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Administrivia
§ Language: English. Français sur demande
§ Lectures:  Fridays (19.04-26.06), 8:30-11:45
§ Web page: http://perso.telecom-

paristech.fr/~kuznetso/SLR210-2019/
§ Project: implementing Paxos (teams by two)
§ Office hours (appointments by email)

üC213-2, petr.kuznetsov@telecom-paristech.fr
üC213-3, matthieu.rambaud@telecom-paristech.fr

§ Credit = 0.7*written exam+0.3*project, reports to be 
submitted by 12.04
üBonus for participation/discussion of exercises 
üBonus for bugs found in slides/lecture notes
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Blockchain: expectations
- Ledger

- Record of operations
- Public

- Can be read/modified by all parties 
- Decentralized

- No trusted party
- Tamper-proof

- No party can modify a recorded 
operation
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Blockchain: chronology
1982 Byzantine 
Generals 
1990 Paxos/Storage
1992 “ProofOfWork”
1999 PBFT
1995 Hashcash
2002 Sybil attack
2009 Bitcoin
…
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Roadmap
§ Storage systems and lattices
§ CAP theorem
§ State machine replication and Paxos
§ Byzantine agreement
§ Practical Byzantine fault-tolerance
§ Permissioned Blockchains

§ Hyperledger
§ Permissionless blockchain

§ Bitcoin/PoW
§ Ethereum/Smart Contracts
§ Casper/PoS

© 2018 P. Kuznetsov
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Communication models
§ Shared memory

üProcesses apply operations on 
shared variables

üFailures and asynchrony
§ Message passing

üProcesses send and receive 
messages 

üCommunication graphs
üMessage delays

© 2018 P. Kuznetsov
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So far…

Shared-memory computing:
§ Wait-freedom and linearizability
§ Lock-based and lock-free synchronization
§ Consensus and universality 
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Message-passing

§ Consider a network where every two 
processes are connected via a reliable 
channel 
üno losses, no creation, no duplication

§ Which shared-memory results translate into 
message-passing?
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Read-write register

§ Stores values  (in a value set V)
§ Exports two operations: read and write

üWrite takes an argument in V and returns ok
üRead takes no arguments and returns a value 

in V
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Space of registers

§ Values: from binary (V={0,1}) to multi-valued
§ Number of readers and writers: from 1-writer 1-

reader (1W1R) to multi-writer multi-reader 
(NWNR) 

§ Safety criteria: from safe to atomic
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Safety criteria

§ Safe registers: every read that does not overlap with a 
write returns the last written value 

§ Regular registers: every read returns the last written 
value, or the concurrently written value 

(assuming one writer)

§ Atomic registers: the operations can be totally ordered, 
preserving legality and precedence (linearizability)
ü≈ if read1 returns v, read2 returns v’, and read1 precedes 

read2, then write(v’) cannot precede write(v) 
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Safe register

p1

p2

p3

write(1)   ok

read()   1

write(0)   ok

read()  3 read()  2
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Regular register

p1

p2

p3

write(1)   ok

read()        1

write(0)   ok

read()   1 read()   0
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Atomic register

p1

p2

p3

write(1)    ok

read()        1

write(0)  ok

read()   0 read()   1
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Space of registers

§ Values: from binary (V={0,1}) to multi-valued
§ Number of readers and writers: from 1-writer 1-

reader (1W1R) to multi-writer multi-reader 
(NWNR) 

§ Safety criteria: from safe to atomic

1W1R binary safe registers can be used to 
implement 

an NWNR multi-valued atomic registers!



16© 2012 P. Kuznetsov

Implementing message-passing

Theorem 1 A reliable message-passing 
channel between two processes can be 
implemented using two one-writer one-reader 
(1W1R) read-write registers 

Corollary 1 Consensus is impossible to solve in 
an asynchronous message-passing system if 
at least one process may crash
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ABD algorithm: 
implementing shared memory

Theorem 2[ABD] A 1W1R atomic register can 
be implemented in a (reliable) message-
passing model where a majority of processes 
are correct

§ Every process is a replica of the implemented 
register
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Implementing a 1W1R register
Upon write(v)
t++
send [v,t] to all
wait until received [ack,t] from a majority
return ok

Upon read()
r++
send [?,r] to all
wait until received {(t’,v’,r)} from a 
majority
return v’ with the highest t’

© 2012 P. Kuznetsov
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Implementing a 1W1R register, contd.
Upon receive [v,t]
if t>ti then

vi := v
ti := t
send [ack,t] to the writer

Upon receive [?,r]  
send [vi,ti,r] to the reader

© 2012 P. Kuznetsov
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Quiz 1
§ Show that the ABD algorithm executed by one 

writer and multiple readers implements a 
regular but not atomic register

§ Turn the algorithm into an atomic 1WNR one
§ An atomic NWNR?
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A correct majority is necessary
Otherwise, the reader may miss the latest written value  

The quorum (set of involved processes) of any write 
operation must intersect with the quorum of any read 
operation: 

W writes v R reads v
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Quorum systems
Let P be the set of processes

A quorum system on P is a tuple 
𝑊𝑃,𝑅𝑃 ,𝑊𝑃, 𝑅𝑃 ∈ 2P

Safety:
§ ∀𝑊 ∈ 𝑊𝑃,∀𝑅 ∈ 𝑅𝑃: 𝑊 ∩ 𝑅 ≠ ∅

For example, t-resilient n-process, 
t<n/2
𝑊𝑃 = 𝑅𝑃 = {𝑆 ∈ 2𝑃 ∶ 𝑆 = 𝑛 − 𝑡}

Liveness:
§ Some 𝑊 ∈ 𝑊𝑃, 𝑅 ∈ 𝑅𝑃 contains only 

correct processes
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Implementing a 1W1R register
Upon write(v)
t++
send [v,t] to all
wait until received [ack,t] from a write 
quorum
return ok

Upon read()
r++
send [?,r] to all
wait until received {(t’,v’,r)} from a read 
quorum
return v’ with the highest t’

© 2012 P. Kuznetsov
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Quiz 2
§ For a fault-free system, design a read-

optimized quorum system:
üA read operation involves a single replica

§ For a t-resilient system, design a quorum 
system ensuring a stronger property
ü∀𝑊 ∈ 𝑊𝑃,∀𝑅 ∈ 𝑅𝑃: 𝑊 ∩ 𝑅 contains at least one 

correct process 
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Beyond reads and writes: lattices

Imagine a lattice partial order (𝐿, ⊑, ⨆)
§ L is a set of value
§ ⊑ partial order on L
§ ⨆ join (least upper-bound) operator on L: 

∀𝑈 ⊆ 𝐿,⨆𝑉 = min{𝑢: ∀𝑣 ∈ 𝑉, 𝑣 ⊑ 𝑢}
We also assume the origin element 𝑢A:

∀𝑢 ∈ 𝐿: 𝑢A ⊑ 𝑢



26

Beyond reads and writes: lattices

(𝐿, ⊑, ⨆)
§ L = {abcd,abc,ab,ac,bc,a,c,∅}
§ ⊑ - inclusion ⊆
§ ⨆ - union ∪
§ ∅ - origin
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Beyond reads and writes:
Lattice agreement

Every process i proposes 𝑢C ∈ 𝐿 and decides on 
𝑣C ∈ 𝐿 :
§ Comparability: ∀𝑖, 𝑗: 𝑣𝑖 ⊑ 𝑣𝑗 ∨ 𝑣𝑗 ⊑ 𝑣𝑖
§ Validity: ∀𝑖: 𝑣C ⊑ ⨆ 𝑗 𝑢 𝑗

§ Monotonicity: ∀𝑖: 𝑢C ⊑ 𝑣𝑖
§ Liveness: every correct process eventually 

decides
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Atomic snapshot: sequential specification

§ Each process pi is provided with operations:
üupdatei(v), returns ok
üsnapshoti(), returns [v1,…,vN]

§ In a sequential execution:
For each [v1,…,vN] returned by snapshoti(), 

vj (j=1,…,N) is the argument of the last updatej(.) 
(or the initial value if no such update)  

© 2019 P. Kuznetsov
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One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per 

process)

© 2019 P. Kuznetsov

Vectors Si satisfy:
§ Self-inclusion: ∀i: vi ∈Si

§ Containment: ∀ i, j: Si ⊆ Sj∨
Sj ⊆ Si
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Quiz 3
In a read-write shared memory model:
§ Show that Lattice Agreement (LA) is 

equivalent to one-shot atomic snapshot (1AS)
üFind the matching lattice and propose two-way 

wait-free transformations
l 1AS ⟺ LA
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Generalized lattice agreement

Every process p receives values 𝑢H𝑖 ∈ 𝐿 and 
learns values on 𝑣H𝑖 ∈ 𝐿 (i=1,2,…):
§ Comparability: ∀𝑝, 𝑞, 𝑖, 𝑗: 𝑣H𝑖 ⊑ 𝑣M𝑗 ∨ 𝑣M𝑗 ⊑ 𝑣H𝑖

§ Validity: ∀𝑝, 𝑖: 𝑣H𝑖 ⊑ ⨆ 𝑞, 𝑗
𝑢M𝑗

§ Monotonicity: ∀𝑝, 𝑖 < 𝑗: 𝑣H𝑖 ⊑ 𝑣H𝑗

§ Liveness: every value received by a correct 
process p is eventually learned by every 
correct process q: ∃𝑗, 𝑢H𝑖 ⊑ 𝑣M𝑗
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Using GLA
Natural for objects with reads and  commuting 
updates 
§ Reads return the state without modifying
§ Updates commute: s.u1.u2=s.u2.u1 
§ E.g., add-only set (add and contains), counter 

(inc and read)

© 2019 P. Kuznetsov
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Quiz 4
In a read-write shared memory model:
§ Show that Generalized Lattice Agreement 

(GLA) is equivalent to (long-lived) atomic 
snapshot (AS)
üFind the matching lattice and propose two-way 

wait-free transformations
l AS ⟺GLA
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Universal construction with GLA
Upon Update(cmd)
ReceiveValue({cmd})
wait until cmd ∈ LearntValue()

Upon Read()
Update(noop) 
// does not modify the state
return Apply(LearntValue())

Linearizable update-commutable object

© 2012 P. Kuznetsov
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Implementing GLA
Local variables: 
bufferedValues = {}
proposedValue = origin 
learnValue = origin 
acceptedValue = origin

Upon ReceiveValue(v) // process p
t++ // sequence number of the proposal
bufferedValues = bufferedValues ⊔ {v}
send proposal(v,t,p) to all

Upon Learn()
return learntValue

© 2012 P. Kuznetsov
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Implementing GLA (contd.)
Upon received [nack,val,t,p]
// t – seq num of the current proposal
proposedValue = proposedValue ⊔ val

Upon received >N/2 [ack/nack,*,t’,p’] 
if no [nack,*,t’,p’] received then 

if learntVaue ⊏ v then LearntValue = v
// learn a new value

else if p’ = p and t’ = t then
// responses to the current proposal
t++
send proposal(proposedValue,t,p) to all 
// send a new proposal

© 2012 P. Kuznetsov
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Implementing GLA (contd.)

Upon received proposal(v’,t’,p’)
if acceptedValue ⊑ v’ then    

acceptedValue = v’
send [ack,v’,t’,p’] to all 
// accept the proposal

else 
acceptedValue = acceptedValue ⊔ v’
send [nack,acceptedValue,t’,p’] to p’
// reject the proposal

© 2012 P. Kuznetsov
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GLA implementation: correctness
Safety
§ Validity & Monotonicity -> immediate
§ Comparability: 

üany learnt value is accepted by a majority of 
processes

üonly comparable values are accepted 
Liveness

üCheck

© 2012 P. Kuznetsov
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