1-OF adversary cannot be captured as an affine task of Chr(s):

The corners remain connected under iterations.

Contention Simplices.

2-Contention simplex:

$$\sigma \in Chr^2 s \text{ such that: } \forall v, v' \in \sigma, v \neq v':$$

$$((View^1(v) \subsetneq View^1(v')) \land (View^2(v') \subsetneq View^2(v))) \lor$$

$$((View^1(v') \subsetneq View^1(v)) \land (View^2(v) \subsetneq View^2(v'))).$$

Set of vertices with a reverse inclusion ordering in the two levels of subdivision.

Contention Simplices for 3 Processes

Critical Simplices.

Critical simplex:

$\sigma \in Chrs \text{ such that:} \\ (\forall v \in \sigma : carrier(v, s) = carrier(\sigma, s)) \land \\ (\alpha(\chi(carrier(\sigma, s)) \setminus \chi(\sigma)) < \alpha(\chi(carrier(\sigma, s)))).$

Set of vertices of the first subdivision acting as a "joint" leader.

Critical Simplices Example

Critical simplices for the 1-Obstruction free adversary.

Critical Simplices Example

Critical simplices for the superset-closed adversary induced by $\{p_1\}$ and $\{p_2, p_3\}$.

Induced Concurrency Map

Concurrency map for the 1-Obstruction free adversary.

Induced Concurrency Map

Affine task for regular α -models.

Affine task \mathcal{R}_{α} :

$$\sigma \in Chr^{2}\mathbf{s}, dim(\sigma) = n - 1 : \sigma \in \mathcal{R}_{\alpha} \text{ if and only if:} \\ \forall \theta \subseteq \sigma, \theta' = carrier(\theta, Chr\mathbf{s}) : \\ (\theta \in Cont_{2}) \land (\chi(\theta) \cap (\chi(\mathcal{CSM}_{\alpha}(carrier(\sigma, Chr\mathbf{s}))) \cup \chi(\mathcal{CSV}_{\alpha}(\theta'))) = \emptyset \\ \implies dim(\theta) - 1 \leq Conc_{\alpha}(\theta').$$

- With \mathcal{CSM}_{α} the set of critical simplices "members".
- With \mathcal{CSV}_{α} the "view" associated to a critical simplex.

Example of \mathcal{R}_{α} (1/2)

Affine task for the 1-Obstruction free adversary.

Example of \mathcal{R}_{α} (2/2)

Affine task for the superset-closed adversary induced by $\{p_1\}$ and $\{p_2, p_3\}.$

Agreement functions

2 Topological Representations and the IIS Model

3 Affine Tasks for Fair Adversaries

4 Sketch Proof of the Equivalence

Solving \mathcal{R}_{α}

A simple algorithm:

- 1 Execute First Immedate Snapshot Algorithm;
- 2 Write Result to Shared Memory;
- 3 Wait Until Condition is Satisfied;
- 4 Execute Second Immedate Snapshot Algorithm;
- **5** Write Result to Shared Memory;

Wait Condition

The wait condition is satisfied when eiter:

- Outputs of IS1 indicate that p is a critical simplex member.
- The following conditions are all satisfied:
 - All members of a critical simplex "associated to" a concurrency level of k. have written an IS2 output.
 - The number of processes without an IS2 output in *p* IS1 view which are not a critical simplex member is stricly smaller than *k*.

Validity of the algorithms.

The safety property directly derives from the fact that the wait condition is "stricter" than the required properties:

Affine task \mathcal{R}_{α} :

 $\sigma \in Chr^2$ s, $dim(\sigma) = n - 1 : \sigma \in \mathcal{R}_{\alpha}$ if and only if:

 $\begin{array}{l} \forall \theta \subseteq \sigma, \theta' = carrier(\theta, Chr\mathbf{s}) : \\ (\theta \in Cont_2) \land (\chi(\theta) \cap (\chi(\mathcal{CSM}_{\alpha}(carrier(\sigma, Chr\mathbf{s}))) \cup \chi(\mathcal{CSV}_{\alpha}(\theta'))) = \emptyset \\ \implies dim(\theta) - 1 \leq Conc_{\alpha}(\theta'). \end{array}$

Algorithm Liveness

Intuition of the liveness validity:

• A process failure can block in IS1 a limited number of critical simplexes.

(The minimal hitting set size of critical simplices is greater than the resilience level.)

• A process failure cannot block critical simplex members are non-critical simplex number at the same time.

 \Rightarrow The number of correct processes with a smaller IS1 view "scales" with the concurrency provided with terminated critical simplexes.

From \mathcal{R}_{α} to the α -Model

Shared memory simulation:

- Shared memory is simulated using the algorithm from [GR10] using iterated snapshots.
- It is executed on \mathcal{R}_{α} outputs views, all processes observed directly or indirectly in IS2.
- If a process does not know what to write, it re-write the last written value.
- Processes stop participating when they have obtain a task output.

The simulation [GR10], ensures that eventually, all processes with the smallest round snapshot complete a new memory operation.

From \mathcal{R}_{α} to the α -Model

α -adaptive set-consensus among active processes A:

At every round, processes execute this algorithm:

- Share every agreement operation current decision estimate to \mathcal{R}_{α} ;
- If there is a process in μ_A with a proposal then :
 - Adopt the minimal proposal in μ_A ;
- If every process in µ_A ∩ A has a set consensus proposal for a given agreement, then:
 - Write the initial state of every process in μ_A to the shared memory;
 - return the minimal proposal in μ_A ;

Simplicial map μ_A :

$$\mu_{A}(v) = \text{ if } (\chi(\mathcal{CSV}_{\alpha}(\operatorname{carrier}(v, \operatorname{Chrs}))) \cap A \neq \emptyset)$$

then
$$\chi(min(\{carrier(\sigma', \mathbf{s}) : (\sigma' \in CS_{\alpha}(carrier(v, Chr\mathbf{s})) : \chi(carrier(\sigma', \mathbf{s})) \cap A \neq \emptyset)\})$$

else
$$\chi(min(\{carrier(v', \mathbf{s}) : (v' \in carrier(v, Chr\mathbf{s})) \land (dim(v') = 1) \land (carrier(v', \mathbf{s}) \cap A \neq \emptyset)\}).$$

Topological Characterization of Task Solvability

Regular α -Model ACT

A task $(\mathcal{I}, \mathcal{O}, \Delta)$ is solvable in a regular α -model if and only if there exists $N \in \mathbb{N}$ and a chromatic simplicial map ϕ that maps from $\mathcal{R}^N_{\alpha}(\mathcal{I})$ to \mathcal{O} and is carried by Δ .

Fair Adversaries ACT

A task $(\mathcal{I}, \mathcal{O}, \Delta)$ is solvable in an adversarial \mathcal{A} -model if and only if there exists $N \in \mathbb{N}$ and a chromatic simplicial map ϕ that maps from $\mathcal{R}^N_{\alpha_A}(\mathcal{I})$ to \mathcal{O} and is carried by Δ .

Conclusion

Compact representation of non-compact models:

- k-concurrency and k-set-agreement[GHKR16];
- *t*-resilience[SHG16];
- Fair adversaries;
- Regular α -models;
- General Adversaries?
- Collection of k-set-consensus?

Conjecture: possible for all "natural models".

3-process, R/W wait-free solvability of tasks are undecidable[GK95,HR97]

Conjecture: relations between models (affine tasks) are decidable.

Questions?

Thank You!

Conclusion