
Problem 1 (9 points)

• Can the history below be exported by an atomic register? (Yes/No) If yes, assign a linearization
point to each operation.

56© 2019 P. Kuznetsov

Linearizable?

p1

p2

p3

write(1) ok

read() 1

write(0) ok

read() 0 write(3) ok

• Can the history below be exported by an atomic register? (Yes/No) If yes, assign a linearization
point to each operation.

62© 2019 P. Kuznetsov

Linearizable?

p1

p2

p3

write(1) ok

read() 0

write(0) ok

read() 1

• Is the history below linearizable with respect to the FIFO queue specification? (Yes/No) If yes,
assign a linearization point to each operation.

p1

p2

p3

enq(1) ok

deq() 2

enq(0) ok

deq() 0 deq() 1

enq(2) ok

2

Problem 2 (5 points)

Consider the 2-process Peterson’s mutual exclusion algorithm:

19

Peterson’s lock: 2 processes

P0:

flag[0] = true;
turn = 1;
while (flag[1] and turn==1)
{

// busy wait
}
// critical section
…
// end of critical section
flag[0] = false;

© 2019 P. Kuznetsov

P1:

flag[1] = true;
turn = 0;
while (flag[0] and turn==0)
{

// busy wait
}
// critical section
…
// end of critical section
flag[1] = false;

bool flag[0] = false;
bool flag[1] = false;
int turn;

Suppose that p0 executes the first two lines of its algorithm in the reverse order:

1. turn = 1;

2. flag[0] = true;

Prove that the resulting algorithm is not correct.

3

Problem 3 (6 points)

We say that a property P is stronger than a property P 0 if P ✓ P 0, i.e., every run that satisfies P also
satisfies P 0.

Recall the two properties:

• SF (starvation-freedom): if every process is correct, then every process makes progress.

• LF (lock-freedom): at least one correct process makes progress.

What is the relation between SF and LF?

4

Problem 1 (4 points)

Classify the following properties into safety/liveness. If a property is an intersection of the two, specify

the corresponding safety and liveness properties. Justify your answers.

• Every process eventually outputs a value.

• No two processes output di↵erent values.

• Every process eventually outputs a previously proposed input of some process or crashes (stops

taking steps).

• No two correct processes output di↵erent values.

2

Problem 2 (4 points)

We say that a property P is stronger than a property P if P ✓ P 0
. What is the relation between

starvation-freedom (SF) and lock-freedom (LF)? Explain why.

3

Problem 3 (4 points)

Give an algorithm that implements a safe 1WNR M -valued register (for some fixed M) using dlogMe
safe 1WNR binary registers. Provide a proof of correctness.

If we replace the safe binary registers with regular ones, do we get a regular M -valued register

implementation?

4

Problem 3: Linked Lists (3 points)

In the validate function of the lazy linked-list implementation (cf. the next page), is checking curr.marked

really necessary? Justify your answer.

4

1

23

Lazy synchronization:  
logical removals and wait-free contains

©	2017	P.	Kuznetsov	
	

private boolean validate(Node pred, Node
curr) {

 return !pred.marked && !curr.marked &&

pred.next==curr;
}

public boolean remove(int item)
 while (true){
 Node pred=head;
 Node curr=pred.next;

 while (curr.key<item){
 pred=curr;

 curr=curr.next;
 }

 pred.lock();
 try {
 curr.lock();
 try {
 if (validate(pred,curr)){
 if (curr.key!=item){

return false;}
 curr.marked=true;
 pred.next=curr.next;
 return true;}
 } finally{
 curr.unlock(); }

 } finally{
 pred.unlock();}

 }
}

§  remove first marks the node
for deletion and then
physically removes it

§  contains returns true iff the
node is reachable and not
marked

§  A node is in the set iff it is an
unmarked reachable node

24

Lazy synchronization:  
wait-free contains

©	2017	P.	Kuznetsov	
	

public boolean contains(int item){

 Node curr=head;
while (curr.key<item){
 curr=curr.next;
}
return (curr.key==item)&& !curr.marked ;

}

public boolean insert(int item){
 while (true){
 Node pred=head;
 Node curr=pred.next;

 while (curr.key<item){
 pred=curr;

 curr=curr.next;
 }

 pred.lock();
 try {
 curr.lock();
 try {
 if (validate(pred,curr)){
 if (curr.key==item) {

 return false;
}

 Node node = new Node(item);
 node.next=curr;

 pred.next=node;
 return true;
 } finally{
 curr.unlock(); }

 } finally{
 pred.unlock();}

 } }
}

Problem 4 (4,5 points)

• Depict a history of a one-writer one-reader register that satisfies the specification of a regular
register, but does not satisfy the specification of an atomic register.

• Is this a history of a regular register (Yes/No)? Why?

• Is the history below linearizable with respect to the specification of queue? (Yes/No) If yes, assign
a linearization point to each operation.

6

Problem 5 (5 points)

A counter object exports one operation inc-read, which (in one atomic step) increments the counter and
returns the old value.

Show that counter has consensus number 2:

• 2-process consensus can be solved using counters and atomic registers;

• 3-process consensus cannot be solved using counters and atomic registers.

7

