Atomic and immediate snapshots

SLR206, P1, 2020

The space of registers

- Nb of writers and readers: from 1W1R to NWNR
- Size of the value set: from binary to multi-valued
- Safety properties: safe, regular, atomic

All registers are (computationally) equivalent!

Transformations

From 1W1R binary safe to 1WNR multi-valued atomic

- I. From safe to regular (1W1R)
- II. From one-reader to multiple-reader (regular binary or multi-valued)
- III. From binary to multi-valued (1WNR regular)
- IV. From regular to atomic (1W1R)
- v. From 1W1R to 1WNR (multi-valued atomic)
- VI. From 1WNR to NWNR (multi-valued atomic)
- VII. From safe bit to atomic bit (optimal, coming later)

This class

Atomic snapshot: reading multiple locations atomically
 Write to one, read all

Atomic snapshot: sequential specification

- Each process p_i is provided with operations:
 ✓update_i(v), returns ok
 ✓snapshot_i(), returns [v₁,...,v_N]
- In a sequential execution:

For each [v₁,...,v_N] returned by snapshot_i(),
v_j (j=1,...,N) is the argument of the last update_j(.)
(or the initial value if no such update)

Snapshot for free?

Code for process p_i:

initially:

shared 1WNR *atomic* register $R_i := 0$

upon snapshot()

 $[x_1,...,x_N] := scan(R_1,...,R_N)$ /*read $R_1,...,R_N$ */ return $[x_1,...,x_N]$

upon update_i(v) R_i.write(v)

Snapshot for free?

- What about 2 processes?
- What about lock-free snapshots?

 At least one correct process makes progress (completes infinitely many operations)

Lock-free snapshot

Code for process p_i (all written values, including the initial one, are unique, e.g., equipped with a sequence number)

Initially:

shared 1W1R atomic register $R_i := 0$

upon snapshot()

upon update_i(v)

R_i.write(v)

```
[x_1,...,x_N] := scan(R_1,...,R_N)repeat
```

```
[y_1,...,y_N] := [x_1,...,x_N][x_1,...,x_N] := scan(R_1,...,R_N)until [y_1,...,y_N] = [x_1,...,x_N]
return [x_1,...,x_N]
```

Linearization

Assign a linearization point

to each operation

update_i(v)

✓ R_i.write(v) if present

✓ Otherwise remove the op

snapshot_i()

 ✓ if complete – any point between identical scans

 $\checkmark \textsc{Otherwise}$ remove the op

Build a sequential history S in the order of linearization points

Correctness: linearizability

- S is legal: every snapshot_i() returns the last written value for every $\ensuremath{p_i}$
- Suppose not: snapshot_i() returns $[x_1,...,x_N]$ and some x_j is not the the argument of the last update_j(v) in S preceding snapshot_i()

Let C_1 and C_2 be two scans that returned $[x_1, \dots, x_N]$

Correctness: lock-freedom

An update_i() operation is wait-free (returns in a finite number of steps) Suppose process p_i executing snapshot_i() eventually runs in isolation (no process takes steps concurrently)

- All scans received by p_i are distinct
- At least one process performs an update between
- There are only finitely many processes => at least one process executes infinitely many updates

What if base registers are regular?

General case: helping?

What if an update interferes with a snapshot?

• Make the update do the work!

```
upon snapshot()

[x_1,...,x_N] := scan(R_1,...,R_N)
[y_1,...,y_N] := scan(R_1,...,R_N)
if [y_1,...,y_N] = [x_1,...,x_N] then

return [x_1,...,x_N] then

let j be such that

x_j \neq y_j and y_j = (u,U)

return U
```

```
upon update<sub>i</sub>(v)
S := snapshot()
R<sub>i</sub>.write(v,S)
```

If two scans differ – some update succeeded! Would this work?

General case: wait-free atomic snapshot

upon snapshot()

 $[x_1,...,x_N]$:= scan $(R_1,...,R_N)$ while true do

 $[y_1,...,y_N] := [x_1,...,x_N]$ $[x_1,...,x_N] := scan(R_1,...,R_N)$ if $[y_1,...,y_N] = [x_1,...,x_N]$ then return $[x_1,...,x_N]$ else if moved_j and $x_j \neq y_j$ then let $x_j = (u,U)$ return U for each j: moved_i := moved_i $\bigvee x_i \neq y_i$ upon update_i(v)
S := snapshot()
R_i.write(v,S)

If a process moved twice: its last snapshot is valid!

Correctness: wait-freedom

Claim 1 Every operation (update or snapshot) returns in O(N²) steps (bounded wait-freedom)

- **snapshot**: does not return after a scan if a concurrent process moved and no process moved twice
- At most N-1 concurrent processes, thus (pigeonhole), after N scans:
 ✓ Either at least two consecutive identical scans

✓ Or some process moved twice!

update: snapshot() + one more step

Correctness: linearization points

update_i(v): linearize at the R_i.write(v,S) complete snapshot()

- If two identical scans: between the scans
- Otherwise, if returned U of p_j: at the linearization point of p_j's snapshot

The linearization is:

- Legal: every snapshot operation returns the most recent value for each process
- Consistent with the real-time order: each linearization point is within the operation's interval
- Equivalent to the run (locally indistinguishable)

(Full proof in the lecture notes, Chapter 6)

Quiz 4.1: atomic snapshots

1. Prove that one-shot atomic snapshot satisfies self-inclusion and containment:

✓ Self-inclusion: for all i: v_i is in S_i

✓ Containment: for all i and j: S_i is subset of S_j or S_j is subset of S_i

 Show that the atomic snapshot is subject to the ABA problem (affecting correctness) in case the written values are not unique

One-shot atomic snapshot (AS)

Each process p_i: $update_i(v_i)$ $S_i := snapshot()$ $S_i = S_i[1], ..., S_i[N]$ (one position per process)

Vectors S_i satisfy:

- Self-inclusion: for all i: v_i is in S_i
- Containment: for all i and j:
 S_i is subset of S_j or S_j is subset of S_i

Enumerating possible runs: two processes

Each process p_i (i=1,2):

update_i(v_i)

 $S_i := snapshot()$

Three cases to consider:
(a) p₁ reads before p₂ writes
(b) p₂ reads before p₁ writes
(c) p₁ and p₂ go "lock-step": first both write, then both read

Topological representation: one-shot AS

24

Topological representation: one-shot AS

25

One-shot immediate snapshot (IS)

One operation: WriteRead(v)

Each process p_i:

 $S_i := WriteRead_i(v_i)$

Vectors S₁,...,S_N satisfy:

- Self-inclusion: for all i: v_i is in S_i
- Containment: for all i and j:
 S_i is subset of S_j or S_j is subset of S_i
- Immediacy: for all i and j: if
 v_i is in S_j, then is S_i is a subset
 of S_j

Topological representation: one-shot IS

27

IS is equivalent to AS (one-shot)

- IS is a restriction of one-shot AS => IS is stronger than one-shot AS
 ✓ Every run of IS is a run of one-shot AS
- Show that a few (one-shot) AS objects can be used to implements IS
 ✓One-shot ReadWrite() can be implemented using a series of update and snapshot operations

IS from AS

shared variables:

 $A_1,...,A_N$ – atomic snapshot objects, initially [T,...,T]

Upon WriteRead_i(v_i)

```
\label{eq:r} \begin{array}{l} r := N+1 \\ \mbox{while true do} \\ r := r-1 \\ A_r.update_i(v_i) \\ S := A_r.snapshot() \\ \mbox{if ISI=r then } // \mbox{ ISI is the number of non-T values in S} \\ return S \end{array}
```

Drop levels: two processes, N>3

30

Correctness

The outcome of the algorithm satisfies Self-Inclusion, Snapshot, and Immediacy

- By induction on N: for all N>1, if the algorithm is correct for N-1, then it is correct for N
- Base case N=1: trivial

Correctness, contd.

- Suppose the algorithm is correct for N-1 processes
- N processes come to level N
 - ✓ At most N-1 go to level N-1 or lower

✓(At least one process returns in level N)

✓Why?

- Self-inclusion, Containment and Immediacy hold for all processes that return in levels N-1 or lower
- The processes returning at level N return all N values
 The properties hold for all N processes! Why?

Iterated Immediate Snapshot (IIS)

Shared variables:

```
IS_1, IS_2, IS_3,... // a series of one-shot IS
```

Each process p_i with input v_i :

r := 0

while true do

r := r+1

 $v_i := IS_r.WriteRead_i(v_i)$

Iterated standard chromatic subdivision (ISDS)

ISDS: one round of IIS

ISDS: two rounds of IIS

36

IIS is equivalent to (multi-shot) AS

- AS can be used to implement IIS (wait-free)
 ✓Multiple instances of the construction above (one per iteration)
- IIS can be used to implement multi-shot AS in the lock-free manner:
 ✓ At least one correct process performs infinitely many read or write operations
 ✓ Good enough for protocols solving distributed tasks!

From IIS to AS

We simulate an execution of full-information protocol (FIP) in the AS model, i.e., each process p_i runs:

```
state := input value of p<sub>i</sub>
repeat
    update<sub>i</sub>(state)
    state := snapshot()
until undecided(state)
Recursively, vector
    of vectors
```

(the input value and the decision procedure depend on the problem being solved) If a problem is solvable in AS, it is solvable with FIP

For simplicity, assume that the k-th written value = k ("without loss of generality" – every written value is unique) From IIS to AS: non-blocking simulation

```
Shared: IS_1, IS_2, \dots // an infinite sequence of one-shot IS
  memories
Local: at each process, c[1,...,N] = [(0,T),...,(0,T)]
Code for process p<sub>i</sub>:
  r:=0; c[i].clock:=1; // p<sub>i</sub>'s initial value
  repeat forever
           r:=r+1
           view := IS_r.WriteRead(c) // get the view in IS_r
           topc := top(view) // get the top clock values
           if ItopcI=r then // the current snapshot completed
               if undecided(ctop) then // if ready to stop
                      c[i].val:=ctop;
                      c[i].clock:=c[i].clock+1 // update the clock
               else
                      return decision(ctop) // return the decision
```

From IIS to AS

Each process p_i maintains a vector clock c[1,...,N]

Each c[j] has two components:

✓c[j].clock: the number of updates of p_j "witnessed" by p_i (c.clock - the corresponding vector)

✓ c[j].val: the most recent value of p_j's vector clock
 "witnessed" by p_i (c.val – the corresponding vector)

- To perform an update: increment c[i].clock and set c[i].val to be the "most recent" vector clock
- To take a snapshot: go through iterated memories until lcl= Σ_ic[j].clock is "large enough",

 \checkmark i.e. lcl= r (the current round number)

✓As we'll see, Icl≥r: every process p_i begins with c[i]=1

We say that c≥c' iff for all j, c[j].clock ≥ c' [j].clock (c observes a more recent state than c)

 \checkmark Not always the case with c and c' of different processes

- $Icl = \sum_{i} c[j].clock$ (sum of clock values of the last seen values)
- For c = c[1],...c[N] (vector of vectors c[j]), top(c) is the vector of most recent seen values:

c[1]	= [1	3	2]
c[2] c[3]	= [4 = [2	2 1	1] 5]
top(c)	= [4	3	5]

From IIS to AS: correctness

Let c_r denote the vector evaluated by a process p_i in round r (after computing the top function)

Lemma 1 lc_rl≥r

Proof sketch

```
c_{r+1} \ge c_r (by the definition of top)
```

Initially $|c_1| \ge 1$ (each process writes c[1].clock=1 in $|S_1|$)

Inductively, suppose $lc_r l \ge r$, for some round r:

- If $Ic_rI=r$, then c', such that Ic'I=r+1, is written in IS_{r+1}
- If $|c_r| > r$, then c', such that $c' \ge c_r$ (and thus $|c'| \ge |c_r|$) is written in $|S_{r+1}|$

In both cases, $c_{r+1} \ge r+1$

From IIS to AS: correctness

Lemma 2 Let c_r and c_r' be the clock vectors evaluated by processes p_i and p_j , resp., in round r. Then $|c_r| \le |c_r'|$ implies $c_r \le c_r'$

Proof sketch

Let S_i and S_j be the outcomes of IS_r received by p_i and p_j $c_r = top(S_i)$ and $c_r' = top(S_j)$ Either S_i is a subset of S_j or S_j is a subset of S_i (the Containment property of IS)

Suppose S_i is a subset of S_j , then each clock value seen by p_i is also seen by p_j Why?

 $=> |c_r| \le |c_r'|$ and $c_r \le c_r'$ Why?

From IIS to AS: correctness

Corollary 1 (to Lemma 2) All processes that complete a snapshot operation in round r, get the same clock vector c, lcl=r

Corollary 2 (to Lemmas 1 and 2) If a process completes a snapshot operation in round r with clock vector c, then for each clock vector c' evaluated in round r' \geq r, we have c \leq c'

From IIS to AS: linearization

Lemma 3 Every execution's history is linearizable (with respect to the AS spec.) **Proof sketch**

Linearization

- Order snapshots based on the rounds in which they complete
- Put each update(c) just before the first snapshot that contains c (if no such snapshot remove)
- By Corollaries 1 and 2, snapshots and updates put in this order respect the specification of AS legality
- The linearization points take place "within the interval" of k-th update and k-th snapshot of p_i between the k-th and the (k+1)-th updates of c[i].val precedence

From IIS to AS: liveness

Lemma 4 Some correct undecided process completes infinitely many snapshot operations (or every process decides).

Proof sketch

By Lemma 1, a correct process p_i does not complete its snapshot in round r only if $lc_r l > r$

Suppose p_i never completes its snapshot

- $=> c_r$ keeps grows without bound and
- => some process p_j keeps updating its c[j]
- => some process p_j completes infinitely many (Chapter 9 in lecture notes)

snapshots

IIS=AS for wait-free task solutions

- Suppose we simulate a wait-free protocol for solving a task:
 - ✓ Every process starts with an input
 - Every process taking sufficiently many steps (of the full-information protocol) eventually decides (and thus stops writing new values, but keeps writing the last one)
 - ✓ Outputs match inputs (we'll see later how it is defined)
- If a task can be solved in AS, then it can be solved in IIS

 $\checkmark \ensuremath{\mathsf{We}}$ consider IIS from this point on

Quiz 4.2: immediate snapshot

- Would the (one-shot) IS algorithm be correct if we replace A_r.update_i(v_i) with U_r[i].write(v_i) and A_r.snapshot() with scan(U_r[1],...,U_r[N])?
- 2. Would it be possible to use only one array of N registers?
- 3. Complete the proofs of Lemma 2 and Corollaries 1 and 2