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Administrivia
§ Language: (fr)anglais?
§ Lectures:  Wednesdays (09.09-21.10), 13:30-16:45, 

0A214
§ TP: 23/09, 1A22
§ Web page: ecampus, temporary page
§ Project: concurrent list implementation and analysis 

(teams by two)
§ Office hours:

ü4D48, appointments by email to petr.kuznetsov@telecom-paris.fr
§ Credit = 0.7*written exam+0.3*project

üBonus for participation/discussion of exercises 
üBonus for bugs found in slides/lecture notes
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Literature (links in ecampus)

§ Algorithms for Concurrent Systems . R. Guerraoui, P. Kuznetsov
§ M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan 

Kaufman, 2008 (library)
§ Lynch, N: Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
§ H. Attiya, J. Welch. Distributed Computing: Fundamentals, Simulations and 

Advanced Topics (2nd edition). Wiley. 2004
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Roadmap
§ Synchronization and concurrency
§ Correctness in distributed systems
§ Optimistic, lazy and non-blocking 

synchronization
üLab

§ Basics of read-write communication
§ Consensus and universal construction
§ Transactional memory
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This course is about distributed computing:
independent sequential processes that 

communicate
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Concurrency is everywhere!

§ Multi-core processors
§ Sensor networks
§ Internet
§ …
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Communication models
§ Shared memory

üProcesses apply operations on 
shared variables

üFailures and asynchrony
§ Message passing

üProcesses send and receive 
messages 

üCommunication graphs
üMessage delays
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Moore’s Law and CPU speed
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§ Single-processor performance does 
not improve

§ But we can add more cores
§ Run concurrent code on multiple 

processors

Can we expect a proportional 
speedup? (ratio between sequential 
time and parallel time for executing 
a job)
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Amdahl’s Law

§ p – fraction of the work that can be done in 
parallel (no synchronization)

§ n - the number of processors
§ Time one processor needs to complete the 

job = 1
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Challenges

§ What is a correct implementation?
üSafety and liveness

§ What is the cost of synchronization?
üTime and space lower bounds

§ Failures/asynchrony
üFault-tolerant concurrency?

§ How to distinguish possible from impossible? 
üImpossibility results
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Distributed ≠ Parallel

§ The main challenge is synchronization

§ “you know you have a distributed system when the crash of a 
computer you’ve never heard of stops you from getting any 
work done” (Lamport)



14

History

§ Dining philosophers, mutual exclusion (Dijkstra )~60’s
§ Distributed computing, logical clocks (Lamport), distributed 

transactions (Gray) ~70’s
§ Consensus (Lynch) ~80’s
§ Distributed programming models,  since ~90’s
§ Multicores and large-scale distributed services now
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Real concurrency--in which one program actually continues to function 
while you call up and use another--is more amazing but of small use to 
the average person. How many programs do you have that take more 
than a few seconds to perform any task?

New York Times, 25 April 1989, in an article on new operating systems 
for IBM PC
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Why synchronize ?

§ Concurrent access to a shared resource may lead to an 
inconsistent state 
üE. g., concurrent file editing
üNon-deterministic result (race condition): the resulting 

state depends on the scheduling of processes 

§ Concurrent accesses need to be synchronized
üE. g., decide who is allowed to update a given part of the 

file at a given time

§ Code leading to a race condition is called critical 
section
üMust be executed sequentially

§ Synchronization problems: mutual exclusion, readers-
writers, producer-consumer, …
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Dining philosophers
(Dijkstra, 1965)

§ To make progress (to eat) each process
(philosopher) needs two resources (forks)

§ Mutual exclusion: no fork can be shared 
§ Progress conditions:

üSome philosopher does not starve (deadlock-
freedom)

üNo philosopher starves (starvation-freedom)

Edsger Dijkstra
1930-2002
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Mutual exclusion

§No two processes are in their critical sections (CS) at the same 
time
+
§Deadlock-freedom: at least one process eventually enters its CS
§Starvation-freedom: every process eventually enters its CS

üAssuming no process blocks in CS or Entry section

§Originally: implemented by reading and writing
üPeterson’s lock, Lamport’s bakery algorithm

§Currently: in hardware (mutex, semaphores)
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Peterson’s lock: 2 processes

P0: 

flag[0] = true;

turn = 1;
while (flag[1] and turn==1)

{     
// busy wait

}
// critical section

…

// end of critical section
flag[0] = false;

P1: 

flag[1] = true;

turn = 0;
while (flag[0] and turn==0)

{     
// busy wait

}
// critical section

…

// end of critical section
flag[1] = false;

bool flag[0]   = false;
bool flag[1]   = false;
int turn;
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Peterson’s lock: N ≥ 2 processes
// initialization

level[0..N-1] = {-1};     // current level of processes 0...N-1
waiting[0..N-2] = {-1}; // the waiting process in each level 

// 0...N-2

// code for process i that wishes to enter CS
for (m = 0; m < N-1; ++m) { 

level[i] = m;
waiting[m] = i;

while(waiting[m] == i &&(exists k ≠ i: level[k] ≥ m)) {

// busy wait
}

} 
// critical section

level[i] = -1; // exit section
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Danny Hendler

q Number of steps is not a good metric

q Processes may need to busy-wait

Alur & Taubenfeld [RTSS'92]

# of remote memory references/accesses is 
a more realistic measure

What about time complexity?
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Remote memory references (RMRs)
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Peterson’s lock: N ≥ 2 processes
// initialization

level[0..N-1] = {-1};     // current level of processes 0...N-1
waiting[0..N-2] = {-1}; // the waiting process in each level 

// 0...N-2

// code for process i that wishes to enter CS
for (m = 0; m < N-1; ++m) { 

level[i] = m;
waiting[m] = i;

while(waiting[m] == i &&(exists k ≠ i: level[k] ≥ m)) {

// busy wait
}

} 
// critical section

level[i] = -1; // exit section O(N3) RMRs!
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Danny Hendler

n-process tournament tree alg.

Satisfies mutex and starvation-freedom

6 74 52 30 1

Hofri [OSR'90]

O(log N) RMRs
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Bakery [Lamport’74,simplified]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS

flag[i] = true; //enter the “doorway”
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
//leave the “doorway”
while (for some k ≠ i: flag[k] and (label[k],k)<<(label[i],i));
// wait until all processes “ahead” are served
…
// critical section
…
flag[i] = false; // exit section

Processes are served in the “ticket order”: first-come-first-serve
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Bakery [Lamport’74,original]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS
flag[i] = true; //enter the doorway
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
flag[i] = false; //exit the doorway
for j=1 to N do {

while (flag[j]); //wait until j is not in the doorway
while (label[j]≠0 and (label[j],j)<<(label[i],i));
// wait until j is not “ahead”

}
…
// critical section
…
label[i] = 0; // exit section

Ticket withdrawal is “protected” with flags: a very useful trick: 
works with “safe” (non-atomic) shared variables
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Black-White Bakery [Taubenfeld’04]

Colored tickets => bounded variables!

// initialization
color: {black,white}; 
flag: array [1..N] of bool = {false};
label[1..N]: array of type {0,…,N} = {0}  //bounded ticket numbers
mycolor[1..N]: array of type {black,white}

// code for process i that wishes to enter CS
flag[i] = true; //enter the “doorway”
mycolor[i] =color; 
label[i] = 1 + max({label[j]| j=1,…,N: mycolor[i]=mycolor[j]}); 
flag[i] = false; //exit the “doorway”
for j=1 to N do

while (flag[j]);
if mycolor[j]=mycolor[i] then

while (label[j]≠0 and (label[j],j)<<(label[i],i) and mycolor[j]=mycolor[i]  );
else

while (label[j]≠0 and mycolor[i]=color and mycolor[j] ≠ mycolor[i]);
// wait until all processes “ahead” of my color are served
…
// critical section
…
if mycolor[i]=black then color = white else color = black;
label[i] = 0; // exit section
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RMR complexity bounds

Deterministic
read/write 
mutual exclusion

O(log N) 
Yang, Anderson [DC'95 ]

W(log N) 
Attiya, Hendler, Woelfel [STOC'08]

Randomized
read/write
mutual exclusion
(strong adversary)

O(log N / log log N)
Hendler, Woelfel [DC'11]

W(log N / log log N) 
Woelfel, Giakkoupis [DC'12]
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Quiz 1.1
§ What if we reverse the order of the first two lines of the 2-process 

Peterson’s algorithm 

Would it work?
§ Prove that the Tournament Tree algorithm satisfies:

ümutual exclusion: no two processes are in the critical section at a time 
üstarvation freedom: every process in the trying section eventually reaches the 

critical section (assuming no process fails in the trying, critical, or exit sections)

P0: 

turn = 1;
flag[0] = true;

…

P1: 

turn = 0;
flag[1] = true;

…
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How to treat a (computing) system
formally 

§ Define models (tractability, realism)
§ Devise abstractions for the system design 

(convenience, efficiency)
§ Devise algorithms and determine complexity bounds
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Basic abstractions

§ Process abstraction – an entity  performing 
independent computation

§ Communication 
üMessage-passing: channel abstraction
üShared memory: objects
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Processes
§ Automaton Pi (i=1,...,N): 

üStates
üInputs
üOutputs
üSequential specification 

Algorithm = {P1,…,PN}
§ Deterministic algorithms
§ Randomized algorithms

Pi

Communication 
media

Application
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Shared memory
§ Processes communicate by applying operations on 

and receiving responses from shared objects
§ A shared object instantiates a state machine

üStates
üOperations/Responses
üSequential specification

§ Examples: read-write registers, TAS,CAS,LL/SC,…

P1

P2

P3

O1 Oj OM… …
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Implementing an object
Using base objects, create an illusion that an object O 

is available

deq()

x

enq(x)

ok

emptydeq()
Queue

Base 
objects
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Correctness
What does it mean for an implementation to be correct?

§ Safety ≈ nothing bad ever happens
üCan be violated in a finite execution, e.g., by producing a wrong output or 

sending an incorrect message
üWhat the implementation is allowed to output

§ Liveness ≈ something good eventually happens
üCan only be violated in an infinite execution, e.g.,
by never producing an expected output 
üUnder which condition the implementation outputs
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In our context
Processes access an (implemented) abstraction (e.g., read-write 

buffer, a queue, a mutex) by invoking operations
§ An operation is implemented using a sequence of accesses to 

base objects 
§E.g.: a  queue using reads, writes, TAS, etc. 

§ A process that never fails (stops taking steps) in the middle of 
its operation is called correct
§We typically assume that a correct process invokes infinitely many 

operations, so a process is correct if it takes infinitely many steps
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Runs
A system run is a sequence of events

üE.g., actions that processes may take

Σ – event alphabet
ü E.g., all possible actions

Σω is the set all finite and infinite runs

A property P is a subset of Σω
An implementation satisfies P if every its run is in P 
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Safety properties
P is a safety property if:

§ P is prefix-closed: if σ is in P, then each prefix of σ is in P

§ P is limit-closed:  for each infinite sequence of traces σ0, σ1, σ2,…, 
such that each σi is a prefix of σi+1 and each σi is in P, the limit 
trace σ is in P

(Enough to prove safety for all finite traces of an algorithm)
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Liveness properties

P is a liveness property if every finite σ (in Σ*, the set of all finite 
histories) has an extension in P  

(Enough to prove liveness for all infinite runs) 

A liveness property is dense: intersects with extensions of every finite 
trace  
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Safety? Liveness?

§ Processes propose values and decide on values (distributed 
tasks):

Σ=Ui,v{proposei(v),decidei(v)}U{base-object accesses}

üEvery decided value was previously proposed
üNo two processes  decide differently
üEvery correct (taking infinitely many steps) process eventually 

decides
üNo two correct processes decide differently
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Quiz 1.2: safety

1. Let S be a safety property. Show that if all finite runs of an 
implementation I are safe (belong to S) then all runs of I are safe

2. Show that every unsafe run σ has an unsafe finite prefix σ’: every 
extension of σ’ is unsafe

1. Show that every property is an intersection of a safety property 
and a liveness property
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How to distinguish safety and liveness:
rules of thumb

Let P be a property (set of runs)
§ If every run that violates P is infinite

üP is liveness
§ If every run that violates P has a finite prefix 

that violates P 
üP is safety

§ Otherwise, P is a mixture of safety and 
liveness
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Example: implementing a 
concurrent queue

What is a concurrent FIFO queue?

üFIFO means strict temporal order
üConcurrent means ambiguous temporal order
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When we use a lock…
shared 

items[];
tail, head := 0 

deq()

lock.lock();                   
if (tail = head)        

x := empty;
else 

x := items[head];      
head++;      

lock.unlock();
return x;      
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Intuitively…
deq()

lock.lock();                   
if (tail = head)        

x := empty;
else 

x := items[head];      
head++;      

lock.unlock();
return x;      

All modifications 
of queue are done 
in mutual exclusion
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time

It Works

q.deq

q.enq

enq deq

lock() unlock()

lock() unlock()
Behavior is 
“Sequential”

enq

deq

We describe
the concurrent via the sequential 

© Nir Shavit
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Linearizability (atomicity): 
A Safety Property

§ Each complete operation should
ü“take effect”
üInstantaneously
üBetween invocation and response events

§ The history of a concurrent execution is 
correct if its “sequential equivalent” is correct

§ Need to define histories first
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Histories

A history is a sequence of invocation and responses
E.g., p1-enq(0), p2-deq(),p1-ok,p2-0,…

A history is sequential if every invocation is immediately followed 
by a corresponding response
E.g., p1-enq(0), p1-ok, p2-deq(),p2-0,…

(A sequential history has no concurrent operations)
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Histories

p1

p2

p3

enq(1)     ok

deq()               0

enq(0)     ok

deq()   0 deq()    

History: 
p1-enq(0); p1-ok; p3-deq(); p1-enq(); p3-0;    p3-deq(); p1-ok; p2-

deq(); p2-0
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Histories

p1

p2

p3

enq(1)      ok

deq()       1

enq(0)      ok

deq()    0 deq()

History: 
p1-enq(0); p1-ok; p3-deq(); p3-0; p1-enq(1);    p1-ok; p2-deq(); p2-1; 

p3-deq(); 
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Legal histories

A sequential history is legal if it satisfies the sequential specification of the shared 
object

§ (FIFO) queues:
Every deq returns the first not yet dequeued value

§ Read-write registers:
Every read returns the last written value 

(well-defined for sequential histories)
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Complete operations and completions

Let  H be a history
An operation op is complete in H if H contains both the 

invocation and the response of op
A completion of H is a history H’ that includes all complete 

operations of H and a subset of incomplete operations of H 
followed with matching responses  
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Complete operations and completions

p1

p2

p3

enq(1)      ok

deq()             1

enq(0)     ok

enq(3)     ok deq()

p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok; p3-deq(); 
p1 –ok; p2-deq(); p2-1; 
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Complete operations and completions

p1

p2

p3

enq(1)      ok

deq()             1

enq(0)     ok

enq(3)     ok deq()

p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok; p3-deq(); 
p1 –ok; p2-deq(); p2-1; p3-100

100
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Complete operations and completions

p1

p2

p3

enq(1)      ok

deq()             1

enq(0)     ok

enq(3)     ok

p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok; p1 –ok; 
p2-deq(); p2-1; 
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Equivalence
Histories H and H’ are equivalent if for all pi 

H | pi = H’| pi

E.g.:

H=p1-enq(0); p1-ok; p3-deq(); p3-3
H’=p1-enq(0); p3-deq(); p1-ok; p3-3
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Linearizability (atomicity)

A history H is linearizable if there exists a sequential legal history S such 
that:

§ S is equivalent to some completion of H
§ S preserves the precedence relation of H:

op1 precedes op2 in H => op1 precedes op2  in S

What if: define a completion of H as any complete extension of H?
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Linearization points
An implementation is linearizable if every history it produces is 

linearizable

Informally, the complete operations (and some incomplete 
operations) in a history are seen as taking effect 
instantaneously at some time between their invocations and 
responses

Operations ordered by their linearization points constitute a legal 
(sequential) history 
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Linearizable?

p1

p2

p3

enq(1)             ok

deq()                 2

enq(0)    ok

deq()     0 deq()     1

enq(2)              ok
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Linearizable?

p1

p2

p3

write(1)    ok

read()          1

write(0)  ok

read()  0 write(3) ok
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Linearizable?

p1

p2

p3

write(1)    ok

read()      1

write(0)  ok

read()  0write(3) ok
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Linearizable?

p1

p2

p3

write(1)    ok

read()      1

write(0)  ok

read().  0 write(3) ok
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Linearizable?

p1

p2

p3

write(1)  ok

read()       1

write(0)  ok

read()  0 write(3) ok Incorrect value!
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Linearizable?

p1

p2

p3

write(1) ok

read()         1

write(0)  ok

read()  1 write(3)
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Linearizable?

p1

p2

p3

write(1)   ok

read()         3

write(0) ok

read() 1 write(3)
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Linearizable?

p1

p2

p3

write(1)                                    ok

read()                0

write(0) ok

read()   1
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Sequential consistency
A history H is sequentially consistent if there exists a sequential legal 

history S such that:
§ S is equivalent to some completion of H
§ S preserves the per-process order of H:

pi executes op1 before op2 in H => pi executes op1 before op2 in S

Why (strong) linearizability and not (weak) sequential 
consistency? 
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Linearizability is compositional!
§ Any history on two linearizable objects A and B is a 

history of a linearizable composition (A,B)

§ A composition of two registers A and B is a two-field 
register (A,B)

p1

p2

write(B,1)   ok

read(A)          1

write(A,1)  ok

read(B)       1
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Sequential consistency is not!
§ A composition of sequential consistent objects 

is not always sequentially consistent!

p1

p2

write(B,1)   ok

read(A)          0

write(A,1)  ok

read(B)      1
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Linearizability is nonblocking
Every incomplete operation in a finite history can be 
independently completed

What safety property is blocking?

p1

p2

enq(2)          ok

enq(1)   ok deq()
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Linearizability as safety
§ Prefix-closed: every prefix of a linearizable history is 

linearizable
§ Limit-closed: the limit of a sequence of linearizable histories is 

linearizable

(see Chapter 2 of the lecture notes)

An implementation is linearizable if and only if all its finite 
histories are linearizable

©  P. Kuznetsov



76

Why not using one lock?
§ Simple – automatic transformation of the sequential code
§ Correct – linearizability for free
§ In the best case, starvation-free: if the lock is “fair” and every 

process cooperates, every process makes progress  
§ Not robust to failures/asynchrony

ü Cache misses, page faults, swap outs
§ Fine-grained locking?

ü Complicated/prone to deadlocks 

© 2020 P. Kuznetsov
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Liveness properties
§ Deadlock-free:

ü If every process is correct*, some process makes progress** 
§ Starvation-free: 

ü If every process is correct, every process makes progress 

§ Lock-free (sometimes called non-blocking): 
üSome correct process makes progress

§ Wait-free: 
üEvery correct process makes progress

§ Obstruction-free:  
üEvery process makes progress if it executes in isolation (it is the only 

correct process)

* A process is correct if it takes infinitely many steps, assuming that every 
process always has some operations to execute 
** Completes infinitely many operations 

© 2020 P. Kuznetsov
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Deadlock-freedom

p1

p2

p3

deq()         0enq(0) ok

enq(3)

enq(1)                  ok

deq(3)

Only p1 makes progress, p2 and p3 busy-wait

…

…

…
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Starvation-freedom

p1

p2

p3

deq()         0enq(0) ok

enq(3)     ok

enq(1)                  ok

deq()                            empty

All processes make progress, assuming every process is correct

…

…

…

deq()       3 enq(4)           ok

enq(2)           ok
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Lock-freedom

p1

p2

p3

deq()         0enq(0) ok

enq(3)

enq(1)                  ok

deq(3)

Only p1 makes progress, p2 crashes, p3 busy-waits

…

…
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Wait-freedom

p1

p2

p3

deq()         0enq(0) ok

enq(3)

enq(1)                  ok

Both p1 and p3 make progress, even though p2 crashes

…

deq()                            empty enq(2)           ok
…
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Obstruction-freedom

p1

p2

p3

deq()         0

enq(3)

enq(0)                  ok

p1 eventually runs solo and makes progress, p2 and p3 crash (suspend 
taking steps)

…

deq()

enq(1)     ok
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Periodic table of liveness properties 
[© 2013 Herlihy&Shavit]

© 2020 Kuznetsov

independent  
non-blocking

dependent 
non-blocking

dependent
blocking

every process 
makes progress

wait-freedom obstruction-
freedom

starvation-freedom

some process 
makes progress

lock-freedom ? deadlock-freedom

What are the relations (weaker/stronger) between these 
progress properties?
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Quiz 1.3: liveness

§ Show how the elements of the “periodic table of progress” are related 
to each other

üHint: for each pair of properties, A and B, check if any run of A is a run of B (A is 
stronger than B), or if there exists a run of A that is not in B (A is not stronger 
than B)

üCan be shown by transitivity: if A is stronger than B and B is stronger than C, 
then A is stronger than C 

© 2020 P. Kuznetsov
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Liveness properties: relations
Property A is stronger than property B if every run satisfying A also satisfies B (A is a subset of B).
A is strictly stronger than B if, additionally, some run in B does not satisfy A, i.e., A is a proper subset of 
B.

For example:

§ WF is stronger than SF 
Every run that satisfies WF also satisfies SF: every correct process makes progress 
(regardless whether processes cooperate or not).
WF is actually strictly stronger than SF. Why?

§ SF and OF are incomparable (none of them is stronger than the other) 
There is a run that satisfies SF but not  OF: the run in which p1 is the only correct process but 
does not make progress.
There is a run that satisfies OF but not  SF: the run in which every process is correct but no 
process makes progress

© 2020 P. Kuznetsov
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Quiz 1.4: linearizability

§ Show that the sequential queue implementation considered 
before is linearizable and wait-free as is if used by two 
processes: one performing only enqueue operations and one 
performing only dequeue operations

§ Devise a simple queue implementation shared by any number 
of processes in which enqueue and dequeue operations can 
run concurrently (data races between these operations do not 
affect correctness) 

© 2020 P. Kuznetsov


