
SLR206: Solutions for Quiz 4

1 “One-Shot” Atomic Snapshots

In one-shot atomic snapshot, every process pi performs updatei(vi) followed by snapshot(), let
Si denote the result of the snapshot. Prove that every run of one-shot atomic snapshot satisfies
the following properties:

Self-Inclusion ∀i: vi ∈ Si

Containment ∀i, j: (Si ⊆ Sj) ∨ (Sj ⊆ Si)

Here we assume that the initial value of each memory location i is ⊥ and we say that Si ⊆ Sj

if ∀k : (Si[k] 6= ⊥)⇒ (Si[k] = Sj [k]).

Solution. Self-Inclusion is immediate: since pi first performs updatei(vi) and then snapshot()
to obtain Si, Si must necessarily contains vi in position i.

Now suppose that pi and pj obtained snapshots Si and Sj , respectively, in a given run. Let
L be any linearization of the corresponding history. Suppose that the snapshot operation of pi
precedes the snapshot operation of pj in L. Since L is legal, for every non-⊥ position k in Si,
updatek(vk) precedes snapshoti() and, thus, snapshotj() in L. Since there is exactly one update
performed by pk in this run, we have Sj [k] = Si[k] = vk. The case when Sj precedes Si in L is
symmetric. Thus, Containment is also satisfied.

The Immediacy property is violated in the run presented in slide 21 of lecture 5. Here
v2 ∈ S1, but S2 * S1.

2 Atomic Snapshots and the ABA Problem

Show that our atomic snapshot algorithm fails if a process may perform multiple update oper-
ations with identical parameters.

Solution. Figure 1 gives an example of a run in which p1 and p2 update the memory concur-
rently with a snapshot taken by p2. In the first scan, p2 sees the old value od p1 (1) and the
new value of p3 (2), then p3 and p1 write back their “old” values (in this order), and then we
repeat this scenario with the second scan of p2.

The resulting execution is not linearizable: there is no place between the updates where we
can linearize the snapshot operation by p2.

1



R[1].write(2)

R[3].write(2)

Update(2)

R[3].write(2)

Update(2)

R[2].write(1)

Update(1)

Update(1)

R[3].write(1)

R[1].write(1)

Update(1)

p1

p2

p3

Snapshot()

R[1].read() R[2].read() R[3].read() R[1].read() R[2].read() R[3].read()

Update(2)

R[3].write(1)

Update(1)

R[1].write(1)

Update(1) Update(2)

R[1].write(2)

[1,1,1] [2,1,1] [2,1,2][2,1,2] [2,1,1]

[1,1,2] [1,1,2]
[1,1,2]

[1,1,1] [2,1,1]

Figure 1: ABA in atomic snapshots: p2 gets two identical scans, but the scan outcome (in red)
does not belong to the set of allowed snapshots (in blue).

3 Immedite snapshot: using atomic registers instead of atomic
snapshots

Would the one-shot IS algorithm (cf. the next page) be correct if we replace Ar.updatei(vi) with
Ur[i].write(vi) and Ar.snapshot() with scan(Ur[1], . . . , Ur[N ])? Here for each level r, instead of
an atomic snapshot object Ar, we use N atomic registers Ur[1],. . . ,Ur[N ]. Justify your answer.

Solution. The properties of atomic snapshot are not used by the algorithm. In particular, we
do not need the containment property of AS to be satisfied by the snapshots returned by Ar,
r = 1, . . . , N , except for those of size r.

Using the same arguments as for the original algorithm, we can show that at most r pro-
cesses can reach level r. Indeed, among N processes that can participate, at least one will
output at level N : at least the one which was the last to perform the write to a register in
UN [1], . . . , UN [N ]. By induction, the invatiant holds for every lower level. Hence, every process
that returns at level r returns the values of the set of exactly r processes that reached that level.

Thus, we indeed can use arrays of atomic registers instead of atomic snapshot objects.
Moreover, we can even use regular registers instead of atomic ones (please check).

4 Immedite snapshot: using just one array of atomic registers

Would it be possible to use only one array of N registers in the IS implementation?

Solution. By the algorithm if a process reached level r, then it earlier reached all levels in
{r, . . . , N}. Thus, to decide if a process can output at a given level, it can check if exactly r
processes are in level r or lower.

We can therefore use just one array of registers U [1], . . . , U [N ]. To start a level r, any
process pi can simply write its value together with the level, [vi, r], to U [i]. And to decide if it
can output at this level, pi can count the number of processes that have written values [∗, r′]
such that r′ ≤ r. Please check if the resulting algorithm is correct.

2


