
SLR206: Solutions for Quiz 2

1 Hand-over-hand locking

Locking in contains

If we allow a contains operation C to proceed in the wait-free manner, every node it reads may
turn out to be already unreachable from the head.

However, this is not an issue once we understand that if this is the case, then the remove
operation R that unlinked the node from list must be concurrent with C. Moreover, the lin-
earization point of R (the moment it updates pred.next) must lie within the interval of C.
Indeed, if the liearization point of R preceeds the invocation of C in the real-time order, then
the node is already unreachable at the moment when C is invoked and, thus, C cannot find it.

In fact, this observation holds for each of the algorithms we considered in the class: a
complete wait-free contains operation can always be linearized at:

• the moment it performs its last read (in case the node it reads is reachiable from the
head), or

• just before the linearization point of the successful remove operation that unlinks the last
node it reads.

Checking curr before locking

The idea is to return false early, without grabbing locks. Indeed, an unsuccessful update does
not need to protect data with locks, as it is not going to modify it.

We can see that the resulting algorithm is correct, as an unsuccessful update can be treated
as a contains operation, and we have just shown that contains operations can be performed
wait-free.

Locking one node at a time

Imagine that an operation R = remove(1) keeps a lock on pred, reads curr = pred.next and
releases the lock on pred before grabbing the lock on curr. Imagine further that curr.value == 1.

Then we can squeeze another R′ = remove(1) in the gap when no node is protected with
locks, so that R′ unlinks curr from the list updating pred.next.

R wakes up and successfully completes, which violates linearizability.
The message here is that an update operation must at some point keep locks on two con-

secutive nodes when traversing the list.

Starvation-freedom

Immediate, once we realize that the underlying locks are starvation-free and each operation
may only perform a bounded number of steps. The bound comes from the argument v of
the operation (contains, remove or contains): assuming that the list is sorted, the number of

1



shared-memory operations the operation performs is bounded by O(v − MININT) (assuming
that keys are integers).

It is left to show that the list appears to be sorted to every operation. More precisely, we
show that at every moment of time the sequence of nodes linked to head contains a sorted
sequence of values. We can proceed by induction on the number of steps in the execution. The
claim is true initially (when the list is empty). The only two steps of the algorithm that can
affect the claimed invariant are:

• adding an element a between two consecutive elements b and c, such that (by an insert
operation. By the the induction hypothesis, b < c and, by the algorithm b < a < c, so the
invariant is preserved after the step;

• bypassing element a between b and c (by a emphremove operation). By the induction
hypothesis, b < a < c, and the invariant is preserved after the step.

2 Optimistic locking

The need for validation in updates

Without validation concurrent updates may overwrite each other. See the example of the lost-
update problem on slide 8 on the lecture.

Validation in contains

Not necessary, check the discussion of the first question.

The lack of starvation-freedom

Suppose that the list is initially empty and consider an operation I = insert(1) that is concurrent
with an infinite series of alternating successful insert(1) and remove(1) operations, each of them
scheduled just before I grabs locks and runs its validation procedure. As all validations fail, I
never terminates, even though every lock is eventually released, violating starvation-freedom of
the set implementation.

But for this to happen, infinitely many updates by a concurrent process must complete, and
deadlock-freedom is satisfied.

3 Lazy locking

Checking curr.marked

Coming soon

Validation conditions

By “two conditions” here we mean (1) checking that pred is not marked for deletion and (2)
checking that pred still points to curr.

The first check is needed to anticipate the scenario in which pred is removed by a concurrent
update before we take its lock. If we do not do check condition (1), any further modification of
pred will be “lost”.

The second check is needed to make sure that a potential concurrent update that modified
pred.next will not be “lost” because of our operation.

2



Linearizability

A nice feature of a set abstraction is that we can prove linearizability of a history H by only
considering, separately for each value k, the restriction of H to operations invoked with argument
k. Therefore, we can choose the linearization point of an operation in an execution of the lazy
algorithm bazed on other operations with the same key. We only give a sketch below.

A successful update is linearized at the point it modifies pred.next. (Recall that an update
is successful if it executes this instruction.)

An incomplete unsuccessful operation or contains is removed from the linearization (it is
read-only, so no other operation is affected by its presence in a history).

The linearization point of a complete unsuccessful update is the moment it completes its
validation.

To define the linearization point of contains see the first exercise.
Finishing the argument and showing that the sequential history resulting after placing op-

erations of H in the order of their linearization points is left as an exercise. Check Chapter 7
of Herlihy-Shavit for details.

3


