Atomic and immediate snapshots

SLR206, P1, 2020

The space of registers

= Nb of writers and readers:

= Size of the value set: from

from TW1R to NWNR # readers/writers

binary to multi-valued
« Safety properties: safe,

regular, atomic /\

safety property

value set

All registers are (computationally) equivalent!

Transformations

From 1W1R binary safe to TWNR multi-valued atomic

VII.

From safe to regular (1W1R)

From one-reader to multiple-reader (regular binary or multi-valued)
From binary to multi-valued (1WNR regular)

From regular to atomic (1W1R)

From 1W1R to TWNR (multi-valued atomic)

From TWNR to NWNR (multi-valued atomic)

From safe bit to atomic bit (optimal, coming later)

This class

« Atomic snapshot: reading multiple locations atomically
v'"Write to one, read all

Atomic snapshot: sequential specification

« Each process p; is provided with operations:
v'update;(v), returns ok
v'snapshoti(), returns [v4,...,V\]

« In a sequential execution:

For each [v4,...,v\] returned by snapshot;(),
v; (j=1,...,N) is the argument of the last update(.)

(or the initial value if no such update)

Snapshot for free?

Code for process p;:

initially:
shared 1WNR atomic reqister R, := 0

upon snapshot()
[X4,...,Xn] :=sCan(Ry,...,Ry) /*read Ry,...Ry*/
return [X4,...,XN]

upon update;(v)
R,.write(v)

Snapshot for free?

update,(1) ok update,(2) ok
g ——————————
update,(1) ok snapshot() [1,1,2]

p—HE—F— ¥ — ¢+
readi()1 read,()1 reads()2
P ————g—F7—

update;(1) ok update;(2) ok

Snapshot for free?
[1,1,1] [2,1,1]1 [21,2]

update,(1) ok fupdatel(Z) ok

update,(1) ok snapshot() [1,1,2]

update;(1) oik update;(2) ok

« What about 2 processes?

« What about lock-free snapshots?

v' At least one correct process makes
progress (completes infinitely many
operations)

Lock-free snapshot

Code for process p; (all written values, including the
initial one, are unique, e.g., equipped with a sequence
number)

Initially:
shared TW1R atomic register R, := 0
upon snapshot() upon update;(v)
[X1,...,Xp):= scan(Ry,...,Ry) Ri.write(v)
repeat

[V ¥Yn] 1= Xy e Xn]

[X1,...,Xp):= scan(Ry,...,Ry)
until [yy,...,yn] = X3, %]
return [Xq,...,X\]

70

Linearization

Assign a linearization point
to each operation

= update;(v)
v'R;.write(v) if present
v'Otherwise remove the op

= snapshoti()

v'if complete — any point
between identical scans

v’ Otherwise remove the op

Build a sequential history S
in the order of
linearization points

update;(1) ok

snapshot;() [1,1,2]
[1,1,2] [1,1,2]

scan() scan()

17

Correctness: linearizability

S is legal: every snapshot;() returns the last written value for
every p;

Suppose not: snapshot;() returns [x,...,xy] and some x;is not
the the argument of the last update(v) in S preceding
snapshot;()

Let C; and C, be two scans that returned [X4,...,Xp]

read;() x; read;() x;

f Gy ! G

No update(.
Returns the P J()

linearized here!
argument of the
last update(.)!

12

Correctness: lock-freedom

An update,;() operation is wait-free (returns in a finite number of steps)

Suppose process p; executing snapshot;() eventually runs in isolation (no
process takes steps concurrently)

= All scans received by p; are distinct
= At least one process performs an update between

= There are only finitely many processes => at least one process
executes infinitely many updates

What if base registers are regular?

13

General case: helping?

What if an update interferes with a snapshot?
- Make the update do the work!

upon snapshot() upon update;(v)
[X1 yuun ,XN]:= Scan(R1 gy RN)

[y‘l!""yN] = SCan(R1,,RN) .
it [V1,--.,¥n] = [X1s--.,Xn] then Ri.write(v,S)

return [X4,...,Xn]

S := snapshot()

else . If two scans
let | be such that differ - some
XFY] and yj=(u=U) update succeeded!

return U Would this work?

74

Not that easy!

update;(1) ok

P1 = I : Rﬁl—’
snapshot() [0,0,0] write (1,100,

snapshot,() [0,0,0]
[0,0,1] [1,0,1]

p, ———H—F —Ft———F 1

scan() scan()

updates(1) ok

write3(1,l0,0,

15

General case: wait-free atomic snapshot

upon snapshot() upon update;(v)
[X1,...,Xpn):= scan(Ry,...,Ry) S :=snapshot()
while true do R..write(v,S)

(V1,0 ¥n] = [Xq, e XN]
[X1,...,Xp):= scan(Ry,...,Ry)
it [y, Yn] = [Xq,0 %] then If a process moved

return [Xq,...,X\] / twice: its last

else if moved;and x; # y; then snapshot is valid!
let x, = (u,U)
return U

for each j: moved, := moved, \/xj Y,

16

Correctness: wait-freedom

Claim 1 Every operation (update or snapshot) returns in O(N?) steps
(bounded wait-freedom)

shapshot: does not return after a scan if a concurrent process moved
and no process moved twice

« At most N-1 concurrent processes, thus (pigeonhole), after N scans:
v Either at least two consecutive identical scans
v'Or some process moved twice!

update: snapshot() + one more step

17

Correctness: linearization points

update;(v): linearize at the R..write(v,S)
complete snapshot()
« If two identical scans: between the scans

» Otherwise, if returned U of p;: at the linearization
point of p;’ s snapshot

snapshot() [0,1,0]
[0,0,0] [0.1,0] [0,2,0]

== == ————i}
scan() scan()

update,(1) ok updla're?_(Z) ok

00.0] [0:1.0]
P2 l l | . - I‘ | . | '

18

The linearization Is:

« Legal: every snapshot operation returns the
most recent value for each process

= Consistent with the real-time order: each
linearization point is within the operation’ s
Interval

= Equivalent to the run (locally
indistinguishable)

(Full proof in the lecture notes, Chapter 6)

79

Quiz 4.1: atomic snapshots

1. Prove that one-shot atomic snapshot satisfies self-inclusion
and containment:
v'Self-inclusion: for all i: v, is in S,
v'Containment: for all i and j: S; is subset of S;or S; is subset of S

2. Show that the atomic snapshot is subject to the ABA problem

(affecting correctness) in case the written values are not
unique

20

One-shot atomic snapshot (AS)

Each process p;:
update;(v;)
S, := snapshot()

Si = Sj[1],...,S|[N]
(one position per
Process)

Vectors S, satisfy:

» Self-inclusion: for all i: v, is in
S.

|
= Containment: foralliand j:

S; is subset of S;or S; is
subset of S

21

“Unbalanced” snapshots

p1 sees p, but misses
its snapshot

update;(1) ok snapshot() [1,1,0]
pn 44—
update,(1) ok snapshot() [1,1,1]

p, —HF—————HH—

snapshot() [1,1,1]

p, —————HH—Hp+—

updates(1) ok

22

Enumerating possible runs:
two processes

Each process p;(i=1,2):
update;(v))
S, := snapshot()

Three cases to consider:
(a) p4 reads before p, writes
(b) p, reads before p; writes

(c) py and p, go “lock-step”:

first both write, then both
read

P1 _H_’ (a)
P> _._.->

P1 _._." (b)
p, @ —

P1 _._._’ (©)
P2 _.—._>

23

Topological representation: one-shot AS

P, sees {pz} Balanced run:

P, sees {p,p,}

Ps3

two steps of p,,
then p4, then

P3 sees {p,,ps}

sees {p,P,,P3}

.S {pZI
Y

P, sees {p,} ps3 sees {ps}

P, sees {py,p,} P3}

24

Topological representation: one-shot AS

P
P, sees {pl,p|

“unbalanced”

run

P3 sees {p,,ps}

Py Ps3

sees, {p1,P,,P3}

P, sees {py,p,} P, sees {p,,ps}

25

One-shot immediate snapshot (IS)

One operation: Vectors Sg,...,Sy satisfy:
WriteRead(v) . _ _ o
» Self-inclusion: for all i: v, is in
Each process p;: 5
Si := WriteRead;(v)) = Containment: foralliand j:
S; is subset of S;or S; is
subset of S

 Immediacy: for all i and j: if
V;isin §;, then is S; is a subset
of S,

26

Topological representation: one-shot IS

D A subdivision!
2

P, sees {p,p,}

P3 sees {p,,ps}

P, sees {py,p,} P, sees {p,,ps}

Py Ps3

27

IS is equivalent to AS (one-shot)

= |S is a restriction of one-shot AS => IS is stronger than one-shot AS
v'Every run of IS is a run of one-shot AS

= Show that a few (one-shot) AS objects can be used to implements IS

v'One-shot ReadWrite() can be implemented using a series of update and
snapshot operations

28

IS from AS

shared variables:
A,,...,Ay — atomic snapshot objects, initially [T,...,T]

Upon WriteReadi(v))

r:= N+1

while true do
r:=r-1 // drop to the lower level
A..update;(v;)
S := A..snapshot()
if |ISl=r then /] 1Sl is the number of non-T values in S

return S

29

Drop levels: two processes, N>3

[‘ ‘ See < N
[‘ ‘ See < N-1

[‘ ‘ Seelor?2
[‘ See 1l

30

Correctness

The outcome of the algorithm satisfies Self-Inclusion, Snapshot, and
Immediacy

= By induction on N: for all N>1, if the algorithm is correct for N-1, then it
IS correct for N

= Base case N=1: trivial

37

Correctness, contd.

Suppose the algorithm is correct for N-1 processes

N processes come to level N
v At most N-1 go to level N-1 or lower

v'(At least one process returns in level N)
v'Why?

Self-inclusion, Containment and Immediacy hold for all processes that
return in levels N-1 or lower

The processes returning at level N return all N values
v'The properties hold for all N processes! Why?

32

lterated Immediate Snapshot (I1S)

Shared variables:
1S4, IS,, 1S5,... // a series of one-shot IS

Each process p; with input v;:
r.=0
while true do

r=r+1

vi .= IS,.WriteReadi(v))

33

lterated standard chromatic subdivision (ISDS)

P2

Py Ps3

34

P1

ISDS: one round of IIS

P2

P3

35

ISDS: two rounds of |IS

P3

P1

36

IIS is equivalent to (multi-shot) AS

« AS can be used to implement lIS (wait-free)
v'Multiple instances of the construction above (one per iteration)

= IS can be used to implement multi-shot AS in the lock-free manner:
v'At least one correct process performs infinitely many read or write operations
v'Good enough for protocols solving distributed tasks!

37

From IIS to AS

We simulate an execution of full-information protocol (FIP) in the AS model, i.e., each
process p;runs:

state := input value of p;
repeat

update;(state) Recursively, vector

state := snapshot() — of vectors

until undecided(state)

(the input value and the decision procedure depend on the problem being solved)
If a problem is solvable in AS, it is solvable with FIP

For simplicity, assume that the k-th written value = k
(“without loss of generality” — every written value is unique)

38

From IIS to AS: non-blocking simulation

Shared: I1S,,IS,,... // aninfinite sequence of one-shot IS
memories

Local: at each process, c[1,...,N]=[(0,T),...,(0,T)]
Code for process p;:
r:=0; c[i].clock:=1; // p;'s initial value
repeat forever
r=r+1
view = IS,.WriteRead(c) // get the view in IS,
topc := top(view) // get the top clock values
if Itopcl=r then // the current snapshot completed
if undecided(ctop) then // if ready to stop
cli].val:=ctop;
cli].clock:=cJi].clock+1 // update the clock
else
return decision(ctop) // return the decision

39

From IIS to AS

Each process p; maintains a vector clock c[1,...,N]
« Each c[j] has two components:

v'c[j].clock: the number of updates of p; “witnessed” by p;
(c.clock - the corresponding vector)

\/C[j] val: the most recent value of p;’ s vector clock
“witnessed” by p; (c.val — the correspondmg vector)

« To perform an update: increment c[i].clock and set
c[i].val to be the “most recent” vector clock

« To take a snapshot: go through iterated memories
until Icl= 2.c[j].clock is “large enough”,
v i.e. Icl=r (the current round number)
v As we'll see, Icl=r: every process p; begins with c[i]=1

40

We sa)y that c=c’ iff for all j, c[j].clock = ¢’ [j].clock (c observes a more recent state
than c

v"Not always the case with ¢ and ¢’ of different processes

Icl= 2c[j].clock (sum of clock values of the last seen values)

For c = c[1],...c[N] (vector of vectors c[j]), top(c) is the vector of most recent seen
values:

c[1] = [1 3 2]
c[2] = [4 2 1]
c[3] =[2 1 5]

top(c) =[4 3 5]

417

From IIS to AS: correctness

Le;tc crdeno)te the vector evaluated by a process p; in round r (after computing the top
unction

Lemma 1 Ic/l=r
Proof sketch
Cr+1=C, (by the definition of top)

Initially Ic4l1=1 (each process writes c[1].clock=1 in IS;)
Inductively, suppose Ic,l=r, for some round r:
- Iflc/l=r, then ¢’, such that Ic’ |=r+1, is written in IS,

- If Ic/I>r, then ¢’ , such that ¢’ =c, (and thus Ic’ I=lc/l) is written in in IS,

In both cases, C,, =r+1

42

From IIS to AS: correctness

Lemma 2 Let ¢, and ¢, be the clock vectors evaluated by
processes p;and p;, resp., in round r. Then Icl<lc/| implies
C/< C,

Proof sketch
Let S and S; be the outcomes of IS, received by p;and p;
top(S) and ¢, = top(S;)

Either S |s a subset of §;or S; is a subset of S; (the
Containment property of IS)

Suppose S; is a subset of S;, then each clock value seen by p;
is also seen by p; Why’?

=>lIcl<lc, land c,=sc,, Why?

43

From IIS to AS: correctness

Corollary 1 (to Lemma 2) All processes that complete a snapshot
operation in round r, get the same clock vector c, Icl=r

Corollary 2 (to Lemmas 1 and 2) If a process completes a snapshot
operation in round r with clock vector ¢, then for each clock vector c’
evaluated in round r’=r, we have c<c’

44

From IIS to AS: linearization

Lemma 3 Every execution’ s history is linearizable (with respect to the AS spec.)
Proof sketch

Linearization

« Order snapshots based on the rounds in which they complete

« Put each update(c) just before the first snapshot that contains c¢ (if no such
snapshot — remove)

By Corollaries 1 and 2, snapshots and updates put in this order respect the
specification of AS — legality
The linearization points take place “within the interval” of k-th update and k-th

snapshot of p; - between the k-th and the (k+1)-th updates of c[i].val —
precedence

45

From IIS to AS: liveness

Lemma 4 Some correct undecided process completes infinitely many
snapshot operations (or every process decides).

Proof sketch

By Lemma 1, a correct process p;does not complete its snapshot in
round r only if lcI>r

Suppose p; hever completes its snapshot
=> C, keeps grows without bound and
=> some process p; keeps updating its cfj]

=> some process p;completes infinitely many snapshots
(Chapter 9 in lecture notes)

46

[IS=AS for wait-free task solutions

« Suppose we simulate a wait-free protocol for solving a task:
v'Every process starts with an input

v'Every process taking sufficiently many steps (of the full-information protocol)
eventually decides (and thus stops writing new values, but keeps writing the last
one)

v'Outputs match inputs (we’ Il see later how it is defined)

= |f a task can be solved in AS, then it can be solved in IIS
v'"We consider IIS from this point on

47

Quiz 4.2: immediate snapshot

1. Would the (one-shot) IS algorithm be correct if we replace
A..update;(v;) with U/[i].write(v;) and A,.snapshot() with
scan(U/]1],...,U]N])?

2. Would it be possible to use only one array of N registers?
3. Complete the proofs of Lemma 2 and Corollaries 1 and 2

48

