Byzantine Fault-Tolerance
HyperLedger Fabric
Blockchain

SLR210, P4, 2019

Administrivia

= Project reports: due June 14
v'Upload to gitlab together with the code

« Project presentations June 21

v'10 mins per team: 7 mins presentation, 3
mins guestions

« Exam June 26
v'Written, 1h30 (10h15-11h45)

v'Closed books: you can bring two A4 pages
with handwritten notes

Context: Replication

unreplicated service replicated service
client L@” 2\@41% client
?E
oo \(server
Server replicas

= Assumptions
v Network: synchronous/asynchronous?
v’ Digital signatures (trusted CA)?

v Failure Model — Benign (stopping) vs. Byzantine
(arbitrary)?

3

State-Machine Replication

» Replicated deterministic state machine

» Correct clients “see” replicated service as
one correct server
v'Requests are totally ordered

v'Every request by a correct client is
eventually served

é@% Reque%iJ Reply
Clientﬂ/

Replicas

Sounds familiar?

Universal construction

N processes can (wait-free) implement every object
0O=(Q,0,R,0) using an unbounded number of
consensus objects and atomic read-write
registers

To execute an operation:
= Publish the corresponding request

» Collect published requests and use consensus
instances to serialize them: the processes agree
on the order in which the requests are executed

= Processes agree on the order in which the
published requests are executed

Message passing?
Byzantine failures? 5

© 2019 P. Kuznetsov

Byzantine fault model

« 967AD: Byzantine basileus
Nikethoros Il sends Kalomir to to
engage the Russian king
Svyatoslav | to defeat the
Bulgars and integrate it into the
empire

» Kalomir conspires with
(L Svyatoslav in order to replace
Nikethoros I Nikithoros as basileus

Phokas . Syyatoslav conquers Bulgaria
but intends to keep it

= A global war of three nations
begins

Svyatoslav |
of Kiev

Patrician
Kalomir Tauricus

Byzantine Agreement
[Lamport, Shostak, Pease, 1982]

N armies face an enemy: an agreement should be reached
on attack or retreat

= Agreement: no two correct processes decide differently

« Validity: if every correct process propose v, then v must
be decided

= [ermination: every correct process decides

Model: Byzantine faults (some generals can be traitors),
synchronous, no crypto

© 2019 P. Kuznetsov

The 2/3 bound

Split the armies in three
groups Commander,

leutenant 1, Lleutenant 2. \

Without signatures, the

traitor may lie about BT

received messages.

COMMANDER

Fig. 1. Lieutenant 2 a traitor.

The two runs are / /

%
indistinguishable to
Lieutenant 1:
« Commander is faulty
. Leutenant 2 is faulty —

Fig. 2. The commander a traitor.

© 2019 P. Kuznetsov s

Signatures?

« Without crypto: both synchrony and >2/3
correct servers are needed

= With crypto: only 2/3

v'Why? Every two requests should involve at
least one common correct server

A goes first

Safety vs. liveness

n — number of servers

q — quorum size (number of servers involved in processing a
request)

f — upper bound on the number of faulty servers

29-n =f+1 or g = (n+f+1)/2 (safety)
= n = 3f+1
n-f = q (liveness)

G g 10

PBFT: Castro-Liskov

Pracrical Byzantine Fault-Tolerance (with
Proactive Recovery), OSDI 1999

= A request (a batch of requests) involves a
three-phase agreement protocol

« The system is eventually synchronous

» >2/3 of the service replicas (servers) must be
correct

17

PBFT normal mode of operation

Mgy, <PRE PREPARE,V,N,D(M)aoi ¢PREPARE,V,N,D(M)>q, <COMMIT,V,N>q ; <REPLY,*>;.

:ZZZN x\ 7@2;? WW // /
ez N R IR\

replica 3

Client sends request to all servers

Primary broadcasts a pre-prepare request (sequence number,
view, message hash)

Servers exchange prepare messages
Servers exchange commit messages
Servers send committed tuple to client
Client computes the outcome

All phases require a quorum (>2/3) to terminate and all messages are
signed

© 2019 P. Kuznetsov 12

PBFT: view change

= A correct server suspects the primary

v'E.g., a correct client’s takes too long to commit
« |f enough (f+1) processes suspect the
primary
v'Initiate a view change protocol to select the
next primary
v'E.g., round-robin policy: process (r mod n) is
primary for epoch r
« The new primary recovers the state

v'Collects the latest (pre) committed requests
from a quorum of 2f+1 servers

© 2019 P. Kuznetsov 13

PBFT: progress

In the asynchronous system, view changes
may occur indefinitely

Eventual synchrony: there is a time after

which all message are delivered within A time
units

Eventually, stabilize of the same (correct) the
primary

© 2019 P. Kuznetsov 4

Optimistic fast phase

Hope for the best but prepare for the worst

If all replicas are correct and the network is

synchronous the (up-to-date) primary can commit in
one round trip (three message delays for the client)

« Send a pre-prepare request to all

- If collected a fast quorum of size g; (within a fixed
delay) — commit (in just one round-trip)

- Otherwise — proceed to the regular “slow” phase with
“slow” quorums of size q,

Issue: how to recover the values decided in the fast
phase (esp. for a new primary)

© 2019 P. Kuznetsov 15

BFT: optimistic fast phase

Consider n= 3f+1 processes, f can by
Byzantine: g.=2f+1 (for safety and liveness)

Slow phase/new primary:

= At most 2f+1 processes are guaranteed to
respond

= At most f+1 responding processes are
guaranteed to be correct

« |f less than f+1 of them know about the
committed value — no way to recover

The fast quorum g; must be n=3f+1!

© 2019 P. Kuznetsov 16

Quiz 1

« PBFT: compute the quorum sizes necessary
in the system of n=3f+2c+1 > 3f+1 processes,
where up to f can be Byzantine

- If we add a fast phase: what is the minimal
fast quorum size?

« What is the minimal recovery quorum size: the
minimal number of processes the new primary
should contact to recover all previously
committed values?

17

Liveness/safety tradeoffs

Best/worst/rare cases

v'Best case — small fraction of faulty nodes -
ensure safety+liveness

v'Worst case — some groups may have very large
fraction of faulty nodes (beyond 1/3) - ensure
safety

v'Rare case — a few nodes unavailable =2 lose
liveness

18

Trading off liveness for safety

« Every request involves at least (n+f+1)/2 servers =
safety is ensured as long as f or less servers fail

= Liveness will be provided if not more than
n-(n+f+1)/2 = (n-f-1)/2 servers falil

= n=10, f=7: liveness tolerates at most one failure

/” /” \\\\ \\\\
-
/’/ Phe RN S~
- - ~ N
- - ~ ~
. . ~ ~
., P ~ ~
N ~
,/ 4 N ~
’ ,’ \ \
/ e / e \\ e \\
,I ,I \ \ \ \ \ \ \ \ \
3 S 3 \ '
| | 1 1
\ \ [[
\ \ ’ ’
\ \ ’ ’
\ AY 4 4
A N d 4
A N 1 e
~ ~ ' 7z
~ ~ . .
~ ~ - -
~ ~ - -
\\ \\ // //
\\\ S ’// -7
~o \\\ - /”
// T \

on
%

Quiz 2

« The Byzantine generals setting assumes a
synchronous system

« BFT assumes asynchronous system and
digital signatures

« Both protocol assume >2/3 correct servers

Can you devise a synchronous state machine
replication protocol with signatures that
tolerates any number of faulty servers?

20

Hyperledger fabric

Replicated Services:
order-execute

Typically (e.g., PBFT), every replica is
involved in:

« Sharing invoked operations
= Agreeing on the order of operations

= Executing operations locally and returning
results to the clients

22

Order-execute: issues

Determinism required

v'"Not suited for general-purpose languages are
excluded?

Executed code must be trusted

Every replica invests in executions (inefficient,
vulnerable to DoS)

v Trust model: not flexible

Ordering is hardwired

v'Not adaptive to the actual environment
v'Fixed liveness-safety properties

23

Hyperledger fabric:
Execute-order-validate

Execute transactions on a subset endorsers (on
the speculated state)

v'Simulated runs

Submit the resulting states to the ordering
service

v'Stateless (lightweight) ordering: Atomic broadcast

Validate the ordered transactions
v'Detect and eliminate conflicting transaction
v'Evaluate outputs and updated states

Update state

24

Hyperledger fabric:
Flow of operations

1 Invocation Chalncgde Endorsement @ Ordering @ Validation . Commit
execution collection

Broadcast/Delivery

i

O

S

o

D

-,

>

(0 [0]

D @)

<

8 }
client endorsing endorsing endorsing ‘ ‘ ‘ ‘ Peer

peer1 peer2 peer3 orderers (non-endorsing)

25

Hyperledger fabric:
Architecture

el L v L E L

L8 reer Verie Ttex Maw

Endorsers: execute the operations sequentially in a “sandbox”
v Protected environments: the code can be written in Go, Java etc.
v Endorsers (including at least one correct) must agree on the result
v The result of an operation — versioned read/write set

State is stored as a key-value store (all variables of the system)
v"Not as ever-growing history as in PBFT

Use peer-to-peer gossip to disseminate information
v ~linear message complexity — no all-to-all patterns
Use external (oblivious to the system) ordering service

Validators check the versions and eliminate out-of-date operations

26

Quiz 3

- What are the liveness guarantees of PBFT?

» Under which conditions a client’s operation is
committed and executed?

« What are the liveness guarantees of
Hyperledger Fabric?

= |s it possible that a correct client does not make
progess (even in the synchronous fault-free
case)?

27

General issues of the BFT model

>2/3 assumption is reasonable if faults are
independent

» Questionable for software bugs or security
attacks

« An obstacle for scalability: unlikely to hold for
large number of replica groups

« Sybil attacks: in an open system, the
adversary can hold arbitrarily many identities

28

Blockchains

Chronology

1982 Byzantine
Generals

1990 Paxos

1992 “ProofOfWork”
1999 PBFT

1995 Hashcash
2002 Sybil attack
2009 Bitcoin

Linked Byzantine Public
Timestamping, Digital Proof Fault Keys as Smart
Verifiable Logs Cash of work Tolerance Identities Contracts

L 2
1980 Merkle lE " Chaum 1
Tree® S8 Byzantine Anonymous
Generals? | Communication®
Chaum
1985 Security w/o
Identification™
Haber & gé;llsnhiz Paxos*@
stornetta?
1990 Benaloh & Digicash
6
de mare @ Anti-spam?®
Bayer, haber, b
t tta® zabo
stornetta Eveay® ®
s Micro-
Haber & Mint< i 18
stornetta? I Hashcash? B-money
Client Pbfte
Puzzles? T Goldberg
2000 Paxos made Dissertation®
Simple?
Sybil attack
Bit Gold*2
L5 b4 > :)
2005 <> 1
Bitcoin® Computational
Impostors®
o <> < e P = == == @
2010 Private
Blockchains
@ h 4 {5)
Ethereum
A 4
2015

I

Nakamoto Consensus

30

Distributed ledger?

Shared data structure: linear record

of (blocks of) transactions
A e

= Append-only
= Backtrack verifiable

Open environment:
« No static membership

» No identities (public
keys)

37

Verification: linked timestamping

- Achange in a block affects all following blocks

v

v

Originally with signatures: each block contains its
signed predecessor

Now: hashchains

= Bitcoin: Merkle trees

v
v
v

_eafs: transactions
ntermediate: hashes of children
Roots: hashes of predecessor roots

4—

I
I
f
I
I
I
I
I
I
I
I
I
I

;
AR

. Merkle tree nodes —» hash pointers — — — timeintervals

32

Consistency?

= Sybil attack: the adversary can own an
arbitrarily large fraction of participants

v" Why don’t good guys do the same? ©
» Classical consistent protocols don’t work

« Assume a synchronous system
v' Message delays are bounded by 6
v" Need to “slow down” updates (wrt 6)

33

Proof of work

Need to solve a (time-consuming) puzzle to be
able to affect the state of the ledger
(blockchain)
«Every process maintains a locally consistent
copy of the ledger

v' Hashchain/Merkle tree
«To update (to “mine” a new block of

transactions): broadcast a new block
B=<s,X,ctr> containing a puzzle solution

v H(ctr,G(s,x))<d (difficulty)

34

(Bitcoin) blockchain

Clients broadcast an
update

Ded|Cated CllentS Committed prefix
(miners) collect updates

solve puzzles, update

and broadcast their local

ledgers

Clients always choose E
the longest (verifiable)
ledger

-l
Old enough blocks are E {

considered consistent

Bitcoin adds a block every
10 mins and traces back 6
blocks: an hour delay

-
~i

35

When it works

“Nakamoto consensus”

EXxpected time to solve the puzzle >> §

«The adversary does not possess most of
computing power

The probability of a fork drops
exponentially with the staleness of blocks

36

When it does not work

Asynchronous/eventual
ly synchronous
communication, or

An adversary controls
half of computing
resources, or

Even a small
probability of error
cannot be tolerated, or

Energy consumption is
an issue

Low throughput is not
an issue

37

When it is not needed?

No Sybil attacks
v Participation under control

No need for consensus

v' Updates commute

v Eventual consistency is good enough
v’ Storage-like systems [ABD]

38

Combining PoW and BFT

« Run any PoW-based blockchain (e.g., bitcoin)
to elect a BFT committee

« BFT committees run any BFT protocol (e.g.,
PBFT) to commit transactions

« The commitment rate rate depends on actual
message delays...

39

