Algorithmic Basics of
Blockchains

ANTIPAXOS

SLR210, P4, 2019

Administrivia
Language: English. Francais sur demande
Lectures: Fridays (19.04-26.06), 8:30-11:45

Web page: http://perso.telecom-
paristech.fr/~kuznetso/SLR210-2019/

Project: implementing Paxos (teams by two)

Office hours (appointments by email)
v C213-2, petr.kuznetsov@telecom-paristech.fr
v C213-3, matthieu.rambaud @telecom-paristech.fr

Credit = 0.7*written exam+0.3*project, reports to be
submitted by 12.04

v Bonus for participation/discussion of exercises
v Bonus for bugs found in slides/lecture notes

© 2019 P. Kuznetsov

Blockchain: expectations

i

Ledger

- Record of operations
Public

- Can be read/modified by all parties
Decentralized

- No trusted party
Tamper-proof

- No party can modify a recorded
operation

Blockchain: chronology

1982 Byzantine
Generals

1990 Paxos/Storage
1992 “ProofOfWork”
1999 PBFT

1995 Hashcash
2002 Sybil attack
2009 Bitcoin

Linked Byzantine Public
Timestamping, Digital Proof Fault Keys as Smart
Verifiable Logs Cash of work Tolerance Identities Contracts

o
1680 | Merkle 1. Chaum &
Tree® CHS Byzantine Anonymous
Generals? | Communication®
Chaum
1985 Security w/o
Identification!
Haber & géglsnheaz Paxos*@
stornetta?
1990 Benaloh & Digicash
6
de mare @ Anti-spam?®
Bayer, haber, Szab
t tta® zabo
stornetta Essay® ®
1995 Micro-
Haber & Mint#° o 1
stornetta® I I Hashcash? B-money
Client 8
Puzzles® POIE Goldberg
2000 Paxos made Dissertation®
Simple?®
Sybil attack
Bit Gold*?
e 4 o :]
2005 \ 4 1
Bitcoin® Computatlonlal
Impostors
2010 Private
Blockchains
& h 4 {5 o)
Ethereum
A 4
2015

I

Nakamoto Consensus

1

Roadmap

Storage systems and lattices

CAP theorem

State machine replication and Paxos
Byzantine agreement

Practical Byzantine fault-tolerance

Permissioned Blockchains
» Hyperledger
Permissionless blockchain
= Bitcoin/PoW

» Ethereum/Smart Contracts
= Casper/PoS

© 2018 P. Kuznetsov

Communication models

« Shared memory

v'Processes apply operations on
shared variables

v'Failures and asynchrony
« Message passing
v'Processes send and receive
messages ,
v'Communication graphs

v'Message delays

© 2018 P. Kuznetsov

So far...

Shared-memory computing:

= Wait-freedom and linearizability

= Lock-based and lock-free synchronization
« Consensus and universality

© 2012 P. Kuznetsov

Message-passing

= Consider a network where every two
processes are connected via a reliable
channel

v'no losses, no creation, no duplication

« Which shared-memory results translate into
message-passing”?

© 2012 P. Kuznetsov

Read-write register

» Stores values (in a value set V)

= EXports two operations: read and write
v'"Write takes an argument in V and returns ok

v'Read takes no arguments and returns a value
inV

Space of registers

« Values: from binary (V={0,1}) to multi-valued

= Number of readers and writers: from 1-writer 1-

reader (1W1R) to multi-writer multi-reader
(NWNR)

« Safety criteria: from safe to atomic

10

Safety criteria

» Safe registers: every read that does not overlap with a
write returns the last written value

« Regular registers: every read returns the last written
value, or the concurrently written value

(assuming one writer)

= Atomic registers: the operations can be totally ordered,
preserving legality and precedence (linearizability)

v'= if read1 returns v, read?2 returns v’ , and read1 precedes
read2, then write(v’) cannot precede write(v)

77

Safe register

write(0) ok write(1) ok
pl =—rmem—m™@™@™¢m—mr— ———mroo ———m>
read() 1

read) 3 read() 2

p3 — —_—_—_——r— ———

12

Regular register

write(0) ok write(1) ok
pl =—rmem—m™@™@™¢m—mr— ———mroo ———m>
read() 1

read() 1 read) O

p3 ——__—_—— — ———

13

Atomic register

write(0) ok write(l1) ok

read) O read() 1

p3 ——l

4

Space of registers

« Values: from binary (V={0,1}) to multi-valued

= Number of readers and writers: from 1-writer 1-

reader (1W1R) to multi-writer multi-reader
(NWNR)

« Safety criteria: from safe to atomic

1W1R binary safe registers can be used to
iImplement

an NWNR multi-valued atomic registers!

15

Implementing message-passing

Theorem 1 A reliable message-passing
channel between two processes can be
implemented using two one-writer one-reader
(1W1R) read-write registers

Corollary 1 Consensus is impossible to solve in
an asynchronous message-passing system if
at least one process may crash

© 2012 P. Kuznetsov 76

ABD algorithm:
implementing shared memory

Theorem 2[ABD] A TW1R atomic register can
be implemented in a (reliable) message-
passing model where a majority of processes
are correct

= Every process is a replica of the implemented
register

© 2012 P. Kuznetsov 17

Implementing a TW1R register

Upon write(v)
t++
send [v,t] to all
wait until received [ack,t] from a majority
return ok

Upon read()
r++
send [?,r] to all
wait until received {(t’,v ,r)} from a
majority
return v. with the highest t’

© 2012 P. Kuznetsov 18

Implementing a 1W1R register, contd.

Upon receive [Vv,t]
if t>t; then
V; := V
t; = t
send [ack,t] to the writer

Upon receive [?,r]
send [v;,t;,r] to the reader

© 2012 P. Kuznetsov 19

Quiz 1

« Show that the ABD algorithm executed by one
writer and multiple readers implements a
regular but not atomic register

= Turn the algorithm into an atomic 1WNR one
= An atomic NWNR?

20

A correct majority is necessary

Otherwise, the reader may miss the latest written value

The quorum (set of involved processes) of any write
operation must intersect with the quorum of any read
operation:

- N
- ~ - ~
- ~ - ~
- ~ - ~
- ~ - ~
-, N - ~
e v N
7 7 N N
4 4 N N
4 / A Y A Y
4 / \ \
’)) . . ’ \ \
/ [— [e— [e— — — / [— \ [— [— [— [— == \
! — — — — — I | — A —— — — — — \
1 1 \ \
I | 1 1
\ \ 1 1
\ \ 1 1
\ b - b - b - b - b - v b - /R - b - b - b - k - /
\ \ / /
\ \ 4 4
\ \ ’ ’
A \ 7 4
N N 4 7
N N e
~ 7 N e
~ s ~ s
i ~ -
~
~ -
~ -
~ _-

W writes v B e - R reads v

© 2012 P. Kuznetsov 21

Quorum systems

Let P be the set of processes

A quorum system on P is a tuple
P,RP),Wp,,RP € 2F

Safety: Vi —

« VW EW,VRER:WNR %

For example, t-resilient n-process, N
t<n/2 ------ T e
Wpr=Rp={S€ 2F: [S|]=n—t} e

Liveness:

» Some W € Wp, R € R, contains only
correct processes

22

Implementing a TW1R register

Upon write(v)
t++
send [v,t] to all

wait until received [ack,t] from a write
quorum

return ok

Upon read()
r++
send [?,r] to all

wait until received {(t ,v ,r)} from a read
quorum

return v. with the highest t’

© 2012 P. Kuznetsov 23

Quiz 2

= For a fault-free system, design a read-
optimized quorum system:
v'A read operation involves a single replica

= For a t-resilient system, design a quorum
system ensuring a stronger property

vVvW € Wp,VR € Rp: W N R contains at least one
correct process

24

Beyond reads and writes: lattices

Imagine a lattice partial order (L, 5, LI)
= L is a set of value
» C partial order on L

« L join (least upper-bound) operator on L.:
vU C L, UV = min{u: Vv € V,v E u}

We also assume the origin element u,:
Vu € L:ug E u

25

Beyond reads and writes: lattices

(L, 5, LD
. L ={abcd,abc,ab,ac,bc,a,c,0}

= C - nclusion C
= || -unionu

= @ -origin

26

Beyond reads and writes:
Lattice agreement

Every process | proposes u; € L and decides on
V; € L :

= Comparability: Vi, j: vi E v; V v; £ v,
= Validity: Vi: v; £ ;u;
= Monotonicity: Vi: u; E v,

= Liveness: every correct process eventually
decides

27

Atomic snapshot: sequential specification

= Each process p; is provided with operations:
v'update;(v), returns ok
v'snapshoti(), returns [vq,...,V\]

« In a sequential execution:

For each [v4,...,v\] returned by snapshot;(),
Vi (j=1,...,N) is the argument of the last update;(.)

(or the initial value if no such update)

© 2019 P. Kuznetsov 28

One-shot atomic snapshot (AS)

Each process p;: Vectors S, satisfy:
update;(v;) « Self-inclusion: Vi: v. €S,
Si = snapshot() = Containment: V1, j: 5, & 5,V
S, €S

Si — S|[1],. . ,S,[N]

(one position per
process)

© 2019 P. Kuznetsov 29

Quiz 3

In a read-write shared memory model:
» Show that Lattice Agreement (LA) is
equivalent to one-shot atomic snapshot (1AS)

v'Find the matching lattice and propose two-way
wait-free transformations

30

Generalized lattice agreement

Every process p receives values u,' € L and
learns values on v,' € L (i=1,2,...).

» Comparability: Vp, q,i,j: v, E v/ Vv, E vy’
- Validity: Vp,i:v,' E U, uy/

= Monotonicity: Vp,i < j:v,' E v,/

= Liveness: every value received by a correct

process p is eventually learned by every
correct process q: 3j,u,' E v,/

37

Using GLA

Natural for objects with reads and commuting
updates

= Reads return the state without modifying
« Updates commute: s.ul.u2=s.u2.uf

= E.g., add-only set (add and contains), counter
(inc and read)

© 2019 P. Kuznetsov 32

Quiz 4

In a read-write shared memory model:

« Show that Generalized Lattice Agreement
(GLA) is equivalent to (long-lived) atomic
snapshot (AS)

v'Find the matching lattice and propose two-way
wait-free transformations

33

Universal construction with GLA

Upon Update(cmd)
ReceiveValue({cmd})
walt until cmd € LearntValue()

Upon Read()
Update (noop)
// does not modify the state
return Apply(LearntValue())

Linearizable update-commutable object

© 2012 P. Kuznetsov 34

Implementing GLA

Local variables:
bufferedvalues = {}
proposedValue = origin
learnValue = origin
acceptedvValue = origin

Upon ReceiveValue(v) // process p
t++ // sequence number of the proposal
bufferedvalues = bufferedvalues U {v}
send proposal(v,t,p) to all

Upon Learn()
return learntValue

© 2012 P. Kuznetsov

35

Implementing GLA (contd.)

Upon received [nack,val,t,p]
// t — seq num of the current proposal
proposedValue = proposedValue U val

Upon received >N/2 [ack/nack,*,t’,p’]
i1f no [nack,*,t’,p’] received then
1f learntVaue C v then LearntValue = v
// learn a new value

else 1f p’ = p and t’ = t then
// responses to the current proposal
t++

send proposal (proposedValue,t,p) to all
// send a new proposal

© 2012 P. Kuznetsov 36

Implementing GLA (contd.)

Upon received proposal(v’,t’,p’)

1f acceptedvalue E v’ then
acceptedvalue = v’
send [ack,v’,t’',p’'] to all
// accept the proposal

else
acceptedvValue = acceptedvValue UV’
send [nack,acceptedvValue,t’,p’'] to p’
// reject the proposal

© 2012 P. Kuznetsov 37

GLA implementation: correctness

Safety
= Validity & Monotonicity -> immediate
= Comparability:

v'any learnt value is accepted by a majority of
processes

v'only comparable values are accepted
Liveness
v'Check

© 2012 P. Kuznetsov 38

Literature

C. Cachin, R. Guerraoui, L. Rodrigues. Introduction to
Reliable and Secure Distributed Programming.
Springer, 2011

N. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers. 1996

H. Attiya, A. Bar-Noy, D. Dolev: Sharing Memory
Robustly in Message-Passing Systems. J. ACM 42(1):
124-142 (1995)

H. Attiya, M. Herlihy, O. Rachman: Atomic Snapshots

Using Lattice Agreement. Distributed Computing 8(3):
121-132 (1995)

J. M. Falerio, S. K. Rajamani, K. Rajan, G.
Ramalingam, K. Vaswani: Generalized lattice
agreement. PODC 2012: 125-134

39

