
Permissionless Blockchains:
Bitcoin and Proof of Work

1 Model definitions
Within the model of the original Nakamoto’s paper [Nak09], we consider two kinds of
processes: Clients and nodes 1.

Assumption 1 (Synchrony). We assume a synchronous network, i.e., every message
sent by a process is delivered within a known a priori delay. The delay is typically a few
seconds, and the important assumption is that this is much smaller than the ”delay between
blocks” that we will define.

Permissionless membership. Processes they can join or leave the protocol at any
time. A physical entity can simulate as many Clients and/or node as it wants for free 2.
More details are given for information in §5.1: limiting denial of service from clients by
transaction fees, and Appendix A: authentication of values and client’s anonymity.

The computational power of a node is a factor that limits the node’s impact on
the protocol, as we will see.

We the term computer’ for an elementary unit of computational power. A computer
which is currently computing a specificmining function, represents a unit ofmining power.
A single node process N running the mining function on 100 computers in parallel has
mining power 100, denoted 3.

|N | := 100 .

This notation is motivated by the fact that we sometimes identify a node with the set of
mining computers he is controlling, and by analogy to the notation |X| for the number of
elements in a set X. On the contrary, 100 nodes (Nj)j can e.g. be simultaneously running
mining functions on one single computer, in which case each of these nodes has mining
power

|Nj| := 1/100 .

1Clients are sometimes also called light nodes or wallets, and nodes—miners, repicas or full nodes.
2In practice, an entity running a node wants to run also a client, in order to receive rewards for its

work. [Nak09] even recommends to create one new client per transaction received, in order to enhance
privacy

3Notice that current research aims at replacing Bitcoin by protocols in which the computing power is
related to the individual speed of a single computer, not the number of computers running in parallel.

Messages from clients are authenticated. In order to avoid impersonation from
malicious clients, we need that when a process R receives a message m initially sent by
a honest client C, then m contains a proof that it was indeed sent by C. More details
can be found in Appendix A, for information. But this does not prevent another client D
from forwarding the same message from C several times to R. 4

Processes that follow the protocol are called honest. The other ones are called
“byzantine/malicious”. We will sometimes consider an entity A, called “the Adversary”
that coordinates the actions of malicious processes.

2 Ledger sequential type
Ideally, we would like to provide a linearizable implementation of a Ledger sequential type
shared by the clients and the nodes [HW90]. A Ledger is an object containing an ordered
set of values

(1) Ledger = {v1 < v2 < · · · < vm}.

The object exports two operations: read the contents of the ledger and append values to
it.

Recall that linearizability implies that the operations applied to the implemented
object can be put in a total order respecting this sequential behavior. Moreover, this
order should respect the real-time relation across operations: if o1 returns before o2 was
invoked, then o2 cannot be ordered before o1.

On the liveness side, we would like to guarantee that every read or append invocation
performed by aan honest process eventually returns.

As we will see, the Bitcoin protocol achieves these properties in the probabilistic sense.

3 Bitcoin: operation and properties
3.1 Proof of work: data structures that are difficult to compute

Values are organized in trees of blocks. A “block” (Bi)i formally consists in a
certain number of totally ordered values:

Bi = {vi,1 < vi,2 < . . . }

The number of values in a block is chosen so that the block’s size is around 2Mb.
Blocks are partially ordered forming a tree: see Figure 3.1. All possible trees have the
same common root: the genesis block B0, which contains no value. Partial order means
that we have total order between the consecutive blocks in a branch, e.g.:

B0 < B′1 < B′2 < B′3 .

But we do not have any order relation otherwise, e.g. between values in B2 and in B2”.
Actually, it can happen that the same value v appears both in B2 and B2”.

4A person R will typically receive several times the same message from C in the Bitcoin protocol,
since messages are multicast by gossip.

2

B0

B′1 B1”B1

B′2

B′3

B′′2B2 B
′(bis)
2

Figure 1: Blocks of values, partially ordered in a tree

A validity condition on blocks which is achieved by a time-consuming “mining”
program Wemake the assumption that the only way to create a valid child of an existing
block Bi in a tree, is to execute a certain computer program, called “mining”, that will
be defined only in §4.3, although this is not to be known for the exam. This computer
program takes two inputs:
Ancestor + values The block Bi in the tree to which one wants create a valid child Bi+1.

And vi+1,1 < vi+1,2 < . . . the ordered set of values that one would like to include in
the prospective child Bi+1.

Mining power allocated to the task.
In particular, allocating a mining power of zero means that the program is not run at all.
A mining programs returns a valid child Bi+1 containing the desired values. The following
statement is underlying [Nak09, §11], and is proved in §4.3:

Theorem 1. Let t1 < t2 < · · · < tj be the sequence moments of time when, somewhere in
the world, the mining program output blocks. Consider a process N that is running one
instance of the mining program with its full mining power |N | allocated to it. Then the
probability pN that N is the first node N ′ in the world that outputs a new block after tj,
so at tj+1, is equal to the fraction of mining power of N in the world. Namely, note |C|
the total mining power allocated in the world after tj, then:

pN =
|N |
|C|

.

In practice the mining program is recalibrated every two weeks to maintain a constant

3

average delay between two blocks, provided the total mining power engaged |C| does not
vary too much. For the exam we can make the following simplistic assumption, see §4.4
for a correct statement:

Assumption 2. For every j, we have that the “delay between two blocks” tj+1−tj is equal
to 10 minutes.

Observation 2. At this point we can make the following informal observation: consider
a process, running one or several computers, which has a tree consisting of one branch of
blocks B0, B1, ... Bz+1 , as the one in the left on Figure 3.1. Suppose that the process
wants to change a value v in the block B2, leaving the other values unchanged. Then it
needs to create a valid descendent of B1: a new block B′2, containing the same values as
in B2, except v that is modified. This represents some work, at least 10 minutes. Then,
it needs to create valid descendents of B′2 which contain the same values as in B3, B4 etc.
Creating each of these valid descendents B′3, B′4,...,B′z+1 represents some additional work,
at least 10 minutes each. Notice also that this can only be done sequentially, since to
mine every B′i+1 the user needs to know a valid ancestor B′i so that it can give it as input
to the mining program.

B1

B2

Bz+1

B3

B′2 ?

B′3 ?

Figure 2:

Remark 3.1. The mining function is “memoryless” by several aspects. First, we see from
Theorem 1 that a process N that is mining since a very long time, and didn’t succeed to

4

mine any block so far at tj, will not be priviledged in any manner after tj. It will not
mine its block —nor any other one— quicker in the future. In fact, a new process N ′
that started allocating the same mining power much later than N , say at tj, will have the
same probabiliy than N of being the lucky process at tj+1. 5

Likewise, N ′ could well change several time its desired ancestor or values input, be-
tween tj and tj+1, he will still have an equal probability of successing at tj+1 as N . In case
of success, the output of the mining function to N ′ is a valid block matching the ancestor
+ values he was currently mining on at tj+1.

So the expressions: “start or finish to mine a block” or the “work necessary to mine a
block” are faux amis, as well as the word “proof of work” itself actually. A good analogy
is that processes are gambling many times in a casino —at the same game table or not—,
each time with a very small chance to win. It is not because a process gambled a lot of
times and never won, that he will have more chances to be the next winner in the casino.

3.2 Bitcoin protocol

We describe in Figure 3 a greedy algorithm to simplify. Every process maintains a local
tree of blocks.

The goal of the protocol, informally, is to guarantee that (1) every value v sub-
mitted by clients will appear exactly once in the longest branch of every tree of honest
nodes, and that (2) when ignoring the b last blocks of the longest branch of any tree of an
honest node—a parameter to be adjusted— then the remaining prefix will always appear
identically in the longest branch of all the trees recovered in the future by any client of
node. Thus, this longest branch prefix could be seen as a correct read operation.

About the rule to mine to extend the longest branch Notice that this rule is not
present in the [Nak09] original paper. See the exercice in §5.2 for an explanation of why
it is important for safety. Notice also that this rule is not the best possible one when the
delay between consecutive blocks comes closer to network delays, see the end of §4.4.

A consequence of this rule is that, if an honest node N which is currently mining to
extend Bi, receives a block B′i+1 from another node, then:

• If B′i+1 is a successor of Bi, and thus becomes the leaf of the longest branch of the
N ’s tree. Thus N will from now on mine to extend B′i+1;

• Else if B′i+1 is another leaf in N ’s local tree, such that Bi is still the leaf of the
strictly longest branch. Then N continues to mine to extend Bi;

• Or we have an undertermined situation when there are several longest branches of
equal length. In this case, we will always consider the pessimistic scenario where
honest nodes mine on the branch chosen by the adversary.

5Actually N ′, could have start mining just before tj+1, its odds of being the winning process at tj+1

would even be the same. Of course this is not a winning strategy, because in reality, the time tj+1 is
random: see §4.4. So that every second of lazyness of N ′ translates into a further risk of “missing” the
unpredictable random time tj+1.

5

Bitcoin protocol

Security parameter We fix b a positive integer.

Join/read To join the protocol and/or to read the Ledger, a process queries all the
nodes to forward it the longest branch in their respective trees. Then it merges
these branches into a tree that it stores locally. The process then reads the
state of the Ledger as: the ordered sequence of values contained in the longest
branch of its local tree, minus the b last blocks.

Append 1) A client requests the appending of a new value v, by multicasting it to
the nodes. Each node:

2) Collects pending new values vpending,j, i.e. those that are not yet on the
longest branch of its local tree.

3) Gathers them into a prospective new block Bi+1 extending the last block
Bi of its longest branch.

4) Launches the “mining” program, hoping to find a valid new successor Bi+1

5) When a node successes in mining a new block, it broadcasts it to all nodes

6) If receiving a valid new block B′i+1, then a node adds it to its local tree,
possibly querying the predecessors of B′i+1 if it hasn’t them yet.

7) A value is appended when all honest nodes have it in their longest local
branch minus the b last blocks.

Figure 3: Bitcoin protocol, instantiated with the longest branch rule and an appending
delay of b blocks

6

Introducing the tradeoff between efficiency and safety Notice also that the pro-
tocol of [Nak09] does not specify that a new process joining the system or reading the
Ledger should request trees from all nodes in the protocol. Likewise it does not define
when a value should be considered as appended. Our specification of b blocks delay —a
parameter to be adjusted— will be motivated by the next theorem.6

Notice that, even with the synchrony assumption, an adversary node could possibly
send a very long branch to a single honest node N1. As long as N1 does not read the
Ledger, he will then possibly see a different longest branch in its local tree, than the one
of other honest nodes. The choice of b is designed in particular to avoid this kind of
situation.

3.3 Safety properties and choice of the security parameter/delay b

Consider the situation of Figure 3.1, where the set of honest nodes H all have the branch
on the left: B0, B1, . . . , Bz+1. Let us call A the set of adversary nodes, so that the total
set of computers in the world C = H ∪ A. Recall that the honest nodes are assumed
to always mine on the longest branch. From the point where A enters the protocol and
allocate its full mining power, we have thus that the percentage of mining power of honest
nodes is

pH =
|H|

|H|+ |A|

and the one of the adversary nodes is 1 − pH. Then the following theorem bounds the
probability to observe the scenario sketched in Observation 2. The first claim is proven at
the end of [Nak09, p6], and in §4.5. The second one follows from the argument in [Nak09,
p7], the interested reader can first read §4.4 to understand it.

Theorem 3. In the previous situation, we have that:
Easy case, seen in class Suppose that A joins the protocol —i.e. starts allocating min-

ing power— when the honest nodes have already the branch on the left until Bz+1.
Then the probability ε(z, p) that A ever manages to build a concurrent branch B′i
starting from B1 with the same length as the honest branch, is:

• 1 of 1− pH ≥ pH, and

•
(

1−pH
pH

)z
otherwise.

Hard case, not seen in the lectures Consider here that A had already been allocating
mining power, since B1 was created, so before the honest chain was extended to
Bz+1. Consider now the same initial situation as before: from the honest nodes’
point of view, there only one branch (Bi)i: the one on the left, which reached block
Bz+1. But the adversary may possibly have secretly mined a concurrent branch.

6In practice, to join and read the Ledger one queries sufficiently many nodes until the probability that
there is an honest up-to-date node among them is very high. Likewise, one could consider a value v to
be appended when the probability that every process reading the Ledger, by querying some number of
other nodes, sees v, is very high.

7

Then assume that the mining power of A is in minority:

1− pH < pH

Then for every η > 0, there exists a z := z(η, pH) such that the probability that A
ever manages to build a concurrent branch B′i, starting from B1 and with the same
length as the honest branch, is smaller than η. When A is in majority, he can
manage to do so with probability one.

Notice that we cannot say anything about scenarios where the adversary would have
started allocating mining power before the honest nodes joined the protocol. In particular
he could have secretly mined its adversary branch (B′i)i in advance, send B1 to the honest
nodes so that they can start mining on it. Then, once honest nodes have read the Ledger
from their honest branch (Bi)i, A sends to them its longer adversary branch (B′i)i. Thus
honest nodes will read a new state of the Ledger which does not extend what they read
previously, which is a safety violation.

Corollary 4. Assume that the fraction pH of mining power of honest nodes in the world
is fixed and strictly greater than 51% since the beginning of the protocol. Then for every
η > 0 “the target probability of failure”, there exists a security parameter b(η, pH) such that,
the Bitcoin protocol in Figure 3 with parameter b greater or equal than b(η, pH) realizes a
linear implementation of a Ledger, except with probability of violating safety η > 0. 7

For instance, the computations in [Nak09, p6] shows that if pH = 70%, then we can
achieve a probability of failure η smaller than 10−6 by choosing a security parameter of
b := b(10−6, 0.7) ∼ 50.

Another example is that the common usage is to wait for a delay of b = 6 blocks. The
computations in [Nak09, p6] show that this guarantees a probability of failure smaller
than 15%, in case honest nodes control more than 70% of the mining power.

4 Auxiliary material (not required for the exam)
4.1 A hash function

will be defined, for simplicity, as a ”random oracle”. Note {0, 1}∗ the set of all binary
strings and fix an output length of 256 bits8. Then Bellare and Rogaway CCS’93 define
a random oracle as a map from {0, 1}∗ to {0, 1}256 chosen by selecting each bit of H(s)
uniformly and independently for every s ∈ {0, 1}∗. For convenience of the reader we
will give a more concrete formulation, following the equivalent definition of [KL14], last
paragraph of page 434. Following [GKL15, p8], we also model that querying this function
on a new string s costs time, but no time if the string s was already queried 9.

7By this we mean that a read operation can be in a conflict with a future read operation with
probability η. In particular, an append operation which was assumed to terminate, could actually have
not terminated up to probability η.

8Which is the one of the Bitcoin’s protocol, which uses the function SHA256
9The interested reader will notice that what we actually need is just a hash function with ”preimage

resistance”, in the sense of [KL14, p. 4.6.2]. By contrast, a random oracle is a strong abstraction which
is unimplementable, see e.g. Maurer-Renner-Holenstein TCC’04.

8

Definition 3. A hash function is a function:

(2) H : {0, 1}∗ −→ {0, 1}256

that takes as input a string s of arbitrary length, and outputs a string H(s) of 256 bits.
The function H is such that: let C be the set of all computers in the world since H was

invented, and X the table of values (s,H(s)) computed by C so far. Then for any string
s ∈ {0, 1}∗, we have that:
Determinism either H(s) was already computed by C before, then H returns the same

value H(s).

Unpredictability or H(s) was not computed by C before. Then H returns a random value
H(s) sampled uniformly in {0, 1}256.

Work each call to H takes time τ for one computer10, unless the value was already com-
puted: s ∈ X , in which case we assume it is returned in no time.

Example 4.1. Let N40 the set of strings s in {0, 1}1000 such that H(s) begins with 40
zeros. Let us compute the average time for one computer to find a string s in N40. Let
us assume that initially X = ∅ for simplicity. Thus, by definition, all the 21000 values

H(0), H(1), . . . , H(21000 − 1)

are all initially random variables

X0, X1, . . . , X21000−1

which are independent and vary uniformly in [0, . . . , 2256 − 1].
Each time the computer calls H on a value s not computed before, the function H

returns H(s) a random sample of Xs. The random variable Xs is then equal forever to
this fixed value H(s). Let us note H40 the set of values in [0, . . . , 2256− 1] beginning with
40 zeros. The variables Xs being independent, the probability that H(s) is in H40 is thus

ps := P
(
Xs ∈ H40|previous samples of Xs′ 6=s

)
= P

(
Xs ∈ H40

)
=

|H40|
|[0, . . . , 2256 − 1]|

But we have that:

|H40| =
2256

240
,

left as an exercice. Thus ps = 2−40.
The situation is thus that the computer performs successive samples of independent

binary variables —also known as coin tosses—, which output success with probability
ps = 2−40 and failure otherwise. The average number of trials before success is thus
1/ps = 240. Multiplying by τ , we get an average time of 240τ for finding a s in N40.

9

Bi+1Bi

Noncei+1

previous hash
Noncei

authenticated values
HHvi,1, vi,2, . . . vi+1,1, vi+1,2, . . .

authenticated values

H(Bi)
previous hash
H(Bi−1)

Figure 4: Chaining relation between two consecutive blocks in a tree

4.2 A chained data structure for blocks of authenticated values

As explained in §3, see Figure 3.1 authenticated values are ordered within “blocks” Bi,
B′j..., which are themselves organized in trees. A valid tree must be such that:

• it starts with a specific root block B0, the same for all trees, which is fixed at the
beginning of the protocol;

• authenticated values within blocks of the same branch are all different;

• Let H be a fixed public hash function on 256 bits. Then the successor Bi+1 of a
block Bi is structured as the concatenation

(3) Bi+1 = H(Bi)||Noncei+1||(vi,j)j

where Noncei ∈ {0, 1}∗ is a string of bits such that

(4) H(Bi+1) ∈ {0, 1}256 begins with 72 zeros

The last condition is difficult to satisfy, as we will quantify11 12.

10τ is very small compared to 10 minutes. For typical Bitcoin computers, which are “antminers s9“,
then τ equals 10−14 seconds.

11In practice the 72 zeros threshold is adjusted every two weeks: at the creation of Bitcoin it was only
32 zeros. The “mining difficulty” (search on Google) is the ratio between these two numbers.

12Actually the Nonce is only 32 bits long, so all possibilities of strings of format (3) are quickly exhausted
if one leaves unchanged all other data of the prospective block. A big mining farm would exhaust all of
these 232 hashes in less than a millisecond. And the probability to find a succesful Nonce matching (4)
in this set of strings is only 232/272 = 1011. So in practice miners play on other variables in the block, as
the time stamp or values, to test new strings. This is why we simplified and allowed that Noncei+1 can
be of arbitrary length.

10

4.3 Proof of Theorem 1

Exercise 4.2. (Cultural) (a) From the value τ = 10−14, and the fact that one mining
computer in the world solves on average (4) every 10 minutes, estimate the order of
magnitude of the total current mining power in the world.

(b) Deduce the order of magnitude of all hashes H(s) computed in the world since
2008.

Exercise 4.3. (a) Consider the total merged trees B∈′∈′ of valid blocks ever created since
2008. Estimate an order of magnitude of the probability that two distinct blocks in B
have the same hash (search the “birthday paradox”).

(b) Estimate the order of magnitude of the probability that in 2100, two valid blocks in
distinct places of B∈∞′′ the have the same hash. We can e.g. proceed as follows. Suppose
it is the case up to time t. Then every potential valid new leaf of Bt: Noncei+1 is equal
to a string of the form Bi+1 = H(Bi)||Noncei+1||(vi,j)j defined in (3). By the recurrence
assumption, it is thus distinct from all the other existing blocks B in Bt. Conditioned to
this state, estimate the probability that the hash of a fixed valid new leaf Bi+1 equals the
one of existing blocks in B in B. Estimate the probability that this holds until 2100 by
the approximation done in the birthday paradox.

Exercise 4.3 motivates the following assumption:

Assumption 4. Consider the total merged trees B of valid blocks ever created. Then no
two valid blocks in distinct places of B the have the same hash.

Let us also make the following assumption, which seems not far from reality:

Assumption 5. Computers in the world have so far exclusively dedicated all their mining
power to compute hashes of strings of the form (3), where Bi are valid blocks already
created.

To summarize, we can now assume that all mining computers are successively calling
H(s) on distinct strings s ∈ {0, 1}∗ on which H has not been called already, until they
find one which satisfies (4): we define this as the “mining” program. We define this as the
For each such string, the value Xs := H(s) is independent from the previous calls of H,
and varies uniformly in {0, 1}256, until it is actually computed.

In addition, even if miners have similar deterministic procedures to test strings satis-
fying (4), one can still make the assumption that no two different honest miners ever call
H on the same string. Indeed in practice, the potential block Bi+1 of each honest miner
includes a specific value that depends on him.

The situation boils down to the following: every mining computer in the world tosses
successive independent coins Ys, each equal to

• Ys = success iff Xs matches (4)

• Ys = failure otherwise

11

Where the probability of success of each Ys is equal to ps = p = 2−72, by the rule (4)
and a straightforward adaptation of Exercise 4.1.

Let us model the time as a succession of tiny elementary intervals of duration τ/|C|,
where in each of them, one of the mining computers C in the world tosses a new coin Ys.
Let us model that for each of these tiny intervals, a given node N with mining power |N |
has probability:

pN =
|N |
|C|

.

to be the one that tossed the coin. Consider, as in the theorem, the event of the first
success after tj. This happens in a certain fixed such tiny interval. Conditioned on this
event, the probability that N is the computer that tossed the coin during this interval is
thus pN .

4.4 Random delays between blocks and discussion on synchrony

Let us consider the time delay between two blocks mined in the world:

Tj = tj+1 − tj
The average number n of total coin tosses of Ys in the world until a success is n =

272. Considering that |C| computers in the world are running in parallel, and that each
computer takes τ time to toss a coin, then the expectation of every Tj is:

E(Tj) = 272
τ

|C|
.

Every toss being independent from the previous, the variables Tj are also independent.
Let us assume that |C| does not vary, we thus have that the variables Tj are also equidis-
tributed. This approximation is justified —to a certain extent— by the fact the number
n = 272 is recalibrated every two weeks, such that we have:

E(Tj) = 10 minutes

which we will assume from now on.
Consider now a percentage 0 ≤ λ ≤ 1 and a time window Wλ:

Wλ = [tj, . . . , tj + λE(Tj)]

The number of tosses during this time window Wλ is λn, and satisfies (λn)p ≤ 1. We
are thus in the good regime of large numbers, to model by a Poisson law the number of
successes of tosses of (Ys) occuring in Wλ. Namely we have :

Number of successes in the world during Wλ ∼ P(λ) .

Concretely, we have that the probability that k blocks are mined in Wλ is:

λke−λ

k!
.

Likewise, during the same time window Wλ, a node with fraction pN of the total
mining power will perform (pNλ)n tosses during the time window Wλ, so that:

(5) Number of successes by N during Wλ ∼ P(pNλ) .

12

Exercise 4.4. Estimate the probability that more than 6 blocks are computed in less than
10 seconds by a node controling 50% of the total mining power.

Let us emphasize that short delays between blocks can lead to safety violations in the
Bitcoin protocol, see §5.3 for a caricatural case. Let us mention for the culture that, in
the other proof of work blockchain Ethereum, the delay between blocks is 15 seconds on
average. To improve safety, the rule to mine on the longest chain is chain replaced by a
rule consisting in mining on the densiest subtree.

4.5 Proof of Theorem 3

4.5.1 Easy case, seen in class: catching up from a fixed number of blocks
behind

Let us consider the situation in Figure 3.1. We assume that initially, only honest nodes
H are running the Bitcoin protocol, and that all of them have the same tree, made of the
branch on the left (in bold): B0, B1... to Bz+1. Let us call it the honest branch. Then an
Adversary node A joins the protocol, with a percentage of the total mining power that
we note pA, such that

As the protocol goes on, the honest nodes continue to follow the protocol and mine for
blocks extending the longest branch, which is currently the honest branch. The goal of A
is to change the values that H read in the Ledger, for example change a value contained
in the second block B2. For this, A needs first to mine an alternative block B′2 extending
B1. Then he needs to extend it into an adversary branch (B′i)i, until it reaches the length
of the honest branch (Bi)i. When this happends, A will need only sending this adversary
branch (B′i) to the honest nodes, so that they will include this adversary branch in their
tree. They will have to decide which of this two longest branches they should try to
extend. In the worst case scenario (see §3.2), honest nodes will from now on all mine on
extending the adversary branch.

Starting from any situation between the two concurrent chains (Bi)i and (B′j)j, then
by Theorem 1, the probability that the next block is mined by an honest node is

p = pH =
|H|

|H|+ |A|

and by the adversary is 1− pH.
The goal ofA is to catch up its late of z blocks behind the honest branch. The following

exercise shows that the probability ε(z, p) that this ever happens is: one is 1− pH ≥ pH,
and (1− pH

pH

)z
otherwise.
Exercise 4.5. (Gambler’s ruin, reverted) Consider two players H and A playing several
coin flips with a biased coin: H has probability p to win at each round, whereas A has
probability 1− p to win. Suppose that H starts with an advantage of z points. Then the
probability that A ever catches its initial late of z points behind H, is:

• 1 if 1− p > p.

13

•
(

1−p
p

)z
if 1− p < p.

Hint: consider Pz the probability to catch up a late of z points. Consider that P0 = 1,
and that from the next coin toss we have Pz = pPz+1 + (1− p)Pz−1.

5 Attacks and exercises
5.1 Sybil attacks are useless

clients’s influence on the protocol is limited by the money they can spend.
The goal of this paragraph is to explain why denial of service attacks from clients is
limited. This will not be considered for the exam. In practice, a client must have enough
money on its account, typically 70 Dollars, to send one valid request. We do not discuss
how this is possible without revealing the identity of the physical person controling the
client, see Appendix A for more information. This charge of 70 Dollars is blocked on the
client’s account until the request is executed. Then they are transfered to the node that
mined the block containing the request. client can possibly pay more to be prioritized. In
conclusion, even if a physical person emulates many clients, then its ability to send many
valid Append requests to the nodes is limited by the money it can spend.

nodes’ influence on the protocol is limited by their computational power

Exercise 5.1. Consider the situation of §4.5. Recall that the Adversary node starts with
a gap of 6 blocks late behind the branch mined by honest nodes. Explain if its strategy
would be more efficient, if instead it emulated 100 nodes, from the same set of computers
A.
5.2 Why mining on the longest branch

Exercise 5.2. In the protocol, remove the condition “if the new Block B′i+1 becomes the
leaf of its local longest branch”. Thus now, we assume that a node automatically starts
mining on the top of the last new blocks he received —be it in its longest branch or not.
Explain briefly a strategy, for an adversary A having only a minority of the mining power,
say 40%, to ensure that it will ultimately fully control the content of the longest branch
of every other node. Hint: divide the adversary in three nodes performing different tasks.

5.3 Why synchrony is important

Safety fails without synchrony Suppose that the message propagation time is com-
parable to the time between two blocks. For example in Ethereum, a new block is created
every 10-15 seconds. Then honest nodes might not all agree on the same longest chain on
which to build. Thus their mining power will be dispersed over several branches, while a
powerful adversary will concentrate on extending one single branch, and ultimately im-
pose it. This is why Ethereum’s “Ghost” protocol replaces the mine-over-the-longest-chain
rule, by another rule: mine over the densiest subtree.

The Gramoli-Natoli’s “balance attack” considers an adversary A controling the net-
work, that isolates a client C during a certain period of time. During this period, A
extends the tree saw by C by a chain of blocks that A forges. These blocks typically
include values stating that A sends money to C. Once C is convinced that this adversary

14

chain represents the state of the Ledger, he takes actions in real life: like sending goods
to A in exchange for the money. Once connectivity is reestablished between C and the
rest of the world, C catches up with the longest chain, mined by honest nodes. He then
discovers, too late, that A didn’t send money to him in this chain.

We formalize this in the following exercise:

Exercise 5.3. Consider that the world is composed of three nodes N1, N2, N3, with respec-
tive mining powers in proportion of 60%, 30% and 10%. Consider an honest client V (the
“victim”) and consider that N2 is a dishonest node who:

• Runs a client C2 that can make as many valid requests he wants.

• And has the power to isolate V and N3 from the network during, say, one day. That
is, during one day, N2 can block all the incoming messages to V and N3, except the
ones he decides.

Suppose that the initial state is such that everyone starts with the same initial Block B0.
Describe a strategy for N2 which will guarantee him, with high probability, that:

• V will first Accept a branch Bi containing a value v2 of client C2 in the first block
B1.

• Then V will later change its choice, and Accept a concurrent branch B′i not con-
taining the value v2 in the first block B′1.

Selfish mining: synchrony minus epsilon => 33% adversary imposes 50% of
blocks.

Exercise 5.4. We exemplify [GKL15, remark 3].

5.4 Bitcoin protocol does not solve consensus

let us recall that an Adversary/malicious/byzantine process, client or node, is by definition
one that deviates from the protocol. For example:

• Sends different values or blocks to different nodes

• Deliberately ignores a pending value v in the blocks he mines, although v is pending
for a long time

• Does not mine on the longest chain

• Does not broadcast a block as soon as he mined it

Exercise 5.5. Try to understand [GKL15, §5.1], by making for yourself an example of a
nonnegligible run where the validity condition, as defined in this paper, is violated.

15

A A client is a digital signature
A client is exactly defined by a digital signature algorithm (SignC ,VerifC), see the defini-
tion below. VerifC is public information, which can be considered as the identity card of
C. Whereas SignC is a secret C keeps for himself. In practice SignC and VerifC are called
the ”public key” and the “private key” of C. Any person can generate as many different
signature algorithms (SignC ,VerifC) it wants, and thus run many different clients sequen-
tially or in parallel. The practical limitation being that, when a client wants to append a
value to the Ledger —like making a transaction to another client— then it must pay 70
Dollars fees, so must have this sum on its account VerifC .

The digital signature algorithm of a client C consists in two algorithms (SignC ,VerifC).
Only C should know the first one, which, on input any string v : “the document to sign”,
outputs a valid signature of C on the document v. The requirement is that knowing the
signature of C on a certain v, gives no additional information on what a valid signature
of C on a different document v′ 6= v should look like

But everybody has access to the the second function, which enables to verify if a
signature on a document is valid or not. To fix ideas we define below a signature algorithm
as having a signature length of 160 bits. This is the one recommended for ECDSA, which is
used in Bitcoin and, e.g., Whatsapp: for information see [Gal12, p. 22.2.2] then [JMV01].
13

Definition 6. The digital signature of a client C is a pair of algorithms. First, a signature
algorithm SignC, which takes as input any string v ∈ {0, 1}∗ of any length, and outputs a
string of 160 bits SignC(v): the signature of C on the document v;

then, a verification algorithm

VerifC :{0, 1}∗ × {0, 1}160 −→ {true, false}(6)
v, s −→ (SignC(v) == s) .(7)

They must guarantee that, for any person that does not know SignC, then for any
document v′ different from all those already signed by C, then the task of finding a valid
signature s′ on v′ —i.e. such that VerifC(s′, v′) returns true—, is infeasible even with all
the computing power on earth14.

References
[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge

University Press, 2012. url: https://www.math.auckland.ac.nz/~sgal018/
crypto-book/ch22.pdf.

13To generate a digital signature for Bitcoin, which is synonymous of a client, one just needs to produce
a 256 bit string at random (64 hexa characters): the public key. Then call openssl ec on this public
key with the curve -name secp256k1 to generate the corresponding private key.

14See e.g. Pollard’s rho attack mentionned [JMV01, p 29], which uses no memory and takes 280 steps:
this is equal to the number of particles in the universe.

16

[GKL15] J. A. Garay, A. Kiayias, and N. Leonardos. “The Bitcoin Backbone Protocol:
Analysis and Applications”. In: Proceedings of the Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques - Advances
in Cryptology (EUROCRYPT). 2015.

[HW90] Maurice Herlihy and Jeannette M. Wing. “Linearizability: a correctness condi-
tion for concurrent objects”. In: ACM Transactions on Programming Languages
and Systems 12.3 (June 1990), pp. 463–492.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. “The Elliptic Curve Digital
Signature Algorithm (ECDSA)”. In: Int. J. Inf. Secur. 1.1 (Aug. 2001), pp. 36–
63.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Sec-
ond Edition. 2nd. Chapman & Hall/CRC, 2014.

[Nak09] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: Cryp-
tography Mailing list at https://metzdowd.com (Mar. 2009).

17

