
SLR206: Solutions for Quiz 1

1 2-process Peterson’s algorithm

Suppose that p0 executes the first two lines of its algorithm in the reverse order:

1. turn = 1;

2. flag[0] = true;

Then the following execution scenario is possible:

read flag[0] = false

p0

p1

turn = 1

flag[1] = true turn = 0

both p0 and p1 are in CS

flag[0] = true

read turn = 0

(Note that we do not care about the order in which the first two lines are executed by p1.)
Here p0 sets turn to 1, then p1 sets turn to 0, flag[0] to true (the order in which these two

operations are performed does not matter) reads false in flag[0] and proceeds to the critical
section. Then p0 reads 0 in turn and also proceeds to the critical section—a contradiction.

2 Tournament

The safety (mutual exclusion) part is implied by the fact that a process can only enter the
critical section if it gets in the critical section of the 2-process algorithm at the root node of
the tournament tree. As the 2-process algorithm ensure the mutual exclusion property, at most
one process can be in its critical section at a time.

To prove starvation-freedom, suppose, by contradiction that a process pi is blocked forever
in the trying section of some node C (2-process mutual exclusion algorithm) in the tournament
tree. Without loss of generality, assume that no process that no process is blocked closer to the
root than pi. Thus, every process that may obstruct pi will eventually reach the critical section
of the root node and, eventually, release all the locks it has grabbed on the way, including the
one of pi.

1 Thus, pi will eventually enters the critical section of C—a contradiction.

1Recall that we assume that every process is correct and no process stays in the crtitical sectiuon forever.
Otherwise, starvation-freedom is trivially satisfied.

1

3 Safety

Safety of an implementation

The set of runs of an implementation I is trivially prefix-closed : every prefix of a run of I is
also a run if I.

Suppose that all finite runs of I are safe (with respect to some safety property P). We want
to show that even infinite runs of I are also in P .

Let σ be any infinite run of I. Let σ1, . . ., σk, . . . be prefixes of σ, where σi, i = 1, 2, . . .,
has length i. By our assumption, every σi is in P . Since P is limit-closed, σ = lim i→∞σi is
also in P .

Checking safety

We want to argue that to check that a safety property P is violated, we can look for a finite
run.

Indeed, consider a run σ /∈ P . If σ is finite we are done: for every extension σ′ of σ, we have
σ′ /∈ P (otherwise, P is not prefix-closed).

Let σ be infinite. Suppose, by contradiction, that σ has no unsafe prefixes, Then, by limit-
closedness of P , we get that σ (as the infinite limit of these safe prefixes) is safe—a contradiction.

Determining safety

Given a property P , we want to construct S, a safety property, and L, a liveness property, such
that P = S ∩ L.

S can be constructed as a prefix- and limit-closure of P , defined as P plus all prefixes and
limits of runs in P :

S = {σ : ∃σ′ ∈ P, σ is a prefix of σ′}∪
{σ : ∃σ1, σ2, . . . ∈ P, ∀i, σi is a prefix of σi+1, σ = limi→∞ σi}

By construction, S is prefix- and limit-closed.
We define L as the largest possible set that gives P under intersection with S:

L = P ∪ ¬S

Recall that a liveness property must contain extensions of all possible runs: something
good should always be able to happen eventually. In this sense, it is better to make L as
large as possible.

By construction, S ∩ L = P .
It remains to show that L is indeed a liveness property, i.e., for every finite σ, there exists

σ′ ∈ L, an extension of σ.
Consider any σ /∈ L. By the definiton of L, σ ∈ S − P , and, by the definition of S, σ is

either a finite prefix of a run in P or an infinite limit of a sequence of runs in P . Since, σ is
finite, we derive that an extension of σ is in P .

2

4 Liveness

First of all, we observe that wait-freedom (WF) is a subset of every other property in the table,
i.e., WF is the strongest liveness property in the set.

Consider obstruction-freedom (OF) and lock-freedom (LF) and take any run σ ∈ LF . LF is
an independent property, so it guarantees progress to some process in all runs, while OF only
guarantees progress if some process runs in isolation (for sufficiently long). Therefore, every run
in LF is also in OF. Further, any run in which no process ever runs in isolation, e.g., in which
processes run one-by-one in the round-robin order, but no process makes progress is, trivially,
in OF, not in LF. Thus, LF (OF .

Here we use standard logical reasoning. Consider a set of runs defined as follows:

P = {σ : Aσ ⇒ Bσ},

i.e., P consists of all runs σ, such that if σ satisfies A, then it satisfies B. Then any run
that does not satisfy A is trivially in P .

For example, consider the property: “I like all fruits, but if it is an apple, then I only
like red ones.” Then if you give me an orange, I should like it.

Similarly, when deadlock-freedom says: “if every process is correct, then some process
makes progress”, a run in which not every process is correct, is trivially deadlock-free.

The remaining relations can be established analogously.

5 Linearizability

Left as an exercise.

3

