
Specifying Concurrent Problems:
Beyond Linearizability and up to

Tasks

Armando Castañeda and Michel Raynal
 UNAM, Mexico U. Rennes, France

Presented in DISC 2015

extensions in NETYS 2017

Sergio Rajsbaum

Joint work with

Distributed computer scientists excel
at thinking concurrently,

and building large distributed systems

Distributed computer scientists excel
at thinking concurrently,

and building large distributed systems

Yet, they evade
thinking about

concurrent problem
specifications.

Weaver Ants Building Nest from Mango
Leaves, Ubon Ratchathani, Thailand

It is infinitely easier and more intuitive
for us humans to specify how

abstract data structures behave in a
sequential setting.

Nir Shavit, CACM 2011

An object

• A central paradigm

• The processes may access it concurrently but
specified in terms of a sequential specification,
namely…

An object
• an automaton describing the outputs the object

produces when it is accessed sequentially.

• Mealy state machine, with transitions of the
form

�(q, in) = (q0, r)

Example: validity

• Invocations propose input

• responses return values that
have been proposed

q0

q1

q2

p

q

r

validity(1) ! 2

validity(2) ! 2

validity(3) ! 1

q validity(2) resp(2)

p validity(1) resp(2)

r validity(3) resp(1)

q2

Sequential specifications are convenient

• The paradigm of a sequentially specified object
is very convenient:

• It provides the notion of a state

• Specification manual grows linearly with the
number of operations

Is an implementation correct?
• Given that an object specifies its behaviour only in sequential

executions,

• A correctness implementation notion is needed for concurrent
executions

Is an implementation correct?

q0

q1

q2

p

q

r

validity(1) ! 2

validity(2) ! 2

validity(3) ! 1

q validity(2) resp(2)

p validity(1) resp(2)

r validity(3) resp(1)

q2

• Given that an object specifies its behaviour only in sequential
executions,

• A correctness implementation notion is needed for concurrent
executions

Is an implementation correct?

q0

q1

q2

p

q

r

validity(1) ! 2

validity(2) ! 2

validity(3) ! 1

q validity(2) resp(2)

p validity(1) resp(2)

r validity(3) resp(1)

q2

• Given that an object specifies its behaviour only in sequential
executions,

• A correctness implementation notion is needed for concurrent
executions

Linearizability
• Operations seem to occur at a point, in between invocation

and response,

• i.e., they can be transformed to a valid sequential execution.

q0

q1

q2

p

q

r

validity(1) ! 2

validity(2) ! 2

validity(3) ! 1

q validity(2) resp(2)

p validity(1) resp(2)

r validity(3) resp(1)

q2

Queue
• Often concurrent objects come from sequential

world.

• Operations seem to occur sequentially, i.e., they can
be transformed to a valid sequential execution.

Queue
• Often concurrent objects come from sequential

world.

• Operations seem to occur sequentially, i.e., they can
be transformed to a valid sequential execution.

<write-snapshot(1) >p1

p2

p3

QUEUE.enq(1):true

<write-snapshot(1) >QUEUE.deq():1

<write-snapshot(1) >QUEUE.deq():empty

Queue
• Often concurrent objects come from sequential

world.

• Operations seem to occur sequentially, i.e., they can
be transformed to a valid sequential execution.

<write-snapshot(1) >p1

p2

p3

QUEUE.enq(1):true

<write-snapshot(1) >QUEUE.deq():1

<write-snapshot(1) >QUEUE.deq():empty

QUEUE.enq(1):true QUEUE.deq():1 QUEUE.deq():empty

Queue
• Often concurrent objects come from sequential

world.

• Operations seem to occur sequentially, i.e., they can
be transformed to a valid sequential execution.

<write-snapshot(1) >p1

p2

p3

QUEUE.enq(1):true

<write-snapshot(1) >QUEUE.deq():1

<write-snapshot(1) >QUEUE.deq():empty

QUEUE.enq(1):true QUEUE.deq():1 QUEUE.deq():empty

Queue
• Standard correctness criteria.

• Linearizability: Operations seem to occur
sequentially, i.e., they can be transformed to a valid
sequential execution.

<write-snapshot(1) >p1

p2

p3

QUEUE.enq(1):true

<write-snapshot(1) >QUEUE.deq():empty

<write-snapshot(1) >QUEUE.deq():1

QUEUE.enq(1):trueQUEUE.deq():empty QUEUE.deq():1

Queue
• Standard correctness criteria.

• Linearizability: Operations seem to occur
sequentially, i.e., they can be transformed to a valid
sequential execution.

<write-snapshot(1) >p1

p2

p3

QUEUE.enq(1):true

<write-snapshot(1) >QUEUE.deq():empty

<write-snapshot(1) >QUEUE.deq():empty

Importance of Linearizability
• Clear specifications. Easy to think sequentially.

• Good properties for the development of
systems:

Non-blocking: It never forces the system to
block

Locality: Modular approach. Linearizable
implementations compose a linearizable
system.

Importance of Linearizability
• Clear specifications. Easy to think sequentially.

• Good properties for the development of
systems:

Non-blocking: It never forces the system to
block

Locality: Modular approach. Linearizable
implementations compose a linearizable
system.

There are limitations!!

Distributed object

• Are all distributed problems objects?

• No!

• What is a distributed object?

Validity object

• There is a simple implementation based on
read/write primitives

p

q

r

validity(1) ! 2

validity(2) ! 3

validity(3) ! 1

Validity object

• There is a simple implementation based on
read/write primitives

p

q

r

validity(1) ! 2

validity(2) ! 3

validity(3) ! 1

Validity object

• There is a simple implementation based on
read/write primitives

p

q

r

validity(1) ! 2

validity(2) ! 3

validity(3) ! 1

not linearizable

Snapshot Object
• Shared memory M; one entry per process

write(i, v): atomically writes v in M[i]

snapshot(M): takes an atomic snapshot of M

• Has a natural sequential specification

• Several linearizable implementations based on
read/write primitives

Write-Snapshot Object
• In some applications a snapshot always goes

after a write

• New object with a single operation

• write-snapshot(i, v): writes v in M[i] and takes
a snapshot of the memory.

• Let’s focus on one-shot for this talk

• How do we specify it?

• write-snapshot(v): writes and takes a snapshot
of the memory

• Usual property-based specification:
1. Self-inclusion: each Si contains i

2. Containment: every Si, Sj are comparable
under containment

3. Validity: if j is Si in j was written in M[j]

Informal specifications

• Used in distributed computability (often using topology)

• Main example: k-set agreement and consensus

• Many others, loop agreement, adopt-commit, renaming,
etc.

• propose(x): each process has an input x, returns a value y

• Usual property-based specification for k-set agreement:
1. Agreement: at most k different values are returned
2. Validity: an output value y was proposed

Concurrent-based specifications

• One-shot distributed problem

• Static approach

• Task :
1. Input configurations (simplicial complex)
2. Output configurations (simplicial complex)
3. Input/output relation

• Less explored but fundamental: computability,
topological approach, simulations

More formal: Tasks

• One-shot distributed problem

• Static approach

• Task :
1. Input configurations (simplicial complex)
2. Output configurations (simplicial complex)
3. Input/output relation

• Less explored but fundamental: computability,
topological approach, simulations

More formal: Tasks

Tasks tell what might happen in
presence of concurrency

• One-shot distributed problem

• Static approach

• Task :
1. Input configurations (simplicial complex)
2. Output configurations (simplicial complex)
3. Input/output relation

• Less explored but fundamental: computability,
topological approach, simulations

More formal: Tasks

Tasks tell what might happen in
presence of concurrency

• When does an algorithm solves a task ?

For each set of participating processes, in
every execution, inputs and outputs in every
execution agree with the mapping specifying
the task

Solving Tasks

Importance of Tasks
• Basic computability unit, distributed

equivalent of a function

• Study of set agreement and renaming lead
to a connection between distributed
computing and topology

• but: Semantic of tasks is not well studied.
What are they? Certainly, not sequential
objects

Write-Snapshot Task
p1

p2 p3

p1

p1 p1

p2

p2

p2

p3

p3

p3

1

32

13

13

12

12

23 23

123 123

123

p1

p2 p3

*Some triangles are missing

Write-Snapshot Task
p1

p2 p3

p1

p1 p1

p2

p2

p2

p3

p3

p3

1

32

13

13

12

12

23 23

123 123

123

p1

p2 p3

*Some triangles are missing

Write-Snapshot Task
p1

p2 p3

p1

p1 p1

p2

p2

p2

p3

p3

p3

1

32

13

13

12

12

23 23

123 123

123

p1

p2 p3

*Some triangles are missing

Write-Snapshot Task
p1

p2 p3

p1

p1 p1

p2

p2

p2

p3

p3

p3

1

32

13

13

12

12

23 23

123 123

123

p1

p2 p3

*Some triangles are missing

• An implementation based on read/write

Write-Snapshot Object

• An implementation based on read/write

Write-Snapshot Object

Is it linearizable?
Is there a sequential specification?

• An implementation based on read/write

Write-Snapshot Object

Is it linearizable?
Is there a sequential specification?

NO!!

• There is no sequential specification

• If there is such an specification, in each
execution of a read/write linearizable
implementation, there is a ‘first’ process

• Solve Test&Set from any such read/write
implementation. A contradiction!!

• What is going on?

Write-Snapshot Object

<write-snapshot(1) >

• Tasks can model executions that sequential
specs cannot:

Write-Snapshot Object

p1

p2

p3

write-snap(1):{1,2}

<write-snapshot(1) >write-snap(2):{1,2}

<write-snapshot(1) >write-snap(3):{1,2,3}

<write-snapshot(1) >

• Tasks can model executions that sequential
specs cannot:

Write-Snapshot Object

p1

p2

p3

write-snap(1):{1,2}

<write-snapshot(1) >write-snap(2):{1,2}

<write-snapshot(1) >write-snap(3):{1,2,3}

write-snap(1):{1,2} write-snap(2):{1,2} write-snap(3):{1,2,3}

<write-snapshot(1) >

• Tasks can model executions that sequential
specs cannot:

Write-Snapshot Object

p1

p2

p3

write-snap(1):{1,2}

<write-snapshot(1) >write-snap(2):{1,2}

<write-snapshot(1) >write-snap(3):{1,2,3}

write-snap(1):{1,2} write-snap(2):{1,2} write-snap(3):{1,2,3}

• Any sequential spec. of write-snapshot
models a proper subset of executions

• The resulting specification is stronger than
the object we want to model

Write-Snapshot Object

Limitations of Linearizability
• First noted by Neiger BA PODC’94: NO

sequential specification for set agreement
and immediate snapshot (property-based
specification)

• Set linearizability

• Similar approach: concurrency-aware by
Hemed, Rinetzky and Vafeiadis DISC’15

• Not enough to specify write-snapshot

Examples of non-sequentially specifiable
tasks:

1. Adopt-commit (used in Paxos for safety)
2. Conflict-detection (Aspnes-Ellen)
3. Safe-consensus (weaker validity of

consensus)
4. Immediate snapshot (Asyn. Computability

Theorem)
5. k-set agreement (generalization of consensus)
6. Exchanger (Java object)

• A one-shot queue (or stack) cannot be
specified as a task.

• Problem: Tasks have no mechanism to model
memory of automatons

Limitations of Tasks

• A one-shot queue (or stack) cannot be
specified as a task.

• Problem: Tasks have no mechanism to model
memory of automatons

Limitations of Tasks

Linearizability and Tasks are importan but
not unified!!

• A one-shot queue (or stack) cannot be
specified as a task.

• Problem: Tasks have no mechanism to model
memory of automatons

Limitations of Tasks

Linearizability and Tasks are importan but
not unified!!

Our contribution: Unify these two styles
of specifications

Set sequential

Sequential

Set Linearizability (Neiger 94)
• Go from dimension 1 to dimension 2:

Set sequential

Sequential

Set Linearizability (Neiger 94)
• Go from dimension 1 to dimension 2:

<write-snapshot(1) >p1

p2

p3

write-snap(1):{1,2}

<write-snapshot(1) >write-snap(2):{1,2}

<write-snapshot(1) >write-snap(3):{1,2,3}

Set sequential

Sequential

Set Linearizability (Neiger 94)
• Go from dimension 1 to dimension 2:

<write-snapshot(1) >p1

p2

p3

write-snap(1):{1,2}

<write-snapshot(1) >write-snap(2):{1,2}

<write-snapshot(1) >write-snap(3):{1,2,3}

write-snap(1):{1,2}
write-snap(2):{1,2}

write-snap(3):{1,2,3}

Set sequential

Sequential

Set sequential automata (Neiger 94)
• Transitions labeled with sets of operations and their

responses

Set sequential

Sequential

Set sequential automata (Neiger 94)

<write-snapshot(1) >p1

p2

p3

write-snap(1):{1,2}

<write-snapshot(1) >write-snap(2):{1,2}

<write-snapshot(1) >write-snap(3):{1,2,3}

• Transitions labeled with sets of operations and their
responses

Set sequential

Sequential

Set sequential automata (Neiger 94)

<write-snapshot(1) >p1

p2

p3

write-snap(1):{1,2}

<write-snapshot(1) >write-snap(2):{1,2}

<write-snapshot(1) >write-snap(3):{1,2,3}

write-snap(1):{1,2}
write-snap(2):{1,2}

write-snap(3):{1,2,3}

• Transitions labeled with sets of operations and their
responses

Set linearizability is not enough!!

Limitations of Set Linearizability

<write-snapshot(1) >p1

p2

p3

<write-snapshot(1) >write-snap(2):{1,2,3}

<write-snapshot(1) >write-snap(3):{1,2,3}

write-snap(1):{1,2}

Limitations of Set Linearizability

<write-snapshot(1) >p1

p2

p3

<write-snapshot(1) >write-snap(2):{1,2,3}

<write-snapshot(1) >write-snap(3):{1,2,3}

write-snap(1):{1,2}

write-snap(1):{1,2}
write-snap(3):{1,2,3}
write-snap(2):{1,2,3}

Limitations of Set Linearizability

<write-snapshot(1) >p1

p2

p3

<write-snapshot(1) >write-snap(2):{1,2,3}

<write-snapshot(1) >write-snap(3):{1,2,3}

write-snap(1):{1,2}

write-snap(1):{1,2}
write-snap(3):{1,2,3}
write-snap(2):{1,2,3}

Limitations of Set Linearizability

<write-snapshot(1) >p1

p2

p3

<write-snapshot(1) >write-snap(2):{1,2,3}

<write-snapshot(1) >write-snap(3):{1,2,3}

write-snap(1):{1,2}

write-snap(1):{1,2}
write-snap(3):{1,2,3}
write-snap(2):{1,2,3}

Limitations of Set Linearizability

<write-snapshot(1) >p1

p2

p3

<write-snapshot(1) >write-snap(2):{1,2,3}

<write-snapshot(1) >write-snap(3):{1,2,3}

write-snap(1):{1,2}

write-snap(1):{1,2}
write-snap(3):{1,2,3}
write-snap(2):{1,2,3}

?? Affects two non-concurrent
invocations

Limitations of Set Linearizability

<write-snapshot(1) >p1

p2

p3

<write-snapshot(1) >write-snap(2):{1,2,3}

<write-snapshot(1) >write-snap(3):{1,2,3}

write-snap(1):{1,2}

write-snap(1):{1,2}
write-snap(3):{1,2,3}
write-snap(2):{1,2,3}

?? Affects two non-concurrent
invocations

Interval Linearizability: Stretch points!!

Interval-Sequential automata

• Mealy state machine

• If X is in state q and it receives as input a set of
invocations I, then, if (R,q′) ∈ δ(q,I), the meaning is
that X may return the non-empty set of responses R
and move to state q′.

Interval-Sequential Validity
Object

validity(1) ➞ 2

validity(2) ➞ 3

validity(3) ➞ 1

p

q

r

q0

q1

p.validity(1),q.validity(2)

p ➞
 2

q3

r.v

ali
dit

y(3
)

q ➞
 3,

r ➞
 1

Interval Linearizability

Sequential

Set sequential

Interval Linearizability

Sequential

Set sequential

[]
]

]
[

][[
Interval sequential

• Interval Sequential (IS) exec: Grid with ‘nicely’ ordered
intervals

First column: invocations.
Second column: responses to some invocations.
Third column: new invocations.
Fourth column: …

• IS specification: set with IS executions,

• alternatively IS automaton

Interval Linearizability

Interval Linearizability and automaton

q0

q1

q2

p

q

write snapshot(1) ! {1, 4}

write snapshot(2) ! {1, 2, 4}

write snapshot(3) ! {1, 2, 3, 4}

p write snapshot(1) resp(1, 4)
q
r
s write snapshot(4)

p
q write snapshot(2) resp(1, 2, 4)
r
s

s

r

write snapshot(4) ! {1, 2, 3, 4}

q3

p
q
r write snapshot(3) resp(1, 2, 3, 4)
s resp(1, 2, 3, 4)

• Interval linearizable implementation: each
execution can be transformed into a IS execution,
respecting real-time order (like in linearizability)

• Not harder to prove than linearizability. For each
operation, two points (an interval) need to be found

• Particular cases: linearizability and set linearizability

Interval Linearizability

• A new value on each vertex added in the output
complex to model memory

• The mapping has the same definition but the
meaning is a bit different

• Particular case: Tasks

Extended Tasks

Simple task interpretation
cannot represent a queue

From Interval Linearizability to
Extended Tasks

For every one-shot IS object X, there is an
extended task equivalent to X

Idea of the proof: Every execution is represented with a
simplex of appropriate dimension. New value model memory

By-product: Opens the possibility to apply topological
techniques to sequential, set sequential and interval
sequential objects.

From Extended Tasks to
Interval Linearizability

Idea of the proof: Model each output simplex as an IS
execution. The interpretation of the mapping from input
complex to output complex is not trivial, has to be done
carefully.

By-product: Better understanding of the semantics of tasks.

For every extended task T, there is a one-
shot IS object equivalent to T

From tasks to interval
sequential automata

�
I O

q r

p

r

p

qr

{p}

{q} {r}

{p, q}

{p, q}

{p, r}

{p, r}

{q, r} {q, r}

{p, q, r}

rr�1

�2

�1

�2

init term init term
p prop(p) resp(p, q)
q prop(q) resp(p, q, r)
r prop(r) resp(p, r)

init term init term
p prop(p) resp(p, q, r)
q prop(q) resp(q)
r prop(r) resp(r)

�

�3

p

q r

p

p

q

q q

p

r r

p

q

r

q

p

r

q

p

! {p, q}

! {p, q, r}

! {p, r}

! {p, q, r}

! {q}

! {r}

Interval Linearizability
Properties

Interval Linearizability Properties
• Local property (like linearizability)

• Non-blocking property (like linearizability)

An execution E is interval linearizable if
and only if each object X, E|X is

interval linearizable

For every interval linearizable execution E,
there is an interval linearization with all

ops in E completed

Completness Result

A general definition: Prefix-closed set of executions
(with no restrictions, not necessarily one-shot)

Most general definition one can imagine?

For every prefix-closed set of executions,
there is a IS object that model the set

Conclusion

• Set-based spec = multi-shot tasks = IS linearizability

• We are working on extend task definition further, to
model multi-shot objects

• and on applying topological techniques to objects

Execution

Task
Interval-Sequential

Object
Set-Sequential

Object
Sequential

Object ⇡⇢⇢

linearizable

set-linearizable
interval-linearizable

satisfies

one-shot

Thanks!!

