
Replicated State Machines
and Paxos

SLR210, P4, 2019

© 2018 P. Kuznetsov and M. Vukolic

2

Quiz 1
§ Argue that the GLA algorithm (prev. lecture) is

live
§ Show that a set in which updates return

boolean responses (depending on the
operation’s success) cannot be wait-free
implemented from GLA

3

How to build
a consistent and reliable system?

Service accepts requests
from clients and returns
responses

§ Liveness: every persistent
client receives a response

§ Safety: responses
constitute a total order
w.r.t. the service’s
sequential specification

(recall universal construction)

debit($100) ok

4

How to build a fault-tolerant system?

Replication:

§ Service = collection of
servers

§ Some servers may fail debit($100) ok

5

“CAP theorem” [Brewer 2000]

No system can combine:
§Consistency: all servers observe the same
evolution of the system state
§Availability: every client’s request is eventually
served
§Partition-tolerance: the system operates
despite a partial failure or loss of
communication

6

Strongly consistent
replicated state machine

Universal construction in message-passing:
§ Clients access the service via a standard

interface
§ Servers run replicas of the (sequential)

service
§ (A subset of) faulty servers do not affect

consistency and availability

Leslie Lamport: The Part-Time Parliament.
ACM Trans. Comput. Syst. 16(2): 133-169
(1998)

7

Paxos: some history
§ Late 80s: a three-phase

consensus algorithm
üA Greek parliament reaching

agreement
§ 1989: a Paxos-based fault-

tolerant distributed database
§ 1990: rejected from TOCS

“All three referees said that the
paper was mildly interesting, though
not very important, but that all the
Paxos stuff had to be removed.”

7

8

This submission was recently discovered behind a
filing cabinet in the TOCS editorial office.
Despite its age, the editor-in-chief felt that it
was worth publishing. Because the author is
currently doing field work in the Greek isles and
cannot be reached, I was asked to prepare it for
publication.

The author appears to be an archeologist with
only a passing interest in computer science. This
is unfortunate; even though the obscure ancient
Paxon civilization he describes is of little
interest to most computer scientists, its
legislative system is an excellent model for how
to implement a distributed computer system in an
asynchronous environment.
…

Keith Marzullo
University of California, San Diego
(preface for the TOCS 1998 paper)

8

9

Paxos today

§Underlies a large number of practical system
when strong consistency is needed

üGoogle Megastore, Google Spanner
üYahoo Zookeeper
üMicrosoft Azure
ü….

§ACM SIGOPS Hall of Fame Award in 2012
§Turing award 2019

9

10

Consensus: recall the definition

A process proposes an input value in V (|V|≥2) and tries to
decide on an output value in V

§ Agreement: No two process decide on different values
§ Validity: Every decided value is a proposed value
§ Termination: No process takes infinitely many steps without

deciding
(Every correct process decides)

Cannot be solved in an asynchronous read-write shared-
memory system with at least one faulty process

(extends to 1-resilient message-passing systems)

11© 2019 P. Kuznetsov

Circumventing impossibility:
commit-adopt

A variant of consensus with weaker safety
(relaxed agreement)

Can be used for solving consensus with an
oracle

A process pi proposes an input value in V
(|V|≥2) and decides on a tuple (c,v) where c
is a boolean and v is in V
üWe say pi adopts v
üIf c=true, we say pi commits on v

12© 2019 P. Kuznetsov

Commit-adopt: properties

§ Validity: Every adopted value is an input value
of some process

§ Termination: Every correct process decides
§ CA-Agreement:

üIf a process commits on a value v, then no
process can adopt a value v’≠v

üIf all inputs are the same, then no process decides
on (false,*)

(every process that decides commits on a value)

13© 2019 P. Kuznetsov

Commit-adopt : protocol
Shared objects:

N atomic registers A[0,…,N-1], initially T
N atomic registers B[0,…,N-1], initially T

Upon propose(v) by process pi:
vi := v
A[i] := vi
V := read A[0,…,N-1]
if all non-T values in V are v then

B[i] := (true,vi)
else

B[i] := (false,vi)
V := read B[0,…,N-1]
if all non-T values in V are (true,*) then

return (true,vi)
else if V contains (true,v) then

vi := v
return (false,vi)

14© 2019 P. Kuznetsov

Commit-adopt: proof
Validity and Termination: immediate

CA-Agreement:

Claim 1 B[0,…,N-1] never contains (true,v) and
(true,v’) where v≠v’

Suppose not: pi wrote (true,v) in B[i] and pj wrote
(true,v’) in B[j], v≠v’

Previously, pi wrote v in A[i] and pj wrote v’ in A[j] (let
pi be the first to write)

But pj should have seen A[i] ≠v’ - a contradiction!

15© 2019 P. Kuznetsov

Commit-adopt: proof (contd.)
Claim 2 If pi returns (true,v) then no process pj

returns (c,v’) where v≠v’

Suppose not: let pj return (c,v’) where v≠v’.
By Claim 1, pj has previously written some

(false,v’’) in B[j]
Since pj hasn’t adopted v, it hasn’t found

(true,v) in B[1,…,N]
But then pi should have read (false,v’’) in B[j] –

a contradiction!

16© 2019 P. Kuznetsov

Commit-adopt: proof (contd.)

Claim 3 If all inputs are the same then no
process returns (false,*)

Immediate: both “if” conditions are true, i.e., the
non-T values in A and B are the same

17

W: an oracle
§ Eventual leader failure detector
§ Produces (at every process) events:

ü‹W, leader, p›
üWe also write p=leader()

§ Eventually, all correct processes output the same
correct process as the leader

Can be implemented in eventually synchronous
system:
üThere is a bound on communication delays and

processing that holds only eventually
üThere is an a priori unknown bound in every run

18

Leader election Ω: example
There is a time after which the same correct process

is considered leader by everyone.
(Sufficient to output a binary flag leader/not leader)

p1

p2

p3

p4

p1

p2

p4

p4

p2

p4

p1

p3

p1

p4

p3

p3

p3

p3

p3

p3

p3

19© 2019 P. Kuznetsov

Consensus = Ω + CA
Shared:

D[1,…,∞], regular registers, initially T
CA1,CA2,… a series of commit-adopt instances

Upon propose(v) by process pi:
vi := v
r := 0
repeat forever

r++
(c,vi):=CAr(vi) // r-th instance of commit-adopt
if c=true then

D[r]:=vi // let the others learn your value
return vi

repeat
if Ω outputs pi then

D[r]:= vi // advertise your value if leader
until D[r]=v’ where v’≠T //wait until the leader writes its value
vi := v’ //adopt the leader’s value

20

Quiz 2: commit-adopt

§ Would the CA algorithm is correct if
regular registers were used?

§ Show that Ω + CA indeed solve
consensus

§ Give an obstruction-free consensus
algorithm using CA
üObstruction-freedom: every process that runs

solo from some point on eventually decides

© 2019 P. Kuznetsov

21

Back to message-passing

§ Asynchronous system
§ Reliable communication channels
§ Processes fail by crashing
§ A majority of correct processes

But we proved that 1-resilient consensus is
impossible even with shared memory!
“CAP theorem” is violated!

Where is the trick?

22

Paxos/Synod algorithm

§ Let’s try to decouple liveness (termination)
from safety (agreement)

§ Synod made out of two components:
üW - the eventual leader oracle
ü(ofcons) obstruction-free consensus

23

Obstruction-free Consensus (ofcons)
§ Similar to consensus

üexcept for Termination
üability to abort and propose again

§ Requests:
ü‹ofcons, propose, v› (propose v)

§ Responses:
ü‹ofcons,decide, v’› (decide v’)
ü‹ofcons,abort› (aborts)

23

24

Obstruction-free Consensus
§ C1. Validity:

üAny value decided is a value proposed
§ C2. Agreement:

üNo two correct processes decide differently
§ C3. Obstruction-Free Termination:

üIf a correct process p proposes, it eventually
decides or aborts.

üIf a correct process decides, no correct process
aborts infinitely often.

üIf there is a time after which a single correct
process p proposes a value sufficiently many
times, p eventually decides.

24

25

Consensus vs. OF-Consensus

cons ofcons

25 11

54

25 25

25

25 11
abort

abort

26

Consensus vs. OF-Consensus

cons ofcons

25 11

54

25 25

25

11
25 25

25

27

Consensus using W and ofcons
§ Straightforward

üAssume that in cons everybody proposes

upon ‹cons, propose, v›

while not(decided)
if self=leader() then
result = ofcons.propose(v)
if result=(decide,v’) then

return v’

28

Link to Paxos/Synod

§ External cons.propose events come in a state
machine replication algorithm as requests
from clients
üAs in universal construction

§ Focus now on implementing OFCons

29

OFCons
§ Not subject to FLP impossibility!
§ Can be implemented in fully asynchronous

system
üUsing the correct-majority assumption
üOr read-write

§ Synod OFCons: a 2-phase algorithm

30

Synod OFCons I
Code of every process pi:

Initially:
ballot:=i-n; proposal:=nil; readballot:=0; imposeballot:=i-n;
estimate:= nil; states:=[nil,0]n

upon ‹ofcons, propose, v›
proposal := v; ballot:=ballot + n; states:=[nil,0]n

send [READ, ballot] to all

upon receive [READ,ballot’] from pj
if readballot ≥ ballot’ or imposeballot ≥ ballot’ then

send [ABORT, ballot’] to pj
else

readballot:=ballot’
send [GATHER, ballot’, imposeballot, estimate] to pj

upon receive [ABORT, ballot] from some process
return abort

31

Synod OFCons II
upon receive [GATHER, ballot, estballot, est] from pj

states[pj]:=[est,estballot]

upon #states ≥ majority //collected a majority of responses
if $ states[pk]=[est,estballot] with estballot>0 then

select states[pk]=(est,estballot) with highest
estballot

proposal:=est;
states:=[nil,0]n

send [IMPOSE, ballot, proposal] to all

upon receive [IMPOSE,ballot’,v] from pj
if readballot > ballot’ or imposeballot > ballot’ then

send [ABORT, ballot’] to pj
else

estimate := v; imposeballot:=ballot’
send [ACK, ballot’] to pj

32

Synod OFCons III

upon received [ACK, ballot] from majority

send [DECIDE, proposal] to all

upon receive [DECIDE, v]

send [DECIDE, v] to all

return [decide, v]

33

Correctness
§ Validity

üImmediate

§ Agreement
üWhen is the decided value determined?

§ OF Termination
üShow that a correct process that proposes either decides

or aborts
üIf a single process keeps proposing?

34

Time Complexity
§ Fault-free time complexity: 4 message delays

+ 1 communication step for decision relaible
broadcast

§ Optimizations
üGetting rid of the first READ phase

§ Allow a single process (presumed leader, say
p1) to skip the READ phase in its 1st ballot
üReduces fault-free/sync time complexity to 2

34

35

From Synod to Paxos

§ Paxos is a state-machine replication (SMR) protocol
üi.e., a universal construction given a sequential object

§ Implemented as totally-ordered broadcast: exports
one operation toBroadcast(m) and issues toDeliver(m’)
notifications

35

36

Paxos SMR
§ Clients initiate requests
§ Servers run consensus

üMultiple instances of consensus (Synod)
üSynod instance 25 used to agree on the 25th

request to be ordered
§ Both clients and servers have the (unreliable)

estimate of the current leader (some server)
§ Clients send requests to the leader
§ The leader replies to the client

36

3737

Paxos failure-free/sync message flow

S1S1 S1

S2

Sn

.

.

.

C

S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.

ACK

READ GATHER

C

Read phase Impose phase

request
reply

IMPOSE

38

Observation
§ READ phase involves no updates/new

consensus proposals
üMakes the leader catch up with what happened

before
§ Most of the time the leader will remain the

same
ü+ nothing happened before (e.g., new requests)

38

39

Optimization
§ Run READ phase only when the leader changes

üand for multiple Synod instances simultaneously
§ Use the same ballot number for all future Synod

instances
ürun only IMPOSE phases in future instances
üEach message includes ballot number (from the last

READ phase) and ReqNum, e.g., ReqNum = 11
when we’re trying to agree what the 11th operation
should be

§ When a process increments a ballot number it
also READs
üe.g., when leader changes

39

4040

Paxos Failure-Free Message Flow

S1S1 S1

S2

Sn

.

.

.

C

S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.

ACK

READ GATHER

C

Read phase Impose phase

request
reply

IMPOSE

41

Paxos:
(universal) state machine replication

Replicated service:
§ Collection of servers
§ Some servers may fail

§ Liveness: every persistent
client receives a response

§ Safety: responses
constitute a total order w.r.t.
the service’s sequential
specification

(linearizability)

debit($100) ok

42

Atomic broadcast:
Abstract ordering service

Interface:
§ call broadcast(m)
§ callback deliver(m)

Properties:
§ Validity: if a correct process invokes broadcast(m), then

eventually every correct process executes deliver(m)
§ No duplication: for a given m, a process executes deliver(m) at

most once
§ No creation: if a process executes delivers(m), then some

process previously executed broadcast(m)
§ Total order: if a process delivers m and then m’, then no process

delivers m’ before m

43

Quiz 3

§ Prove that Synod satisfies Agreement and
OF-termination

§ Show that Atomic Broadcast is equivalent to
State Machine Replication (SMR):
üAny SMR algorithm can be used to implement

Atomic Broadcast
üAny Atomic Broadcast algorithm can be used to

implement SMR

