Quiz 1: relaxing atomicity?

- Would 2-process Peterson’s lock work if we use regular registers instead of atomic?
- Show that the original Lamport’s Bakery algorithm works even when all base registers are safe?
Quiz 2: what if?

Code for process pi:

- **initially:**

 shared array $R[0,..M-1]$ of 1WNR registers := $[1,0,…,0]$

- **upon read()**

 for $j = 0$ to $M-1$ do

 if $R[j].read() = 1$ then return j

- **upon write(v) // if i=1**

 $R[v].write(1)$

 for $j=0$ to $v-1$ do $R[j].write(0)$

 return ok
Quiz 3: what if?

Code for process pi:
initially:
 shared array R[0,..M-1] of 1WNR registers := [1,0,…,0]

upon read()
 for j = 0 to M-1 do
 if R[j].read() = 1 then return j

upon write(v) // if i=1
 for j=v-1 down to 0 do R[j].write(0)
 R[v].write(1)
return ok
Quiz 4: Why not atomic? Why bounded?

- Can we find an execution that is not atomic?
 ✓ “new-old” inversion:
 ✓ R1 precedes R2
 ✓ R1 returns the new value, and R2 returns the old value

- Can we turn the register into an unbounded one
 ✓ What if we assume an unbounded array R[] and allow for writing any (integer) value.