
Consensus and Universal Construction

SLR206, P1, 2020

2

So far…
Shared-memory communication:

§ safe bits => multi-valued atomic registers
§ atomic registers => atomic snapshot

3

Today

Reaching agreement in shared memory:

§ Consensus
üImpossibility of wait-free consensus

§ 1-resilient consensus impossibility
§ Universal construction

4

System model

§ N asynchronous (no bounds on relative speeds) processes p0,…,pN-1
(N≥2) communicate via atomic read-write registers

§ Processes can fail by crashing
üA crashed process takes only finitely many steps (reads and writes)
üUp to t processes can crash: t-resilient system
üt=N-1: wait-free

5

Consensus
Processes propose values and must agree on a

common decision value so that the decided value
is a proposed value of some process

After

0

1

1

1

1

1

Before

6

Consensus: definition

A process proposes an input value in V (|V|≥2) and tries to decide on an output value
in V

§ Agreement: No two processes decide on different values
§ Validity: Every decided value is a proposed value
§ Termination: No process takes infinitely many steps without deciding

(Every correct process decides)

7

Optimistic (0-resilient) consensus
Consider the case t=0, no process fails

Shared: 1WNR register D, initially T (default value not in V)

Upon propose(v) by process pi:
if i = 0 then D.write(v) // if p0 decide on v

wait until D.read() ≠ T // wait until p0 decides

return D

(every process decides on p0’s input)

8

Impossibility of wait-free consensus [FLP85,LA87]

Theorem 1 No wait-free algorithm solves consensus

We give the proof for N=2, assuming that
p0 proposes 0 and p1 proposes 1

Implies the claim for all N≥2

9

Proof of Theorem 1
§ We show that no 2-process wait-free solution exists for iterated read-write

memory: Rk[0], Rk[1]
§ Code for pi in round k: write to Rk[i] and read Rk[1-i]:

k:= 0
repeat

k := k+1;
Rk[i].write(vi);
vi := [vi, Rk[1-i].read()];

until not decided(vi)

(until the current state does not map to a decision)
§ The iterated memory is equivalent to non-iterated one for solving consensus

10

Proof of Theorem 1

p0 p1

p0 reads before
p1 writes

p0 reads after
p1 writes

p1 reads after
p0 writes

p1 reads before
p0 writes

Initially each pi only knows its input
One round of IIS:

11

Proof sketch for Theorem 1

p0 p1

Two rounds:

12

Proof of Theorem 1

p0 p1

And so on…

Solo runs remain connected - no way
to decide!

13

Proof of Theorem 1

p0 p1

Suppose pi (i=0,1) proposes i
§ pi must decide i in a solo run!
Suppose by round r every process decides

There exists a run with conflicting
decisions!

0 0 0 0 0 110 0 0 0 0 111111111111

14

1-resilient consensus?

What if we have 1000000 processes and one of them can crash?

NO

We present a direct proof now
(an indirect proof by reduction to the wait-free impossibility also exists)

15

Impossibility of 1-resilient consensus [FLP85,LA87]

Theorem 2 No 1-resilient (assuming that one process might fail)
algorithm solves consensus in read-write

Proof
By contradiction, suppose that an algorithm A solves 1-resilient binary

consensus among p0,…pN-1

16

Proof
A run of A is a sequence of atomic steps (reads or

writes) applied to the initial state
A run of A can be seen as and initial input

configuration (one input per process) and a
sequence of process ids i1,i2,…ik,… (all registers are
atomic)

Every correct (taking sufficiently many steps) process
decides!

17

Proof: valence

Let R be a finite run

§ We say that R is v-valent (for v in {0,1}) if v is decided in every infinite 1-resilient
extension of R

§ We say that R is bivalent if there exists a 0-valent extension of R and a 1-valent
extension of R

18© 2020 P. Kuznetsov

19

Proof: valence claims
Claim 1 Every finite run is 0-valent, or 1-valent, or bivalent.

(by Termination)

Claim 2 Any run in which some process decides v is
v-valent
(by Agreement)

Corollary 1: No process can decide in a bivalent run (by Agreement).

20

Bivalent input

Claim 3 There exists a bivalent input configuration (empty run)

Proof
Suppose not
Consider sequence of input configurations C0,…,CN:

Ci: p0,..,pi-1 propose 1, and pi,..,pN-1 propose 0

§ All Ci‘s are univalent
§ C0 is 0-valent (by Validity)
§ CN is 1-valent (by Validity)

21© 2020 P. Kuznetsov

22

Bivalent input
There exists i in {0,…N-1} such that Ci is 0-valent and Ci+1 is 1-valent!

Ci and Ci+1 differ only in the input value of pi (it proposes 0 in Ci and 1 in
Ci+1)

Consider a run R starting from Ci in which pi takes no steps (crashes
initially): eventually all other processes decide 0

Consider R’ that is like R except that it starts from Ci+1
§ R and R’ are indistinguishable!
§ Thus, every process decides 0 in R’ --- contradiction (Ci+1 is 1-valent)

23

Critical run
Claim 4 There exists a finite run R and two

processes pi and pj such that R.i is 0-valent
and R.j.i is 1-valent (or vice versa)

(R is called critical)
Proof of Claim 4: By construction, take the

bivalent empty run C (by Claim 3 it exists)
We construct an ever-extending fair (giving

each process enough steps) run which
results in R

C

pi pj

pi
0-valent

1-valent

R

24

Proof of Claim 4: critical run
repeat forever

take the next process pi (in round-robin fashion)
if for some R’, an extension of R, R’.i is

bivalent then R:=R’.i
else stop

§ If never stops – ever extending (infinite) bivalent
runs in which every process is correct (takes
infinitely many steps – contradiction with
termination

§ If stops – (suppose R.i is 0-valent) – consider a
1-valent extension
ü There is a critical configuration between R and R’

C

i
j

i0-valent

1-valent

i

0-valent

i

R

R’

1-valent

25

Proof (contd.)
Take a critical run R (exists by Claim 4) such that:

§ R.0 is 0-valent
§ R.1.0 is 1-valent

(without loss of generality, we can always rename processes or inputs
appropriately J)

26© 2020 P. Kuznetsov

27

Proof (contd.): the next steps in R

Three cases, depending on the next steps of p0 and p1 in R

§ p0 and p1 are about to access different objects in R
§ p1 reads X and p0 reads X
§ p0 or p1 writes in X

28

Proof (contd.): cases and contradiction

§ p0 and p1 are about to access different objects in R
üR.0.1 and R.1.0 are indistinguishable

R

p1-> Y p0-> X

p0-> X p1-> Y

29

Proof (contd.): cases and contradiction

§ p0 and p1 are about to read the same object X
R.0.1 and R.1.0 are indistinguishable

R

p0 reads X p1 reads X

p0 reads Xp1 reads X

30© 2020 P. Kuznetsov

Proof (contd.): cases and contradiction

§ p0 is about to write to X (the case when p1 writes is
symmetric)
üExtensions of R.0 and R.1.0 are indistinguishable for all

except p1 (assuming p1 takes no more steps)

R

p0 writes to X p1-> X

p0 writes to X

31

Thus
§ No critical run exists
§ A contradiction with Claim 4

Þ 1-resilient consensus is impossible in read-write

32

Next
§ Combining registers with stronger objects

üConsensus and test-and-set (T&S)
üConsensus and queues

§ Universality of consensus
üConsensus can be used to implement any object

33© 2020 P. Kuznetsov

Test&Set atomic objects

Exports one operation test&set() that returns a value in {0,1}

Sequential specification:
The first atomic operation on a T&S object returns 0, all other

operations return 1

34

2-process consensus with T&S
Shared objects:

T&S TS
Atomic registers R[0] and R[1]

Upon propose(v) by process pi (i=0,1):
R[i] := v
if TS.test&set()=0 then

return R[i]
else

return R[1-i]

35

FIFO Queues
Exports two operations enqueue() and dequeue()

§ enqueue(v) adds v to the end of the queue
§ dequeue() returns the first element in the queue

(LIFO queue returns the last element)

36

2-process consensus with queues
Shared:

Queue Q, initialized (winner,loser)
Atomic registers R[0] and R[1]

Upon propose(v) by process pi (i=0,1):
R[i] := v
if Q.dequeue()=winner then

return R[i]
else

return R[1-i]

37

Quiz 1: uninitialized queues
The algorithm assumes that the queue is initialized to
(winner,loser).

§ Can we solve consensus using (initially) empty queues?

38

But why consensus is interesting?
Because it is universal!

§ If we can solve consensus among N processes, then we can
implement any object shared by N processes
üT&S and queues are universal for 2 processes

§ A key to implement a generic fault-tolerant service (replicated
state machine)

39

What is an object ?
Object Obj is defined by the tuple (Q,O,R,σ):
§ Set of states Q
§ Set of operations O
§ Set of outputs R
§ Sequential specification σ, a subset of OxQxRxQ:

ü(o,q,r,q’) is in σó if operation o is applied to an object in state q,
then the object can return r and change its state to q’

üTotal on OxQ (defined for all o and q)

40

Deterministic objects

§ An operation applied to a deterministic object results in exactly
one (output,state) in RxQ, i.e., σ can be seen a function
OxQ -> RxQ

§ E.g., queues, counters, T&S are deterministic
§ Unordered set (put/get) – non-deterministic

41

Example: queue
Let V be the set of possible elements of the queue

Q=V* U {Ø} (all sequences with elements in V and the empty state)
O={enq(v)v in V,deq()}
R=V U {Ø} U {ok}
σ(enq(v),q)=(ok,q.v)
σ(deq(),v.q)=(v,q)
σ(deq(), Ø)=(Ø, Ø)

42

Implementation: definition
A distributed algorithm A that, for each operation o in O and for

every pi, describes a concurrent procedure oi using base
objects

A run of A is well-formed if no process invokes a new operation on the
implemented object before returning from the old one (we only consider
well-formed runs)

43

Implementation: correctness
A (wait-free) implementation A is correct if in every well-formed

run of A
§ Wait-freedom: every operation run by pi returns in a finite

number of steps of pi

§ Linearizability ≈ operations “appear” instantaneous (the
corresponding history is linearizable)

44

Linearization

p1

p2

p3

enq(y) ok

deq() y

enq(x) ok

deq() x

p1-enq(x); p1-ok; p3-deq(); p3-x;
p1-enq(y); p1 –ok; p2-dequeue(); p2-y

45

Universal construction

Theorem 1 [Herlihy, 1991] If N processes can solve consensus,
then N processes can (wait-free) implement every object
Obj=(Q,O,R,σ)

46

Suppose you are given an unbounded number of consensus
objects and atomic read-write registers

You want to implement an object Obj=(Q,O,R,σ)

How would you do it?

47

Universal construction: idea
Every process that has a pending operation does the following:

§ Publish the corresponding request
§ Collect published requests and use consensus instances to

serialize them: the processes agree on the order in which the
requests are executed

§ Processes agree on the order in which the published requests
are executed

48

Universal construction: variables
Shared abstractions:

N atomic registers R[0,…,N-1], initially Ø
N-process consensus instances C[1], C[2], …

Local variables for each process pi:
integer seq, initially 0

// the number of pi’s requests executed so far
integer k, initially 0

// the number of batches of
// all requests executed so far

sequence linearized, initially empty
//the serial order of executed requests

49

Universal construction: algorithm
Code for each process pi: implementation of operation op

seq++
R[i] := (op,i,seq) // publish the request
repeat

V := read R[0,…,N-1] // collect all requests
requests := V-{linearized} //choose not yet linearized requests
if requests≠Ø then

k++
decided:=C[k].propose(requests)
linearized := linearized.decided
//append decided request in some deterministic order

until (op,i,seq) is in linearized
return the result of (op,i,seq) in linearized

// using the sequential specification σ

50

Universal construction: correctness

§ Linearization of a given run: the order in which operations are
put in the linearized list
ü Agreement of consensus: all linearized lists are related by

containment (one is a prefix of the other)

§ Real-time order: if op1 precedes op2, then op2 cannot be
linearized before op1
üValidity of consensus: a value cannot be decided unless it was

previously proposed

51

Universal construction: correctness

§ Wait-freedom:
üTermination and validity of consensus: there exists k such that the

request of pi gets into req list of every processes that runs
C[k].propose(req)

52

Another universal abstraction: CAS
Compare&Swap (CAS) stores a value and exports operation CAS(u,v)

such that:
§ If the current value is u, CAS(u,v) replaces it with v and returns u
§ Otherwise, CAS(u,v) returns the current value

A variation: CAS returns a boolean (whether the replacement took place)
and an additional operation read() returns the value

53

N-process consensus with CAS
Shared objects:

CAS CS initialized Ø
// Ø cannot be an input value

Code for each process pi (i=0,…,N-1):
vi := input value of pi
v :=CS.CAS(Ø,vi)
if v = Ø

return vi
else

return v

54

N-consensus object
N-consensus stores a value in {Ø} U V and exports operation

propose(v), v in V:

For 1st to Nth propose() operations:
§ If the value is Ø, then propose(v) sets the value to v and

returns v
§ Otherwise, returns the value

All other operations do not change the value and return Ø

55

N-process consensus with N-consensus

Immediate: every process pi simply invokes C.propose(input of
pi) and returns the result of it

(N+1)-consensus using N-consensus?

56

Consensus number
An object Obj has consensus number k (we write cons(Obj)=k) if
§ k-process consensus can be solved using registers and any number of

copies of Obj but (k+1)-consensus cannot
If no such number k exists for Obj, then cons(Obj)=∞

(k=cons(Obj) is the maximal number of processes that can be
synchronized using copies of Obj and registers)

57

Consensus power

§ cons(register)=1
§ cons(T&S)=cons(queue)=2
§ …
§ cons(N-consensus)=N

üN-consensus is N-universal!
§ …
§ cons(CAS)=∞

58

Quiz 2: consensus power
Show that T&S has consensus power at most 2, i.e., it cannot
be, combined with atomic registers, used to solve 3-process
consensus

Possible outline:
§ Consider the critical bivalent run R of A: every one-step

extension of R is univalent (show first that it exists)
§ Show that all steps enabled at R are on the same T&S object
§ Show that there are two extensions of opposite valences that

some process cannot distinguish

59

Open questions
§ Robustness

Suppose we have two objects A and B, cons(A)=cons(B)=k
Can we solve (k+1)-consensus using registers and copies of A
and B?

§ Can we implement an object of consensus power k shared by
N processes (N≥k) using k-consensus objects?

