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The space of registers

§ Nb of writers and readers: 
from 1W1R to NWNR

§ Size of the value set: from 
binary to multi-valued

§ Safety properties: safe, 
regular, atomic 

# readers/writers

safety property
value set

All registers are (computationally) equivalent!
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Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)
VI. From 1WNR to NWNR (multi-valued atomic)
VII. From safe bit to atomic bit (optimal, coming later)
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This class

§ Atomic snapshot: reading multiple locations atomically
üWrite to one, read all
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Atomic snapshot: sequential specification

§ Each process pi is provided with operations:
üupdatei(v), returns ok
üsnapshoti(), returns [v1,…,vN]

§ In a sequential execution:
For each [v1,…,vN] returned by snapshoti(), 

vj (j=1,…,N) is the argument of the last updatej(.) 
(or the initial value if no such update)  
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Snapshot for free?
Code for process pi:

initially:
shared 1WNR atomic register Ri := 0

upon snapshot()
[x1,…,xN] := scan(R1,…,RN)      /*read R1,…RN*/
return [x1,…,xN] 

upon updatei(v) 
Ri.write(v)
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Snapshot for free?

p1

p2

p3

read3()2

update1(1)      ok

update3(1) ok update3(2) ok

snapshot()                                [1,1,2]

read1()1

update2(1) ok

update1(2)      ok

read2()1
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Snapshot for free?

p1

p2

p3

update1(2)       okupdate1(1)    ok

update3(1) ok update3(2) ok

snapshot()                                      [1,1,2] update2(1)   ok

[1,1,1] [2,1,1] [2,1,2]

read3()2read1()1 read2()1
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§ What about 2 processes? 

§ What about lock-free snapshots?
üAt least one correct process makes 

progress (completes infinitely many 
operations)
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Lock-free snapshot
Code for process pi (all written values, including the 

initial one, are unique, e.g., equipped with a sequence 
number)

Initially: 
shared 1W1R atomic register Ri := 0

upon snapshot()
[x1,…,xN]:= scan(R1,…,RN)
repeat

[y1,…,yN] := [x1,…,xN] 
[x1,…,xN]:= scan(R1,…,RN)

until  [y1,…,yN] = [x1,…,xN] 
return [x1,…,xN] 

upon updatei(v)
Ri.write(v)
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Linearization
Assign a linearization point 

to each operation
§ updatei(v) 

üRi.write(v) if present
üOtherwise remove the op

§ snapshoti()
üif complete – any point 

between identical scans
üOtherwise remove the op

Build a sequential history S 
in the order of 
linearization points  

snapshoti()          [1,1,2]

scan()scan()

updatei(1) ok

[1,1,2] [1,1,2]

…
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Correctness: linearizability
S is legal: every snapshoti() returns the last written value for 

every pj
Suppose not: snapshoti() returns [x1,…,xN] and some xj is not 

the the argument of the last updatej(v) in S preceding 
snapshoti()  

Let C1 and C2 be two scans that returned [x1,…,xN]

C1

readj()  xj

…
C2

readj()  xj

No updatej(.) 
linearized here!Returns the 

argument of the 
last updatej(.)!
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Correctness: lock-freedom
An updatei() operation is wait-free (returns in a finite number of steps) 
Suppose process pi executing snapshoti() eventually runs in isolation (no 

process takes steps concurrently)
§ All scans received by  pi are distinct
§ At least one process performs an update between
§ There are only finitely many processes => at least one process 

executes infinitely many updates

What if base registers are regular?
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General case: helping?
What if an update interferes with a snapshot?
§ Make the update do the work!

upon snapshot()
[x1,…,xN]:= scan(R1,…, RN)
[y1,…,yN] := scan(R1,…,RN)
if  [y1,…,yN] = [x1,…,xN] then 

return [x1,…,xN] 
else

let j be such that 
xj≠yj and yj=(u,U)
return U 

If two scans 
differ – some 

update succeeded!
Would this work?

upon updatei(v)
S := snapshot()
Ri.write(v,S)
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Not that easy!

snapshot2()           [0,0,0]

snapshot()  [0,0,0]

scan()

update1(1)                      ok

[0,0,1]

scan()

[1,0,1]

update3(1)    ok

write1(1,[0,0,0])

write3(1,[0,0,0])

p1

p2

p3
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General case: wait-free atomic snapshot
upon snapshot()
[x1,…,xN]:= scan(R1,…,RN)
while true do

[y1,…,yN] := [x1,…,xN] 
[x1,…,xN]:= scan(R1,…,RN)
if [y1,…,yN] = [x1,…,xN] then

return [x1,…,xN]
else if movedj and xj ≠ yj then

let xj = (u,U)
return U

for each j: movedj := movedj∨xj ≠ yj

upon updatei(v)
S := snapshot()
Ri.write(v,S)

If a process moved 
twice: its last 

snapshot is valid! 
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Correctness: wait-freedom
Claim 1 Every operation (update or snapshot) returns in O(N2) steps 

(bounded wait-freedom)
snapshot: does not return after a scan if a concurrent process moved 

and no process moved twice 
§ At most N-1 concurrent processes, thus (pigeonhole), after N scans:

üEither at least two consecutive identical scans
üOr some process moved twice!

update: snapshot() + one more step
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Correctness: linearization points
updatei(v): linearize at the Ri.write(v,S)
complete snapshot()
§ If two identical scans: between the scans
§ Otherwise, if returned U of pj: at the linearization 

point of pj’s snapshot

snapshot() [0,1,0]

scan()scan()
update2(2) ok

[0,1,0] [0,2,0]

…

[0,1,0]

[0,0,0]

update2(1) ok
[0,0,0]

p1

p2
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The linearization is:

§ Legal: every snapshot operation returns the 
most recent value for each process

§ Consistent with the real-time order: each 
linearization point is within the operation’s 
interval

§ Equivalent to the run (locally 
indistinguishable)

(Full proof in the lecture notes, Chapter 6)



20

Quiz 4.1: atomic snapshots 

1. Prove that one-shot atomic snapshot satisfies self-inclusion 
and containment:
üSelf-inclusion: for all i: vi is in Si

üContainment: for all i and j: Si is subset of Sj or Sj is subset of Si

2. Show that the atomic snapshot is subject to the ABA problem 
(affecting correctness) in case the written values are not 
unique
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One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per 

process)

Vectors Si satisfy:
§ Self-inclusion: for all i: vi is in 

Si

§ Containment: for all i and j: 
Si is subset of Sj or Sj is 
subset of Si
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“Unbalanced” snapshots

p1

p2

p3

snapshot()     [1,1,0]update1(1)   ok

update3(1) ok

update2(1)   ok snapshot()     [1,1,1]

snapshot()     [1,1,1]

p1 sees p2 but misses 
its snapshot  
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Enumerating possible runs: 
two processes

Each process pi (i=1,2):
updatei(vi)
Si := snapshot()

Three cases to consider:
(a) p1 reads before p2 writes
(b) p2 reads before p1 writes
(c) p1 and p2 go “lock-step”: 

first both write, then both 
read

p1

p2
(a)

p1

p2
(b)

p1

p2
(с)
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Topological representation: one-shot AS

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

p3 sees {p2,p3}

p2 sees {p2,p3}p2 sees {p1,p2}

p1 sees {p1,p2}

p3 sees {p1,p2,p3}

Balanced run:
two steps of p2, 

then p1, then 
p3
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Topological representation: one-shot AS

p1 p3

p2

p2 sees {p1,p2}

p1 sees {p1,p2}

p3 sees {p2,p3}

p2 sees {p2,p3}

“unbalanced”
run 

p3 sees {p1,p2,p3}
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One-shot immediate snapshot (IS)
One operation: 

WriteRead(v)

Each process pi:
Si := WriteReadi(vi)

Vectors S1,…,SN satisfy:
§ Self-inclusion: for all i: vi is in 

Si

§ Containment: for all i and j: 
Si is subset of Sj or Sj is 
subset of Si

§ Immediacy: for all i and j: if 
vi is in Sj, then is Si is a subset 
of Sj
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Topological representation: one-shot IS

p1 p3

p2

p2 sees {p1,p2}

p1 sees {p1,p2}

p3 sees {p2,p3}

p2 sees {p2,p3}

A subdivision!
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IS is equivalent to AS (one-shot)

§ IS is a restriction of one-shot AS => IS is stronger than one-shot AS
üEvery run of IS is a run of one-shot AS

§ Show that a few (one-shot) AS objects can be used to implements IS
üOne-shot ReadWrite() can be implemented using a series of update and 

snapshot operations
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IS from AS
shared variables:

A1,…,AN – atomic snapshot objects, initially [T,…,T]

Upon WriteReadi(vi)
r := N+1
while true do

r := r-1  // drop to the lower level

Ar.updatei(vi)     
S := Ar.snapshot()
if |S|=r then      // |S| is the number of non-T values in S

return S
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Drop levels: two processes, N>3

...

N

N-1

2

1

See < N

See < N-1

See 1 or 2

See 1
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Correctness
The outcome of the algorithm satisfies Self-Inclusion, Snapshot, and 

Immediacy

§ By induction on N: for all N>1, if the algorithm is correct for N-1, then it 
is correct for N

§ Base case N=1: trivial
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Correctness, contd. 
§ Suppose the algorithm is correct for N-1 processes
§ N processes come to level N 

üAt most N-1 go to level N-1 or lower
ü(At least one process returns in level N)
üWhy?

§ Self-inclusion, Containment and Immediacy hold for all processes that 
return in levels N-1 or lower

§ The processes returning at level N return all N values
üThe properties hold for all N processes! Why?
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Iterated Immediate Snapshot (IIS)
Shared variables:

IS1, IS2, IS3,…   // a series of one-shot IS 

Each process pi with input vi:
r := 0
while true do

r := r+1
vi := ISr.WriteReadi(vi)
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Iterated standard chromatic subdivision (ISDS)

p1 p3

p2
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ISDS: one round of IIS

p1 p3

p2
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ISDS: two rounds of IIS

p1 p3

p2
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IIS is equivalent to (multi-shot) AS

§ AS can be used to implement IIS (wait-free)
üMultiple instances of the construction above (one per iteration)

§ IIS can be used to implement multi-shot AS in the lock-free manner:
üAt least one correct process performs infinitely many read or write operations
üGood enough for protocols solving distributed tasks!
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From IIS to AS 
We simulate an execution of full-information protocol (FIP) in the AS model, i.e., each 

process pi runs:

state := input value of pi
repeat

updatei(state)
state := snapshot() 

until undecided(state)

(the input value and the decision procedure depend on the problem being solved) 
If a problem is solvable in AS, it is solvable with FIP

For simplicity, assume that the k-th written value = k 
(“without loss of generality” – every written value is unique)

Recursively, vector 
of vectors
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From IIS to AS: non-blocking simulation 
Shared: IS1,IS2,…  // an infinite  sequence of one-shot IS 

memories
Local: at each process, c[1,…,N]=[(0,T),…,(0,T)] 
Code for process pi:

r:=0; c[i].clock:=1; // pi‘s initial value
repeat forever

r:=r+1
view := ISr.WriteRead(c)  // get the view in ISr
topc := top(view)  // get the top clock values
if |topc|=r then // the current snapshot completed

if undecided(ctop) then // if ready to stop
c[i].val:=ctop; 
c[i].clock:=c[i].clock+1 // update the clock

else 
return decision(ctop) // return the decision
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From IIS to AS 
Each process pi maintains a vector clock c[1,…,N]
§ Each c[j] has two components:

üc[j].clock: the number of updates of pj “witnessed” by pi
(c.clock  - the corresponding vector)

üc[j].val: the most recent value of pj’s vector clock 
“witnessed” by pi (c.val – the corresponding vector)

§ To perform an update: increment c[i].clock and set 
c[i].val to be the “most  recent” vector clock

§ To take a snapshot: go through iterated memories 
until |c|= Σjc[j].clock is “large enough”,
ü i.e. |c|= r (the current round number)
üAs we’ll see, |c|≥r: every process pi begins with c[i]=1 
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§ We say that c≥c’ iff for all j, c[j].clock ≥ c’[j].clock (c observes a more recent state 
than c)
üNot always the case with c and c’ of different processes

§ |c|= Σjc[j].clock (sum of clock values of the last seen values)

§ For c = c[1],…c[N] (vector of vectors c[j]), top(c) is the vector of  most recent seen 
values:

c[1] = [1 3 2]
c[2] = [4 2 1]
c[3] = [2 1 5]

top(c) = [4 3 5]
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From IIS to AS: correctness
Let cr denote the vector evaluated by a process pi in round r (after computing the top 

function)
Lemma 1 |cr|≥r
Proof sketch
cr+1≥cr (by the definition of top)

Initially |c1|≥1 (each process writes c[1].clock=1 in IS1)

Inductively, suppose |cr|≥r, for some round r:
§ If |cr|=r, then c’, such that |c’|=r+1, is written in ISr+1
§ If |cr|>r, then c’, such that  c’≥cr (and thus |c’|≥|cr|) is written in in ISr+1

In both cases, cr+1 ≥ r+1
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From IIS to AS: correctness
Lemma 2 Let cr and cr’ be the clock vectors evaluated by 

processes pi and pj, resp., in round r. Then |cr|≤ |cr’| implies 
cr≤ cr’

Proof sketch
Let Si and Sj be the outcomes of ISr received by pi and pj 

cr = top(Si) and cr’ = top(Sj) 
Either Si is a subset of Sj or Sj is a subset of Si  (the 
Containment property of IS)

Suppose Si is a subset of Sj, then each clock value seen by pi
is also seen by pj Why?

=> |cr|≤ |cr’| and cr≤ cr’ Why?
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From IIS to AS: correctness

Corollary 1 (to Lemma 2) All processes that complete a snapshot 
operation in round r, get the same clock vector c, |c|=r

Corollary 2 (to Lemmas 1 and 2)  If a process completes a snapshot 
operation in round r with clock vector c, then for each clock vector c’
evaluated in round r’≥r, we have c ≤ c’
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From IIS to AS: linearization
Lemma 3 Every execution’s history is linearizable (with respect to the AS spec.) 
Proof sketch
Linearization
§ Order snapshots based on the rounds in which they complete
§ Put each update(c) just before the first snapshot that contains c (if no such 

snapshot – remove)
By Corollaries 1 and 2, snapshots and updates put in this order respect the 

specification of AS – legality
The linearization points take place “within the interval” of   k-th update  and k-th 

snapshot of pi - between the k-th and the (k+1)-th updates of c[i].val –
precedence 
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From IIS to AS: liveness
Lemma 4 Some correct undecided process completes infinitely many 

snapshot operations (or every process decides). 
Proof sketch

By Lemma 1, a correct process pi does not complete its snapshot in 
round r only if |cr|>r
Suppose pi never completes its snapshot
=> cr keeps grows without bound and
=>  some process pj keeps updating its c[j]
=>   some process pj completes infinitely many snapshots

(Chapter 9 in lecture notes)
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IIS=AS for wait-free task solutions
§ Suppose we simulate a wait-free protocol for solving a task:

üEvery process starts with an input
üEvery process taking sufficiently many steps (of the full-information protocol) 

eventually decides (and thus stops writing new values, but keeps writing the last 
one)

üOutputs match inputs (we’ll see later how it is defined)
§ If a task can be solved in AS, then it can be solved in IIS

üWe consider IIS from this point on
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Quiz 4.2: immediate snapshot

1. Would the (one-shot) IS algorithm be correct if we replace   
Ar.updatei(vi) with Ur[i].write(vi) and Ar.snapshot() with 
scan(Ur[1],…,Ur[N])? 

2. Would it be possible to use only one array of N registers? 
3. Complete the proofs of Lemma 2 and Corollaries 1 and 2 


