
Algorithmic Basics of
Blockchains

SLR210, P4, 2019

2© 2019 P. Kuznetsov

Administrivia
§ Language: English. Français sur demande
§ Lectures: Fridays (19.04-26.06), 8:30-11:45
§ Web page: http://perso.telecom-

paristech.fr/~kuznetso/SLR210-2019/
§ Project: implementing Paxos (teams by two)
§ Office hours (appointments by email)

üC213-2, petr.kuznetsov@telecom-paristech.fr
üC213-3, matthieu.rambaud@telecom-paristech.fr

§ Credit = 0.7*written exam+0.3*project, reports to be
submitted by 12.04
üBonus for participation/discussion of exercises
üBonus for bugs found in slides/lecture notes

3

Blockchain: expectations
- Ledger

- Record of operations
- Public

- Can be read/modified by all parties
- Decentralized

- No trusted party
- Tamper-proof

- No party can modify a recorded
operation

4

Blockchain: chronology
1982 Byzantine
Generals
1990 Paxos/Storage
1992 “ProofOfWork”
1999 PBFT
1995 Hashcash
2002 Sybil attack
2009 Bitcoin
…

5

Roadmap
§ Storage systems and lattices
§ CAP theorem
§ State machine replication and Paxos
§ Byzantine agreement
§ Practical Byzantine fault-tolerance
§ Permissioned Blockchains

§ Hyperledger
§ Permissionless blockchain

§ Bitcoin/PoW
§ Ethereum/Smart Contracts
§ Casper/PoS

© 2018 P. Kuznetsov

6

Communication models
§ Shared memory

üProcesses apply operations on
shared variables

üFailures and asynchrony
§ Message passing

üProcesses send and receive
messages

üCommunication graphs
üMessage delays

© 2018 P. Kuznetsov

7© 2012 P. Kuznetsov

So far…

Shared-memory computing:
§ Wait-freedom and linearizability
§ Lock-based and lock-free synchronization
§ Consensus and universality

8© 2012 P. Kuznetsov

Message-passing

§ Consider a network where every two
processes are connected via a reliable
channel
üno losses, no creation, no duplication

§ Which shared-memory results translate into
message-passing?

9

Read-write register

§ Stores values (in a value set V)
§ Exports two operations: read and write

üWrite takes an argument in V and returns ok
üRead takes no arguments and returns a value

in V

10

Space of registers

§ Values: from binary (V={0,1}) to multi-valued
§ Number of readers and writers: from 1-writer 1-

reader (1W1R) to multi-writer multi-reader
(NWNR)

§ Safety criteria: from safe to atomic

11

Safety criteria

§ Safe registers: every read that does not overlap with a
write returns the last written value

§ Regular registers: every read returns the last written
value, or the concurrently written value

(assuming one writer)

§ Atomic registers: the operations can be totally ordered,
preserving legality and precedence (linearizability)
ü≈ if read1 returns v, read2 returns v’, and read1 precedes

read2, then write(v’) cannot precede write(v)

12

Safe register

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 3 read() 2

13

Regular register

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 1 read() 0

14

Atomic register

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 0 read() 1

15

Space of registers

§ Values: from binary (V={0,1}) to multi-valued
§ Number of readers and writers: from 1-writer 1-

reader (1W1R) to multi-writer multi-reader
(NWNR)

§ Safety criteria: from safe to atomic

1W1R binary safe registers can be used to
implement

an NWNR multi-valued atomic registers!

16© 2012 P. Kuznetsov

Implementing message-passing

Theorem 1 A reliable message-passing
channel between two processes can be
implemented using two one-writer one-reader
(1W1R) read-write registers

Corollary 1 Consensus is impossible to solve in
an asynchronous message-passing system if
at least one process may crash

17© 2012 P. Kuznetsov

ABD algorithm:
implementing shared memory

Theorem 2[ABD] A 1W1R atomic register can
be implemented in a (reliable) message-
passing model where a majority of processes
are correct

§ Every process is a replica of the implemented
register

18

Implementing a 1W1R register
Upon write(v)
t++
send [v,t] to all
wait until received [ack,t] from a majority
return ok

Upon read()
r++
send [?,r] to all
wait until received {(t’,v’,r)} from a
majority
return v’ with the highest t’

© 2012 P. Kuznetsov

19

Implementing a 1W1R register, contd.
Upon receive [v,t]
if t>ti then

vi := v
ti := t
send [ack,t] to the writer

Upon receive [?,r]
send [vi,ti,r] to the reader

© 2012 P. Kuznetsov

20

Quiz 1
§ Show that the ABD algorithm executed by one

writer and multiple readers implements a
regular but not atomic register

§ Turn the algorithm into an atomic 1WNR one
§ An atomic NWNR?

21© 2012 P. Kuznetsov

A correct majority is necessary
Otherwise, the reader may miss the latest written value

The quorum (set of involved processes) of any write
operation must intersect with the quorum of any read
operation:

W writes v R reads v

22

Quorum systems
Let P be the set of processes

A quorum system on P is a tuple
𝑊𝑃,𝑅𝑃 ,𝑊𝑃, 𝑅𝑃 ∈ 2P

Safety:
§ ∀𝑊 ∈ 𝑊𝑃,∀𝑅 ∈ 𝑅𝑃: 𝑊 ∩ 𝑅 ≠ ∅

For example, t-resilient n-process,
t<n/2
𝑊𝑃 = 𝑅𝑃 = {𝑆 ∈ 2𝑃 ∶ 𝑆 = 𝑛 − 𝑡}

Liveness:
§ Some 𝑊 ∈ 𝑊𝑃, 𝑅 ∈ 𝑅𝑃 contains only

correct processes

23

Implementing a 1W1R register
Upon write(v)
t++
send [v,t] to all
wait until received [ack,t] from a write
quorum
return ok

Upon read()
r++
send [?,r] to all
wait until received {(t’,v’,r)} from a read
quorum
return v’ with the highest t’

© 2012 P. Kuznetsov

24

Quiz 2
§ For a fault-free system, design a read-

optimized quorum system:
üA read operation involves a single replica

§ For a t-resilient system, design a quorum
system ensuring a stronger property
ü∀𝑊 ∈ 𝑊𝑃,∀𝑅 ∈ 𝑅𝑃: 𝑊 ∩ 𝑅 contains at least one

correct process

25

Beyond reads and writes: lattices

Imagine a lattice partial order (𝐿, ⊑, ⨆)
§ L is a set of value
§ ⊑ partial order on L
§ ⨆ join (least upper-bound) operator on L:

∀𝑈 ⊆ 𝐿,⨆𝑉 = min{𝑢: ∀𝑣 ∈ 𝑉, 𝑣 ⊑ 𝑢}
We also assume the origin element 𝑢A:

∀𝑢 ∈ 𝐿: 𝑢A ⊑ 𝑢

26

Beyond reads and writes: lattices

(𝐿, ⊑, ⨆)
§ L = {abcd,abc,ab,ac,bc,a,c,∅}
§ ⊑ - inclusion ⊆
§ ⨆ - union ∪
§ ∅ - origin

27

Beyond reads and writes:
Lattice agreement

Every process i proposes 𝑢C ∈ 𝐿 and decides on
𝑣C ∈ 𝐿 :
§ Comparability: ∀𝑖, 𝑗: 𝑣𝑖 ⊑ 𝑣𝑗 ∨ 𝑣𝑗 ⊑ 𝑣𝑖
§ Validity: ∀𝑖: 𝑣C ⊑ ⨆ 𝑗 𝑢 𝑗

§ Monotonicity: ∀𝑖: 𝑢C ⊑ 𝑣𝑖
§ Liveness: every correct process eventually

decides

28

Atomic snapshot: sequential specification

§ Each process pi is provided with operations:
üupdatei(v), returns ok
üsnapshoti(), returns [v1,…,vN]

§ In a sequential execution:
For each [v1,…,vN] returned by snapshoti(),

vj (j=1,…,N) is the argument of the last updatej(.)
(or the initial value if no such update)

© 2019 P. Kuznetsov

29

One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per

process)

© 2019 P. Kuznetsov

Vectors Si satisfy:
§ Self-inclusion: ∀i: vi ∈Si

§ Containment: ∀ i, j: Si ⊆ Sj∨
Sj ⊆ Si

30

Quiz 3
In a read-write shared memory model:
§ Show that Lattice Agreement (LA) is

equivalent to one-shot atomic snapshot (1AS)
üFind the matching lattice and propose two-way

wait-free transformations
l 1AS ⟺ LA

31

Generalized lattice agreement

Every process p receives values 𝑢H𝑖 ∈ 𝐿 and
learns values on 𝑣H𝑖 ∈ 𝐿 (i=1,2,…):
§ Comparability: ∀𝑝, 𝑞, 𝑖, 𝑗: 𝑣H𝑖 ⊑ 𝑣M𝑗 ∨ 𝑣M𝑗 ⊑ 𝑣H𝑖

§ Validity: ∀𝑝, 𝑖: 𝑣H𝑖 ⊑ ⨆ 𝑞, 𝑗
𝑢M𝑗

§ Monotonicity: ∀𝑝, 𝑖 < 𝑗: 𝑣H𝑖 ⊑ 𝑣H𝑗

§ Liveness: every value received by a correct
process p is eventually learned by every
correct process q: ∃𝑗, 𝑢H𝑖 ⊑ 𝑣M𝑗

32

Using GLA
Natural for objects with reads and commuting
updates
§ Reads return the state without modifying
§ Updates commute: s.u1.u2=s.u2.u1
§ E.g., add-only set (add and contains), counter

(inc and read)

© 2019 P. Kuznetsov

33

Quiz 4
In a read-write shared memory model:
§ Show that Generalized Lattice Agreement

(GLA) is equivalent to (long-lived) atomic
snapshot (AS)
üFind the matching lattice and propose two-way

wait-free transformations
l AS ⟺GLA

34

Universal construction with GLA
Upon Update(cmd)
ReceiveValue({cmd})
wait until cmd ∈ LearntValue()

Upon Read()
Update(noop)
// does not modify the state
return Apply(LearntValue())

Linearizable update-commutable object

© 2012 P. Kuznetsov

35

Implementing GLA
Local variables:
bufferedValues = {}
proposedValue = origin
learnValue = origin
acceptedValue = origin

Upon ReceiveValue(v) // process p
t++ // sequence number of the proposal
bufferedValues = bufferedValues ⊔ {v}
send proposal(v,t,p) to all

Upon Learn()
return learntValue

© 2012 P. Kuznetsov

36

Implementing GLA (contd.)
Upon received [nack,val,t,p]
// t – seq num of the current proposal
proposedValue = proposedValue ⊔ val

Upon received >N/2 [ack/nack,*,t’,p’]
if no [nack,*,t’,p’] received then

if learntVaue ⊏ v then LearntValue = v
// learn a new value

else if p’ = p and t’ = t then
// responses to the current proposal
t++
send proposal(proposedValue,t,p) to all
// send a new proposal

© 2012 P. Kuznetsov

37

Implementing GLA (contd.)

Upon received proposal(v’,t’,p’)
if acceptedValue ⊑ v’ then

acceptedValue = v’
send [ack,v’,t’,p’] to all
// accept the proposal

else
acceptedValue = acceptedValue ⊔ v’
send [nack,acceptedValue,t’,p’] to p’
// reject the proposal

© 2012 P. Kuznetsov

38

GLA implementation: correctness
Safety
§ Validity & Monotonicity -> immediate
§ Comparability:

üany learnt value is accepted by a majority of
processes

üonly comparable values are accepted
Liveness

üCheck

© 2012 P. Kuznetsov

39

Literature
§ C. Cachin, R. Guerraoui, L. Rodrigues. Introduction to

Reliable and Secure Distributed Programming.
Springer, 2011

§ N. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers. 1996

§ H. Attiya, A. Bar-Noy, D. Dolev: Sharing Memory
Robustly in Message-Passing Systems. J. ACM 42(1):
124-142 (1995)

§ H. Attiya, M. Herlihy, O. Rachman: Atomic Snapshots
Using Lattice Agreement. Distributed Computing 8(3):
121-132 (1995)

§ J. M. Falerio, S. K. Rajamani, K. Rajan, G.
Ramalingam, K. Vaswani: Generalized lattice
agreement. PODC 2012: 125-134

