SLR210 2019
Project: Obstruction-Free Consensus and Paxos

The goal of this project is to get an initial experience in designing a fault-tolerant distributed system.
Here we focus on a state-machine replicated system build atop a consensus abstraction.

1 Specification

An obstruction-free consensus (OFC) algorithm exports one operation propose(v) with an input value
inasetv eV ={0,1}. When a process invokes propose(v), we say that the process proposes v. The
operation returns either a value v’ € V (in which case we say that the process decides v’) or a special
value abort ¢ V (in which case we say that the invocation aborts). A process can invoke the propose
operation multiple times.

The following properties must be met:

e Validity: every decided value is a proposed value.
e Agreeement: no two processes decide differently.
e Obstruction-free termination:

— If a correct process proposes, it eventually decides or aborts.
— If a correct process decides, no correct process aborts infinitely often.

— If there is a time after which ezactly one correct process p proposes a value sufficiently many
times, p eventually decides.

2 Concurrent environment
The goal of the project is to implement OFC for the following environment:

e We have N asynchronous processes. Every process has a distinct identifier. The identifiers are
publicly known.

e Every two processes can communicate via a reliable asynchronous point-to-point channel.

e Up to f < N/2 of the processes are subject to crash failures: a faulty process prematurely stops
taking steps of its algorithm. A process that never crashes is called correct.

3 Prerequisites

The project assumes a basic knowledge of Java. Get familiarized with the Java version of AKKA, an
actor-based programming model https://akka.io/docs/. Check basic constructions in to see how to
create an actor, and make the actors communicate.

Check https://github.com/remisharrock/SLR210Patterns for sample AKKA patterns which you
might want to use.


https://akka.io/docs/
https://github.com/remisharrock/SLR210Patterns

4 Formalities

The project is pursued in teams of two students.

The implemented system should be provided with a short report describing how the system operates
and containing correctness arguments. The team should also prepare a short presentation to be given at
the end of the course.

The first project meeting on 26,/04 will contain a tutorial on the AKKA programming environment
and a discussion of system bootstrapping. The meeting on 17/05 will be used for discussing potential
issues and problems. The final meeting on 21/06 will be used for project presentations.

5 Implementation

The implementation should extend the basic construction creating a system of a given size and ensure
all-to-all connectivity. Create N actors (processes), and pass references of all N processes to each of
them. [1

Use the name Process for the process class. For the Process class, create methods for invoking the
operation propose, processing received messages, and returning response indications.

To test the implementation and measure its performance, use the following procedure.

The main method selects f processes at random (e.g., using the shuffle method from java.collections)
and sends each of them a special crash message. If a process receives a crash message it enters the fault-
prone mode: for any processed event in the algorithm, the process decides, with a fixed probability, if it
going to crash. If it crashes, it enters the silent mode, not reacting to any future event.

For every process, the main method then sends a special launch message. Once process i receives
a launch message, it picks an input value, randomly chosen in {0,1} and invokes instances of propose
operation with this value until a value is decided. (As a basis, one can use the OFC pseudocode to be
discussed in the lecture of May 10.)

Use the LoggingAdapter class to log both the timing of the invocation and the response of every
operation each process performs.

e Emulate a leader election mechanism: after a fixed timeout ¢;., the main method randomly picks up
a process that is not fault-prone and sends a hold message to every other process. After receiving
a hold message, a process stops invoking propose operations.

For example, by invoking Thread.sleep(50), the main method “freezes” for 5ms.
An alternative method consists in using the scheduler. For example, the following command:

system.scheduler () .scheduleOnce (Duration.create(50, TimeUnit.MILLISECONDS),
testActor, "foo", system.dispatcher(), null);

results in a message ¢ ‘foo’’ sent by the scheduler to testActor in 50ms.

e Perform the experiment for N = 3,10,100 (with f = 1,4, 49, respectively) for different values of
tie = 0.5s, 1s,1.5s,2s. For each configuration, measure the time when the first process decides.

Each experiments should be repeated 5 times and the average latency should be evaluated. Build a
plot realting the latency with ¢;. for different system sizes.

6 Report

Prepare a short report (up to 15 pages), preferably in English (can also be written in French if English
does not feel comfortable). The report should contain:

e A high level description of the system:;

e A pseudocode of the implementation;

1Check https://gitlab.telecom-paristech.fr/petr.kuznetsov/slr210-projects.git| for a example of system cre-
ation (SystemCreation). Also, the repository contains a program implementing a multi-reader multi-writer atomic register
(AtomicRegister) in which every process performs a series of read and write operations on the implemented register.


https://gitlab.telecom-paristech.fr/petr.kuznetsov/slr210-projects.git

e A sketch of a proof of correctness (please argue that both safety and liveness hold);
e A report on performance analysis.

The report and the code of the implementation should be uploaded tohttps://gitlab.telecom-paristech.
fr/petr.kuznetsov/slr210-projects.git by June 14.

7 Presentation

The presentation (7 mins) should contain a brief overview of the main features of the algorithm, its
correctness arguments and performance. We envision 10 minutes per team (including 3 minutes for
questions), so the time bounds are strict.


https://gitlab.telecom-paristech.fr/petr.kuznetsov/slr210-projects.git
https://gitlab.telecom-paristech.fr/petr.kuznetsov/slr210-projects.git

	Specification
	Concurrent environment
	Prerequisites
	Formalities
	Implementation
	Report
	Presentation

