
SLR210: Solutions for Quiz 1

1 ABD algorithm

1.1 Atomicity violations

Consider a run of the algorithm in the slides in which the writer starts a write operation by
sending (v, t), a new value v with an incremented timestamp t, to every other process. Suppose
that the message is first received by a sible reader pi (the write operation is still incomplete).

Now let pi execute a read operation and return v (as this is the most recent value it sees.
After the read operation completes, let another reader pj execute a read and suppose that this
operation reaches a quorum of processes that does not include the writer or pi (this is possible
if we have at least 5 processes).

Therefore, the second read will have to return an older value, which results in a new-old
inversion violating linearizability.

1.2 Multiple readers

A standard solution to accommodate multiple readers is to let the readers communicate with
each other (the reader must write). Before returning the read value v, the reader should “write”
the orresponding tuple (v, t) back to the system. This way, a subsequent read operation will
return v or a more recent value.

Essentially, the reader executes the code of the writer: it sends (v, t) to everybody and waits
until a quorum of processes acknowledges that they received the message. Only after this it is
safe to return from the read operation.

1.3 Multiple writers

When multiple processes are allowed to write to the implemented register, they cannot use
independently maintained local timestamps. Indeed, a slow process executing its first write
operation may have a timestamp that is lower than the timestamp used for a complete operation
The readers will not be able to distinguish the new value from an old one.

To resolve this issue, we can adopt the apporach of Lamport’s doorway protocol (part of his
Bakery mutual-exclusion algorithm). A writer first reads, i.e., collects the values stored at a
quorum of processes, computes the highest sequence number t used so far, and adopts t + 1 as
its new sequence number.

To break the symmetry among values written with the same sequence number, we attach
the writter’s identifier to the timestamp. Assuming that timestamps (t, i) and (t′, j), where t
and t′ are sequence numbers and i and j are writers’ identifiers, are compared lexicographically,
all written values are given distinct and totally ordered timestamps. Moreover the total order
respects the real-time order of write operations: the timestamp used by a write operation W is
lower than the timestamp used by any write operation that starts after W completes.

The total order on the timestamps used by the writers in a given history can be used to
construct a linearization: the write operations are put in the order of their timestamps and the

1



complete read operations are put after the corresponding writes, respecting the real-time order
among them.

2 Read-optimized quorum systems

Let P be the set of processes and consider (WP , RP ):

• Wp = P

• Rp = {{p}|p ∈ P}.

Obviously (WP , RP ) respects the quorum safety property (any element of Wp intersects with
any element of RP ). Assuming that no failures occur, (WP , RP ) is also live.

To write a value, the writer must reach all the processes, but reading only requires reaching
one.

It is often argued that in usual workloads of storage systems, read operations are invoked
much more often than write operations. Read-optimized quorums can be very useful in
reliable geographically distributed systems. A write can be very slow, as it has to hear from
every replica. But the read will terminate as soon as the closest replica responds. Of course,
if a single process fails, the write will never terminate.

3 Lattice Agreement

3.1 One-Shot Lattice Agreement

Recall that in a regular specification of an atomic snapshot, a process pi can only update its
own position i in the snapshot memory. Therefore, any two updates, concurrently applied by
pi and pj commute: they result in the same state, regardless of the order in which they are
applied. In the one-shot case, a process performs a single update followed by a snapshot. We
assume that, intitially, every position of the snapshot memory contains a special value ⊥. Let
V be the set of values that can be used by update operations as arguments, and suppose that
⊥ /∈ V .

It is easy to solve a single instance of lattice areement using a (one-shot) atomic snapshot:
every process uses its input in the lattice as the argiment of its update operation, then takes
a snapshot, and outputs a join on the non-⊥ elements in the returned vector. As the sets of
non-⊥ elements snapshot taken by different elements are related by containment, the resulting
lattice elements are realted by v.

For the other direction, let us define the lattice on sets of the type {(v1, ii), . . . , (vk, ik)},
where vj ∈ V and ij ∈ {1, . . . , n}. The partial order is then simply the set inclusion and the
join operator—the set union.

To execute update(vi) followed by snapshot(), pi proposes {(vi, i)} to lattice agreement and
returns the vector of values, where each position i contains vi if (vi, i) is incuded in the output
of lattice agreement, and ⊥ otherwise. Note that, as only the single update performed by pi can
propose a value (−, i), there can be at most one value (v, i) in any output of lattice agreement.

Convince yourself that the solution indeed implements an atomic snapshot.

2



3.2 Long-Lived Lattice Agreement

Again, generalized lattice agreement can be trivially implemented using (long-lived) atomic
snapshots. Whenever the t-th value v is received by a process pi, it performs update(v, t). To
learn a new value, pi takes a snapshot and simply returns the join of the most recent values in
the returned vector.

For the other direction, we define a lattice on the sets of the type {(v1, t1, i1)), . . . , (vk, tk, ik)}),
where each tuple (vj , tj , ij) corresponds to the value vj written to position j with sequence num-
ber tij . (vi is the argument of the ti-th update performed by pi). The origin of the lattice is
defined as (0, 0, 1), . . . , (0, 0, n): every position j ∈ {1, . . . , n} stores the initial value 0 written
with the intitial sequence number 0.

Again, the partial order v and the union operator t are defined as theset inclusion and the
set union, respectively.

To execute update(vi), pi increments its locally maintained sequence number sI and receives
{(vi, si, i)} for the generalized lattice agreement and waits until it learns a value that contains
(vi, si, i). To execute update(vi), pi receives {(⊥, si, i)} for the generalized lattice agreement,
waits until it learns a value that contains (⊥, si, i) and returns the vector where each position j
contains the value vj in the tuple (vj , tj , j) with the highest sequence number tj for j. Again, as
only pj is allowed receive elements of the kind {−,−, j)} for the generalized lattice agreement,
and each new received value for j contains a distinct sequence number, the vector above is
well-defined.

Convince yourself that the solution indeed implements a long-lived atomic snapshot.

Note that the two atomic-snapshot implementatons described above assume that a given
position can only be modified by a dedicated process. Is it possible to extend the algorithms
to get a generalized atomic-snapshot memory which maintains a shared vector of m positions
and allows any process pi, i ∈ {1, . . . , n}, to perform update(v, j) on any position j ∈
{1, . . . ,m}?

3


