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Administrivia

§ Project reports: due June 14
üUpload to gitlab together with the code

§ Project presentations June 21
ü10 mins per team: 7 mins presentation, 3 

mins questions
§ Exam June 26

üWritten, 1h30 (10h15-11h45)
üClosed books: you can bring two A4 pages 

with handwritten notes 
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Context: Replication

§ Assumptions
üNetwork: synchronous/asynchronous?
üDigital signatures (trusted CA)?
üFailure Model – Benign (stopping) vs. Byzantine 

(arbitrary)?

replicated service

client

server
replicas

unreplicated service

client

server
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State-Machine Replication

§ Replicated deterministic state machine
§ Correct clients “see” replicated service as 

one correct server
üRequests are totally ordered
üEvery request by a correct client is 

eventually served

ReplicasClient
Request Reply

Sounds familiar?
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Universal construction
N processes can (wait-free) implement every object 

O=(Q,O,R,σ) using an unbounded number of 
consensus objects and atomic read-write 
registers

To execute an operation:
§ Publish the corresponding request
§ Collect published requests and use consensus 

instances to serialize them: the processes agree 
on the order in which the requests are executed

§ Processes agree on the order in which the 
published requests are executed 

© 2019 P. Kuznetsov

Message passing? 
Byzantine failures?
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Byzantine fault model
§ 967AD: Byzantine basileus 

Nikethoros II sends Kalomir to to 
engage the Russian king 
Svyatoslav I to defeat the 
Bulgars and integrate it into the 
empire

§ Kalomir conspires with 
Svyatoslav in order to replace 
Nikithoros as basileus

§ Svyatoslav conquers Bulgaria 
but intends to keep it

§ A global war of three nations 
begins

Nikethoros II 
Phokas

Svyatoslav I 
of Kiev

Patrician 
Kalomir Tauricus
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Byzantine Agreement 
[Lamport, Shostak, Pease, 1982]

N armies face an enemy: an agreement should be reached 
on attack or retreat 
§ Agreement: no two correct processes decide differently
§ Validity: if every correct process propose v, then  v must 

be decided
§ Termination: every correct process decides 

Model: Byzantine faults (some generals can be traitors), 
synchronous, no crypto

© 2019 P. Kuznetsov
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The 2/3 bound
Split the armies in three 
groups: Commander, 
Lieutenant 1, Lieutenant 2.

Without signatures, the 
traitor may lie about 
received messages.

The two runs are 
indistinguishable to 
Lieutenant 1:
§ Commander is faulty
§ Leutenant 2 is faulty  

© 2019 P. Kuznetsov
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Signatures?
§ Without crypto: both synchrony and >2/3 

correct servers are needed
§ With crypto: only 2/3  

üWhy? Every two requests should involve at 
least one common correct server

A goes first B goes first

A B
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Safety vs. liveness 

n – number of servers
q – quorum size (number of servers involved in processing a 

request)
f – upper bound on the number of faulty servers

2q-n ≥ f+1  or q ≥ (n+f+1)/2 (safety)
Þ n ≥ 3f+1

n-f ≥ q (liveness)

q q

2q-n

n
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PBFT: Castro-Liskov
Pracrical Byzantine Fault-Tolerance (with 
Proactive Recovery), OSDI 1999

§ A request (a batch of requests) involves a 
three-phase agreement protocol 

§ The system is eventually synchronous 
§ >2/3 of the service replicas (servers) must be 

correct
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PBFT: normal mode of operation

© 2019 P. Kuznetsov

408 • M. Castro and B. Liskov

Fig. 1. Normal case operation: the primary (replica 0) assigns sequence number n to request m in
its current view v and multicasts a PRE-PREPARE message with the assignment. If a backup agrees
with the assignment, it multicasts a matching PREPARE message. When a replica receives messages
that agree with the assignment from a quorum, it sends a COMMIT message. Replicas execute m
after receiving COMMIT messages from a quorum.

Like PRE-PREPAREs, the PREPARE and COMMIT messages sent in the other phases
also contain n and v. A replica only accepts one of these messages provided that
it is in view v; that it can verify the authenticity of the message; and that n
is between a low water mark h and a high water mark H. The last condition
is necessary to enable garbage collection and to prevent a faulty primary from
exhausting the space of sequence numbers by selecting a very large one. We
discuss how H and h advance in Section 4.4.

A backup i accepts the PRE-PREPARE message provided (in addition to the
conditions above) it has not accepted a PRE-PREPARE for view v and sequence
number n containing a different digest. If a backup i accepts the PRE-PREPARE

and it has request m in its log, it enters the prepare phase by multicasting a
⟨PREPARE, v, n, D(m), i⟩αi message with m’s digest to all other replicas; in addi-
tion, it adds both the PRE-PREPARE and PREPARE messages to its log. Otherwise,
it does nothing. The PREPARE message signals that the backup agreed to assign
sequence number n to m in view v. We say that a request is pre-prepared at a
particular replica if the replica sent a PRE-PREPARE or PREPARE message for the
request.

Then each replica collects messages until it has a quorum certificate with the
PRE-PREPARE and 2 f matching PREPARE messages for sequence number n, view
v, and request m. We call this certificate the prepared certificate and we say
that the replica prepared the request. This certificate proves that a quorum
has agreed to assign number n to m in v. The protocol guarantees that it is not
possible to obtain prepared certificates for the same view and sequence number
and different requests.

It is interesting to reason why this is true because it illustrates one use of
quorum certificates. Assume that it were false and there existed two distinct
requests m and m′ with prepared certificates for the same view v and sequence
number n. Then the quorums for these certificates would have at least one non-
faulty replica in common. This replica would have sent PRE-PREPARE or PREPARE

messages agreeing to assign the same sequence number to both m and m′ in
the same view. Therefore, m and m′ would not be distinct, which contradicts
our assumption.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

§ Client sends request to all servers 
§ Primary broadcasts a pre-prepare request (sequence number, 

view, message hash)
§ Servers exchange prepare messages    
§ Servers exchange commit messages
§ Servers send committed tuple to client 
§ Client computes the outcome

All phases require a quorum (>2/3) to terminate and all messages are  
signed
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PBFT: view change

© 2019 P. Kuznetsov

§ A correct server suspects the primary
üE.g., a correct client’s takes too long to commit

§ If enough (f+1) processes suspect the 
primary
üInitiate a view change protocol to select the 

next primary
üE.g., round-robin policy: process (r mod n) is 

primary for epoch r  
§ The new primary recovers the state

üCollects the latest (pre) committed requests 
from a quorum of 2f+1 servers
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PBFT: progress

© 2019 P. Kuznetsov

In the asynchronous system, view changes 
may occur indefinitely

Eventual synchrony: there is a time after 
which all message are delivered within ∆ time 
units

Eventually, stabilize of the same (correct) the 
primary
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Optimistic fast phase

© 2019 P. Kuznetsov

Hope for the best but prepare for the worst

If all replicas are correct and the network is 
synchronous the (up-to-date) primary can commit in 
one round trip (three message delays for the client)

§ Send a pre-prepare request to all
§ If collected a fast quorum of size  qf (within a fixed 

delay) – commit (in just one round-trip)
§ Otherwise – proceed to the regular “slow” phase with 

“slow” quorums of size qs

Issue: how to recover the values decided in the fast 
phase (esp. for a new primary)
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BFT: optimistic fast phase

© 2019 P. Kuznetsov

Consider n= 3f+1 processes, f can by 
Byzantine: qs=2f+1 (for safety and liveness)

Slow phase/new primary:
§ At most 2f+1 processes are guaranteed to 

respond
§ At most f+1 responding processes are 

guaranteed to be correct 
§ If less than f+1 of them know about the 

committed value – no way to recover
The fast quorum qf must be n=3f+1! 
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Quiz 1
§ PBFT: compute the quorum sizes necessary 

in the system of n=3f+2c+1 > 3f+1 processes, 
where up to f can be Byzantine

§ If we add a fast phase: what is the minimal 
fast quorum size? 

§ What is the minimal recovery quorum size: the 
minimal number of processes the new primary 
should contact to recover all previously 
committed values? 
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Liveness/safety tradeoffs
Best/worst/rare cases

üBest case – small fraction of faulty nodes à
ensure safety+liveness

üWorst case – some groups may have very large 
fraction of faulty nodes (beyond 1/3) à ensure 
safety

üRare case – a few nodes unavailable à lose 
liveness
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Trading off liveness for safety
§ Every request involves at least (n+f+1)/2 servers Þ

safety is ensured as long as f or less servers fail
§ Liveness will be provided if not more than                        

n-(n+f+1)/2 = (n-f-1)/2 servers fail

§ n=10, f=7: liveness tolerates at most one failure 
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Quiz 2
§ The Byzantine generals setting assumes a 

synchronous system
§ BFT assumes asynchronous system and 

digital signatures 
§ Both protocol assume >2/3 correct servers
Can you devise a synchronous state machine 
replication protocol with signatures that 
tolerates any number of faulty servers?



Hyperledger fabric
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Replicated Services:
order-execute

Typically (e.g., PBFT), every replica is 
involved in:
§ Sharing invoked operations
§ Agreeing on the order of operations
§ Executing operations locally and returning 

results to the clients
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Order-execute: issues
§ Determinism required

üNot suited for general-purpose languages are 
excluded?

§ Executed code must be trusted
§ Every replica invests in executions (inefficient, 

vulnerable to DoS)
ü Trust model: not flexible

§ Ordering is hardwired
üNot adaptive to the actual environment
üFixed liveness-safety properties



24

Hyperledger fabric:
Execute-order-validate

§ Execute transactions on a subset endorsers (on 
the speculated state)
üSimulated runs 

§ Submit the resulting states to the ordering 
service
üStateless (lightweight) ordering: Atomic broadcast

§ Validate the ordered transactions
üDetect and eliminate conflicting transaction
üEvaluate outputs and updated states

§ Update state
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Hyperledger fabric:
Flow of operations

client endorsing
peer 1

endorsing
peer 2

endorsing
peer 3

Peer
(non-endorsing)

ordering  service

orderers

Invocation Commit

1 1 1

2

3

4 4

5
5

5 5

1 Chaincode 
execution

2 Endorsement
collection

3/4 Ordering
Broadcast/Delivery

5 Validation

Figure 4: Fabric high level transaction �ow.

The endorsers simulate the proposal, by executing the operation
on the speci�ed chaincode, which has been installed on the block-
chain. The chaincode runs in a Docker container, isolated from the
main endorser process.

A proposal is simulated against the endorser’s local blockchain
state, without synchronization with other peers. Moreover, en-
dorsers do not persist the results of the simulation to the ledger
state. The state of the blockchain is maintained by the peer trans-
action manager (PTM) in the form of a versioned key-value store,
in which successive updates to a key have monotonically increas-
ing version numbers (Sec. 4.4). The state created by a chaincode
is scoped exclusively to that chaincode and cannot be accessed
directly by another chaincode. Note that the chaincode is not sup-
posed to maintain the local state in the program code, only what
it maintains in the blockchain state that is accessed with GetState,
PutState, and DelState operations. Given the appropriate permis-
sion, a chaincode may invoke another chaincode to access its state
within the same channel.

As a result of the simulation, each endorser produces a value
writeset, consisting of the state updates produced by simulation
(i.e., the modi�ed keys along with their new values), as well as
a readset, representing the version dependencies of the proposal
simulation (i.e., all keys read during simulation along with their
version numbers). After the simulation, the endorser cryptographi-
cally signs a message called endorsement, which contains readset
and writeset (together with metadata such as transaction ID, en-
dorser ID, and endorser signature) and sends it back to the client
in a proposal response. The client collects endorsements until they
satisfy the endorsement policy of the chaincode, which the transac-
tion invokes (see Sec. 3.4). In particular, this requires all endorsers
as determined by the policy to produce the same execution result
(i.e., identical readset and writeset). Then, the client proceeds to
create the transaction and passes it to the ordering service.

Discussion on design choices. As the endorsers simulate the pro-
posal without synchronizing with other endorsers, two endorsers
may execute it on di�erent states of the ledger and produce di�er-
ent outputs. For the standard endorsement policy which requires
multiple endorsers to produce the same result, this implies that
under high contention of operations accessing the same keys, a
client may not be able to satisfy the endorsement policy. This is a

new consideration compared to primary-backup replication in repli-
cated databases with synchronization through middleware [40]: a
consequence of the assumption that no single peer is trusted for
correct execution in a blockchain.

We consciously adopted this design, as it considerably simpli�es
the architecture and is adequate for typical blockchain applica-
tions. As demonstrated by the approach of Bitcoin, distributed
applications can be formulated such that contention by operations
accessing the same state can be reduced, or eliminated completely
in the normal case (e.g., in Bitcoin, two operations that modify the
same “object” are not allowed and represent a double-spending
attack [44]). In the future, we plan to gradually enhance the live-
ness semantics of Fabric under contention, in particular to support
CRDTs [51] for complementing the current version dependency
checks, as well as a per-chaincode lead-endorser that would act as
a transaction sequencer.

Executing a transaction before the ordering phase is critical to
tolerating non-deterministic chaincodes (see also Sec. 2). A chain-
code in Fabric with non-deterministic transactions can only endan-
ger the liveness of its own operations, because a client might not
gather a su�cient number of endorsements, for instance. This is
a fundamental advantage over order-execute architecture, where
non-deterministic operations lead to inconsistencies in the state of
the peers.

Finally, tolerating non-deterministic execution also addresses
DoS attacks from untrusted chaincode as an endorser can simply
abort an execution according to a local policy if it suspects a DoS
attack. This will not endanger the consistency of the system, and
again, such unilateral abortion of execution is not possible in order-
execute architectures.

3.3 Ordering Phase
When a client has collected enough endorsements on a proposal,
it assembles a transaction and submits this to the ordering service.
The transaction contains the transaction payload (i.e., the chain-
code operation including parameters), transaction metadata, and a
set of endorsements. The ordering phase establishes a total order
on all submitted transactions per channel. In other words, ordering
atomically broadcasts [22] endorsements and thereby establishes
consensus on transactions, despite faulty orderers. Moreover, the or-
dering service batches multiple transactions into blocks and outputs
a hash-chained sequence of blocks containing transactions. Group-
ing or batching transactions into blocks improves the throughput
of the broadcast protocol, which is a well-known technique used in
fault-tolerant broadcasts.

At a high level, the interface of the ordering service only supports
the following two operations invoked by a peer and implicitly
parameterized by a channel identi�er:

• broadcast(tx): A client calls this operation to broadcast an
arbitrary transaction tx , which usually contains the transac-
tion payload and a signature of the client, for dissemination.

• B  deliver(s): A client calls this to retrieve block B with
non-negative sequence number s . The block contains a list
of transactions [tx1, . . . , txk ] and a hash-chain value h rep-
resenting the block with sequence number s � 1, i.e., B =
([tx1, . . . , txk ],h). As the client may call this multiple times

6
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Hyperledger fabric:
Architecture

§ Endorsers: execute the operations sequentially in a “sandbox”
üProtected environments: the code can be written in Go, Java etc. 
üEndorsers (including at least one correct) must agree on the result
üThe result of an operation – versioned read/write set 

§ State is stored as a key-value store (all variables of the system)
üNot as ever-growing history as in PBFT

§ Use peer-to-peer gossip to disseminate information 
ü~linear message complexity – no all-to-all patterns

§ Use external (oblivious to the system) ordering service
§ Validators check the versions and eliminate out-of-date operations
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Quiz 3
§ What are the liveness guarantees of PBFT?

§Under which conditions a client’s operation is 
committed and executed?

§ What are the liveness guarantees of 
Hyperledger Fabric? 
§ Is it possible that a correct client does not make 

progess (even in the synchronous fault-free 
case)?
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General issues of the BFT model

>2/3 assumption is reasonable if faults are 
independent
§ Questionable for software bugs or security  

attacks
§ An obstacle for scalability: unlikely to hold for 

large number of replica groups
§ Sybil attacks: in an open system, the 

adversary can hold arbitrarily many identities



Blockchains
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Chronology
1982 Byzantine 
Generals 
1990 Paxos
1992 “ProofOfWork”
1999 PBFT
1995 Hashcash
2002 Sybil attack
2009 Bitcoin
…
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Distributed ledger?
Shared data structure: linear record 
of (blocks of) transactions
§ Append-only
§ Backtrack verifiable

Open environment:
§ No static membership
§ No identities (public 

keys) 
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Verification: linked timestamping
§ A change in a block affects all following blocks

ü Originally with signatures: each block contains its 
signed predecessor

ü Now: hashchains
§ Bitcoin: Merkle trees  

ü Leafs: transactions
ü Intermediate: hashes of children
ü Roots: hashes of predecessor roots
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Consistency?
§ Sybil attack: the adversary can own an 

arbitrarily large fraction of participants
ü Why don’t good guys do the same? J

§ Classical consistent protocols don’t work

§ Assume a synchronous system
ü Message delays are bounded by 𝛿
ü Need to “slow down” updates (wrt 𝛿)
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Proof of work
Need to solve a (time-consuming) puzzle to be 
able to affect the state of the ledger 
(blockchain) 
§Every process maintains a locally consistent 
copy of the ledger

ü Hashchain/Merkle tree 
§To update (to “mine” a new block of 
transactions): broadcast a new block 
B=<s,x,ctr> containing a puzzle solution

ü H(ctr,G(s,x))<d (difficulty)
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(Bitcoin) blockchain
§ Clients broadcast an 

update
§ Dedicated clients 

(miners) collect updates 
solve puzzles, update 
and broadcast their local 
ledgers

§ Clients always choose 
the longest (verifiable) 
ledger

§ Old enough blocks are 
considered consistent 

Bitcoin adds a block every 
10 mins and traces back 6 
blocks: an hour delay 

?

Committed prefix 
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When it works
“Nakamoto consensus”

§Expected time to solve the puzzle >> 𝛿
§The adversary does not possess most of 
computing power

The probability of a fork drops 
exponentially with the staleness of blocks
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When it does not work
§ Asynchronous/eventual

ly synchronous 
communication, or

§ An adversary controls 
half of computing 
resources, or

§ Even a small 
probability of error 
cannot be tolerated, or

§ Energy consumption is 
an issue

§ Low throughput is not 
an issue
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When it is not needed?
§ No Sybil attacks 
ü Participation under control

§ No need for consensus
ü Updates commute
ü Eventual consistency is good enough
ü Storage-like systems [ABD]
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Combining PoW and BFT

§ Run any PoW-based blockchain (e.g., bitcoin) 
to elect a BFT committee

§ BFT committees run any BFT protocol (e.g., 
PBFT) to commit transactions

§ The commitment rate rate depends on actual 
message delays…


