
Foundations of Distributed
Algorithms

SLR206, P1, 2020-2021

2

Administrivia
§ Language: (fr)anglais?
§ Lectures: Wednesdays (09.09-21.10), 13:30-16:45,

0A214
§ TP: 23/09, 1A22
§ Web page: ecampus, temporary page
§ Project: concurrent list implementation and analysis

(teams by two)
§ Office hours:

ü4D48, appointments by email to petr.kuznetsov@telecom-paris.fr
§ Credit = 0.7*written exam+0.3*project

üBonus for participation/discussion of exercises
üBonus for bugs found in slides/lecture notes

3

Literature (links in ecampus)

§ Algorithms for Concurrent Systems . R. Guerraoui, P. Kuznetsov
§ M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan

Kaufman, 2008 (library)
§ Lynch, N: Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
§ H. Attiya, J. Welch. Distributed Computing: Fundamentals, Simulations and

Advanced Topics (2nd edition). Wiley. 2004

4

Librairie Eyerolles, 55-57-61, Blvd Saint-Germain
75005 Paris
Section « Informatique-Algorithmique » (sous-sol)

© 2018 P. Kuznetsov

5

Roadmap
§ Synchronization and concurrency
§ Correctness in distributed systems
§ Optimistic, lazy and non-blocking

synchronization
üLab

§ Basics of read-write communication
§ Consensus and universal construction
§ Transactional memory

6

This course is about distributed computing:
independent sequential processes that

communicate

7

Concurrency is everywhere!

§ Multi-core processors
§ Sensor networks
§ Internet
§ …

8

Communication models
§ Shared memory

üProcesses apply operations on
shared variables

üFailures and asynchrony
§ Message passing

üProcesses send and receive
messages

üCommunication graphs
üMessage delays

9

Moore’s Law and CPU speed

10

§ Single-processor performance does
not improve

§ But we can add more cores
§ Run concurrent code on multiple

processors

Can we expect a proportional
speedup? (ratio between sequential
time and parallel time for executing
a job)

11

Amdahl’s Law

§ p – fraction of the work that can be done in
parallel (no synchronization)

§ n - the number of processors
§ Time one processor needs to complete the

job = 1

12

Challenges

§ What is a correct implementation?
üSafety and liveness

§ What is the cost of synchronization?
üTime and space lower bounds

§ Failures/asynchrony
üFault-tolerant concurrency?

§ How to distinguish possible from impossible?
üImpossibility results

13

Distributed ≠ Parallel

§ The main challenge is synchronization

§ “you know you have a distributed system when the crash of a
computer you’ve never heard of stops you from getting any
work done” (Lamport)

14

History

§ Dining philosophers, mutual exclusion (Dijkstra)~60’s
§ Distributed computing, logical clocks (Lamport), distributed

transactions (Gray) ~70’s
§ Consensus (Lynch) ~80’s
§ Distributed programming models, since ~90’s
§ Multicores and large-scale distributed services now

15

Real concurrency--in which one program actually continues to function
while you call up and use another--is more amazing but of small use to
the average person. How many programs do you have that take more
than a few seconds to perform any task?

New York Times, 25 April 1989, in an article on new operating systems
for IBM PC

16

Why synchronize ?

§ Concurrent access to a shared resource may lead to an
inconsistent state
üE. g., concurrent file editing
üNon-deterministic result (race condition): the resulting

state depends on the scheduling of processes

§ Concurrent accesses need to be synchronized
üE. g., decide who is allowed to update a given part of the

file at a given time

§ Code leading to a race condition is called critical
section
üMust be executed sequentially

§ Synchronization problems: mutual exclusion, readers-
writers, producer-consumer, …

17

Dining philosophers
(Dijkstra, 1965)

§ To make progress (to eat) each process
(philosopher) needs two resources (forks)

§ Mutual exclusion: no fork can be shared
§ Progress conditions:

üSome philosopher does not starve (deadlock-
freedom)

üNo philosopher starves (starvation-freedom)

Edsger Dijkstra
1930-2002

18

Mutual exclusion

§No two processes are in their critical sections (CS) at the same
time
+
§Deadlock-freedom: at least one process eventually enters its CS
§Starvation-freedom: every process eventually enters its CS

üAssuming no process blocks in CS or Entry section

§Originally: implemented by reading and writing
üPeterson’s lock, Lamport’s bakery algorithm

§Currently: in hardware (mutex, semaphores)

19

Peterson’s lock: 2 processes

P0:

flag[0] = true;

turn = 1;
while (flag[1] and turn==1)

{
// busy wait

}
// critical section

…

// end of critical section
flag[0] = false;

P1:

flag[1] = true;

turn = 0;
while (flag[0] and turn==0)

{
// busy wait

}
// critical section

…

// end of critical section
flag[1] = false;

bool flag[0] = false;
bool flag[1] = false;
int turn;

20

Peterson’s lock: N ≥ 2 processes
// initialization

level[0..N-1] = {-1}; // current level of processes 0...N-1
waiting[0..N-2] = {-1}; // the waiting process in each level

// 0...N-2

// code for process i that wishes to enter CS
for (m = 0; m < N-1; ++m) {

level[i] = m;
waiting[m] = i;

while(waiting[m] == i &&(exists k ≠ i: level[k] ≥ m)) {

// busy wait
}

}
// critical section

level[i] = -1; // exit section

21
Danny Hendler

q Number of steps is not a good metric

q Processes may need to busy-wait

Alur & Taubenfeld [RTSS'92]

of remote memory references/accesses is
a more realistic measure

What about time complexity?

22
Danny Hendler

Remote memory references (RMRs)

P

M

interconnect

P

M

Legend:

processor memory cache
module CMP

Distributed
Shared Memory

(DSM)

23
Danny Hendler

Remote memory references (RMRs)

P

M

interconnect

P

M

Legend:

processor memory cache
module CMP

Distributed
Shared Memory

(DSM)

remote
read or
write

24
Danny Hendler

Remote memory references (RMRs)

P

M

interconnect

P

M

P

M

P

M

C C

interconnect

Legend:

processor memory cache
module CMP

Distributed
Shared Memory

(DSM)

Cache-
Coherent

(CC)

remote
read or
write

read +
cache
miss

25
Danny Hendler

Remote memory references (RMRs)

P

M

interconnect

P

M

P

M

P

M

C C

interconnect

Legend:

processor memory cache
module CMP

Distributed
Shared Memory

(DSM)

Cache-
Coherent

(CC)

remote
read or
write

read +
cache
miss

write +
invalidation

26

Peterson’s lock: N ≥ 2 processes
// initialization

level[0..N-1] = {-1}; // current level of processes 0...N-1
waiting[0..N-2] = {-1}; // the waiting process in each level

// 0...N-2

// code for process i that wishes to enter CS
for (m = 0; m < N-1; ++m) {

level[i] = m;
waiting[m] = i;

while(waiting[m] == i &&(exists k ≠ i: level[k] ≥ m)) {

// busy wait
}

}
// critical section

level[i] = -1; // exit section O(N3) RMRs!

27
Danny Hendler

n-process tournament tree alg.

Satisfies mutex and starvation-freedom

6 74 52 30 1

Hofri [OSR'90]

O(log N) RMRs

28

Bakery [Lamport’74,simplified]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS

flag[i] = true; //enter the “doorway”
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
//leave the “doorway”
while (for some k ≠ i: flag[k] and (label[k],k)<<(label[i],i));
// wait until all processes “ahead” are served
…
// critical section
…
flag[i] = false; // exit section

Processes are served in the “ticket order”: first-come-first-serve

29

Bakery [Lamport’74,original]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS
flag[i] = true; //enter the doorway
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
flag[i] = false; //exit the doorway
for j=1 to N do {

while (flag[j]); //wait until j is not in the doorway
while (label[j]≠0 and (label[j],j)<<(label[i],i));
// wait until j is not “ahead”

}
…
// critical section
…
label[i] = 0; // exit section

Ticket withdrawal is “protected” with flags: a very useful trick:
works with “safe” (non-atomic) shared variables

30

Black-White Bakery [Taubenfeld’04]

Colored tickets => bounded variables!

// initialization
color: {black,white};
flag: array [1..N] of bool = {false};
label[1..N]: array of type {0,…,N} = {0} //bounded ticket numbers
mycolor[1..N]: array of type {black,white}

// code for process i that wishes to enter CS
flag[i] = true; //enter the “doorway”
mycolor[i] =color;
label[i] = 1 + max({label[j]| j=1,…,N: mycolor[i]=mycolor[j]});
flag[i] = false; //exit the “doorway”
for j=1 to N do

while (flag[j]);
if mycolor[j]=mycolor[i] then

while (label[j]≠0 and (label[j],j)<<(label[i],i) and mycolor[j]=mycolor[i]);
else

while (label[j]≠0 and mycolor[i]=color and mycolor[j] ≠ mycolor[i]);
// wait until all processes “ahead” of my color are served
…
// critical section
…
if mycolor[i]=black then color = white else color = black;
label[i] = 0; // exit section

31
Danny Hendler

RMR complexity bounds

Deterministic
read/write
mutual exclusion

O(log N)
Yang, Anderson [DC'95]

W(log N)
Attiya, Hendler, Woelfel [STOC'08]

Randomized
read/write
mutual exclusion
(strong adversary)

O(log N / log log N)
Hendler, Woelfel [DC'11]

W(log N / log log N)
Woelfel, Giakkoupis [DC'12]

32

Quiz 1.1
§ What if we reverse the order of the first two lines of the 2-process

Peterson’s algorithm

Would it work?
§ Prove that the Tournament Tree algorithm satisfies:

ümutual exclusion: no two processes are in the critical section at a time
üstarvation freedom: every process in the trying section eventually reaches the

critical section (assuming no process fails in the trying, critical, or exit sections)

P0:

turn = 1;
flag[0] = true;

…

P1:

turn = 0;
flag[1] = true;

…

Foundations of Distributed
Algorithms

Correctness: safety and liveness

SLR206 2020-2021

34

How to treat a (computing) system
formally

§ Define models (tractability, realism)
§ Devise abstractions for the system design

(convenience, efficiency)
§ Devise algorithms and determine complexity bounds

35

Basic abstractions

§ Process abstraction – an entity performing
independent computation

§ Communication
üMessage-passing: channel abstraction
üShared memory: objects

36

Processes
§ Automaton Pi (i=1,...,N):

üStates
üInputs
üOutputs
üSequential specification

Algorithm = {P1,…,PN}
§ Deterministic algorithms
§ Randomized algorithms

Pi

Communication
media

Application

37

Shared memory
§ Processes communicate by applying operations on

and receiving responses from shared objects
§ A shared object instantiates a state machine

üStates
üOperations/Responses
üSequential specification

§ Examples: read-write registers, TAS,CAS,LL/SC,…

P1

P2

P3

O1 Oj OM… …

38

Implementing an object
Using base objects, create an illusion that an object O

is available

deq()

x

enq(x)

ok

emptydeq()
Queue

Base
objects

39

Correctness
What does it mean for an implementation to be correct?

§ Safety ≈ nothing bad ever happens
üCan be violated in a finite execution, e.g., by producing a wrong output or

sending an incorrect message
üWhat the implementation is allowed to output

§ Liveness ≈ something good eventually happens
üCan only be violated in an infinite execution, e.g.,
by never producing an expected output
üUnder which condition the implementation outputs

40

In our context
Processes access an (implemented) abstraction (e.g., read-write

buffer, a queue, a mutex) by invoking operations
§ An operation is implemented using a sequence of accesses to

base objects
§E.g.: a queue using reads, writes, TAS, etc.

§ A process that never fails (stops taking steps) in the middle of
its operation is called correct
§We typically assume that a correct process invokes infinitely many

operations, so a process is correct if it takes infinitely many steps

41

Runs
A system run is a sequence of events

üE.g., actions that processes may take

Σ – event alphabet
ü E.g., all possible actions

Σω is the set all finite and infinite runs

A property P is a subset of Σω
An implementation satisfies P if every its run is in P

42

Safety properties
P is a safety property if:

§ P is prefix-closed: if σ is in P, then each prefix of σ is in P

§ P is limit-closed: for each infinite sequence of traces σ0, σ1, σ2,…,
such that each σi is a prefix of σi+1 and each σi is in P, the limit
trace σ is in P

(Enough to prove safety for all finite traces of an algorithm)

43

Liveness properties

P is a liveness property if every finite σ (in Σ*, the set of all finite
histories) has an extension in P

(Enough to prove liveness for all infinite runs)

A liveness property is dense: intersects with extensions of every finite
trace

44

Safety? Liveness?

§ Processes propose values and decide on values (distributed
tasks):

Σ=Ui,v{proposei(v),decidei(v)}U{base-object accesses}

üEvery decided value was previously proposed
üNo two processes decide differently
üEvery correct (taking infinitely many steps) process eventually

decides
üNo two correct processes decide differently

45

Quiz 1.2: safety

1. Let S be a safety property. Show that if all finite runs of an
implementation I are safe (belong to S) then all runs of I are safe

2. Show that every unsafe run σ has an unsafe finite prefix σ’: every
extension of σ’ is unsafe

1. Show that every property is an intersection of a safety property
and a liveness property

46

How to distinguish safety and liveness:
rules of thumb

Let P be a property (set of runs)
§ If every run that violates P is infinite

üP is liveness
§ If every run that violates P has a finite prefix

that violates P
üP is safety

§ Otherwise, P is a mixture of safety and
liveness

47

Example: implementing a
concurrent queue

What is a concurrent FIFO queue?

üFIFO means strict temporal order
üConcurrent means ambiguous temporal order

48© Nir Shavit

When we use a lock…
shared

items[];
tail, head := 0

deq()

lock.lock();
if (tail = head)

x := empty;
else

x := items[head];
head++;

lock.unlock();
return x;

49© Nir Shavit

Intuitively…
deq()

lock.lock();
if (tail = head)

x := empty;
else

x := items[head];
head++;

lock.unlock();
return x;

All modifications
of queue are done
in mutual exclusion

50

time

It Works

q.deq

q.enq

enq deq

lock() unlock()

lock() unlock()
Behavior is
“Sequential”

enq

deq

We describe
the concurrent via the sequential

© Nir Shavit

51

Linearizability (atomicity):
A Safety Property

§ Each complete operation should
ü“take effect”
üInstantaneously
üBetween invocation and response events

§ The history of a concurrent execution is
correct if its “sequential equivalent” is correct

§ Need to define histories first

52

Histories

A history is a sequence of invocation and responses
E.g., p1-enq(0), p2-deq(),p1-ok,p2-0,…

A history is sequential if every invocation is immediately followed
by a corresponding response
E.g., p1-enq(0), p1-ok, p2-deq(),p2-0,…

(A sequential history has no concurrent operations)

53

Histories

p1

p2

p3

enq(1) ok

deq() 0

enq(0) ok

deq() 0 deq()

History:
p1-enq(0); p1-ok; p3-deq(); p1-enq(); p3-0; p3-deq(); p1-ok; p2-

deq(); p2-0

54

Histories

p1

p2

p3

enq(1) ok

deq() 1

enq(0) ok

deq() 0 deq()

History:
p1-enq(0); p1-ok; p3-deq(); p3-0; p1-enq(1); p1-ok; p2-deq(); p2-1;

p3-deq();

55

Legal histories

A sequential history is legal if it satisfies the sequential specification of the shared
object

§ (FIFO) queues:
Every deq returns the first not yet dequeued value

§ Read-write registers:
Every read returns the last written value

(well-defined for sequential histories)

56

Complete operations and completions

Let H be a history
An operation op is complete in H if H contains both the

invocation and the response of op
A completion of H is a history H’ that includes all complete

operations of H and a subset of incomplete operations of H
followed with matching responses

57

Complete operations and completions

p1

p2

p3

enq(1) ok

deq() 1

enq(0) ok

enq(3) ok deq()

p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok; p3-deq();
p1 –ok; p2-deq(); p2-1;

58

Complete operations and completions

p1

p2

p3

enq(1) ok

deq() 1

enq(0) ok

enq(3) ok deq()

p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok; p3-deq();
p1 –ok; p2-deq(); p2-1; p3-100

100

59

Complete operations and completions

p1

p2

p3

enq(1) ok

deq() 1

enq(0) ok

enq(3) ok

p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok; p1 –ok;
p2-deq(); p2-1;

60

Equivalence
Histories H and H’ are equivalent if for all pi

H | pi = H’| pi

E.g.:

H=p1-enq(0); p1-ok; p3-deq(); p3-3
H’=p1-enq(0); p3-deq(); p1-ok; p3-3

61

Linearizability (atomicity)

A history H is linearizable if there exists a sequential legal history S such
that:

§ S is equivalent to some completion of H
§ S preserves the precedence relation of H:

op1 precedes op2 in H => op1 precedes op2 in S

What if: define a completion of H as any complete extension of H?

62© 2020 P. Kuznetsov

Linearization points
An implementation is linearizable if every history it produces is

linearizable

Informally, the complete operations (and some incomplete
operations) in a history are seen as taking effect
instantaneously at some time between their invocations and
responses

Operations ordered by their linearization points constitute a legal
(sequential) history

63© 2020 P. Kuznetsov

Linearizable?

p1

p2

p3

enq(1) ok

deq() 2

enq(0) ok

deq() 0 deq() 1

enq(2) ok

64

Linearizable?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 0 write(3) ok

65

Linearizable?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 0write(3) ok

66

Linearizable?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read(). 0 write(3) ok

67

Linearizable?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 0 write(3) ok Incorrect value!

68

Linearizable?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 1 write(3)

69

Linearizable?

p1

p2

p3

write(1) ok

read() 3

write(0) ok

read() 1 write(3)

70

Linearizable?

p1

p2

p3

write(1) ok

read() 0

write(0) ok

read() 1

71

Sequential consistency
A history H is sequentially consistent if there exists a sequential legal

history S such that:
§ S is equivalent to some completion of H
§ S preserves the per-process order of H:

pi executes op1 before op2 in H => pi executes op1 before op2 in S

Why (strong) linearizability and not (weak) sequential
consistency?

72

Linearizability is compositional!
§ Any history on two linearizable objects A and B is a

history of a linearizable composition (A,B)

§ A composition of two registers A and B is a two-field
register (A,B)

p1

p2

write(B,1) ok

read(A) 1

write(A,1) ok

read(B) 1

73

Sequential consistency is not!
§ A composition of sequential consistent objects

is not always sequentially consistent!

p1

p2

write(B,1) ok

read(A) 0

write(A,1) ok

read(B) 1

74

Linearizability is nonblocking
Every incomplete operation in a finite history can be
independently completed

What safety property is blocking?

p1

p2

enq(2) ok

enq(1) ok deq()

75

Linearizability as safety
§ Prefix-closed: every prefix of a linearizable history is

linearizable
§ Limit-closed: the limit of a sequence of linearizable histories is

linearizable

(see Chapter 2 of the lecture notes)

An implementation is linearizable if and only if all its finite
histories are linearizable

© P. Kuznetsov

76

Why not using one lock?
§ Simple – automatic transformation of the sequential code
§ Correct – linearizability for free
§ In the best case, starvation-free: if the lock is “fair” and every

process cooperates, every process makes progress
§ Not robust to failures/asynchrony

ü Cache misses, page faults, swap outs
§ Fine-grained locking?

ü Complicated/prone to deadlocks

© 2020 P. Kuznetsov

77

Liveness properties
§ Deadlock-free:

ü If every process is correct*, some process makes progress**
§ Starvation-free:

ü If every process is correct, every process makes progress

§ Lock-free (sometimes called non-blocking):
üSome correct process makes progress

§ Wait-free:
üEvery correct process makes progress

§ Obstruction-free:
üEvery process makes progress if it executes in isolation (it is the only

correct process)

* A process is correct if it takes infinitely many steps, assuming that every
process always has some operations to execute
** Completes infinitely many operations

© 2020 P. Kuznetsov

78

Deadlock-freedom

p1

p2

p3

deq() 0enq(0) ok

enq(3)

enq(1) ok

deq(3)

Only p1 makes progress, p2 and p3 busy-wait

…

…

…

79

Starvation-freedom

p1

p2

p3

deq() 0enq(0) ok

enq(3) ok

enq(1) ok

deq() empty

All processes make progress, assuming every process is correct

…

…

…

deq() 3 enq(4) ok

enq(2) ok

80

Lock-freedom

p1

p2

p3

deq() 0enq(0) ok

enq(3)

enq(1) ok

deq(3)

Only p1 makes progress, p2 crashes, p3 busy-waits

…

…

81

Wait-freedom

p1

p2

p3

deq() 0enq(0) ok

enq(3)

enq(1) ok

Both p1 and p3 make progress, even though p2 crashes

…

deq() empty enq(2) ok
…

82

Obstruction-freedom

p1

p2

p3

deq() 0

enq(3)

enq(0) ok

p1 eventually runs solo and makes progress, p2 and p3 crash (suspend
taking steps)

…

deq()

enq(1) ok

83

Periodic table of liveness properties
[© 2013 Herlihy&Shavit]

© 2020 Kuznetsov

independent
non-blocking

dependent
non-blocking

dependent
blocking

every process
makes progress

wait-freedom obstruction-
freedom

starvation-freedom

some process
makes progress

lock-freedom ? deadlock-freedom

What are the relations (weaker/stronger) between these
progress properties?

84

Quiz 1.3: liveness

§ Show how the elements of the “periodic table of progress” are related
to each other

üHint: for each pair of properties, A and B, check if any run of A is a run of B (A is
stronger than B), or if there exists a run of A that is not in B (A is not stronger
than B)

üCan be shown by transitivity: if A is stronger than B and B is stronger than C,
then A is stronger than C

© 2020 P. Kuznetsov

85

Liveness properties: relations
Property A is stronger than property B if every run satisfying A also satisfies B (A is a subset of B).
A is strictly stronger than B if, additionally, some run in B does not satisfy A, i.e., A is a proper subset of
B.

For example:

§ WF is stronger than SF
Every run that satisfies WF also satisfies SF: every correct process makes progress
(regardless whether processes cooperate or not).
WF is actually strictly stronger than SF. Why?

§ SF and OF are incomparable (none of them is stronger than the other)
There is a run that satisfies SF but not OF: the run in which p1 is the only correct process but
does not make progress.
There is a run that satisfies OF but not SF: the run in which every process is correct but no
process makes progress

© 2020 P. Kuznetsov

86

Quiz 1.4: linearizability

§ Show that the sequential queue implementation considered
before is linearizable and wait-free as is if used by two
processes: one performing only enqueue operations and one
performing only dequeue operations

§ Devise a simple queue implementation shared by any number
of processes in which enqueue and dequeue operations can
run concurrently (data races between these operations do not
affect correctness)

© 2020 P. Kuznetsov

