## Quiz 1.1

 What if we reverse the order of the first two lines the 2-process Peterson's algorithm

| P0:                        | P1:                        |
|----------------------------|----------------------------|
| turn = 1;                  | turn = 0;                  |
| <pre>flag[0] = true;</pre> | <pre>flag[1] = true;</pre> |
| •••                        |                            |

Would it work?

- Prove that the Tournament Tree algorithm satisfies:
  - ✓ mutual exclusion: no two processes are in the critical section at a time
  - ✓ starvation freedom: every process in the trying section eventually reaches the critical section (assuming no process fails in the trying, critical, or exit sections)



## Quiz 1.2: safety

- Let S be a safety property. Show that if all finite runs of an implementation I are safe (belong to S) then all runs of I are safe
- 2. Show that every unsafe run  $\sigma$  has an unsafe finite prefix  $\sigma'$ : every extension of  $\sigma'$  is unsafe
- 1. Show that every property is an intersection of a safety property and a liveness property



## Quiz 1.3: liveness

- Show how the elements of the "periodic table of progress" are related to each other
  - ✓Hint: for each pair of properties, A and B, check if any run of A is a run of B (A is stronger than B), or if there exists a run of A that is not in B (A is not stronger than B)
  - ✓Can be shown by transitivity: if A is stronger than B and B is stronger than C, then A is stronger than C



## Quiz 1.4: linearizability

- Show that the sequential queue implementation considered before is linearizable and wait-free as is if used by two processes: one performing only enqueue operations and one performing only dequeue operations
- Devise a simple queue implementation shared by any number of processes in which enqueue and dequeue operations can run concurrently (data races between these operations are allowed)

