Atomic and immediate snapshots

MPRI, P1, 2018
The space of registers

- Nb of writers and readers: from 1W1R to NWNR
- Size of the value set: from binary to multi-valued
- Safety properties: safe, regular, atomic

All registers are (computationally) equivalent!
Transformations

From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
V. From 1W1R to 1WNR (multi-valued atomic)
VI. From 1WNR to NWNR (multi-valued atomic)
VII. From safe bit to atomic bit (optimal, coming later)
This class

- **Atomic snapshot: reading multiple locations atomically**
 - Write to one, read *all*
Atomic snapshot: sequential specification

- Each process p_i is provided with operations:
 - $\text{update}_i(v)$, returns ok
 - $\text{snapshot}_i()$, returns $[v_1,\ldots,v_N]$

- In a **sequential** execution:
 For each $[v_1,\ldots,v_N]$ returned by $\text{snapshot}_i()$, v_j ($j=1,\ldots,N$) is the argument of the last $\text{update}_j(.)$ (or the initial value if no such update)
Snapshot for free?

Code for process p_i:

initially:

shared 1WNR *atomic* register $R_i := 0$

upon snapshot()

$[x_1,\ldots,x_N] := \text{scan}(R_1,\ldots,R_N)$ /*read $R_1,\ldots R_N$*/

return $[x_1,\ldots,x_N]$

upon update$_i$(v)

R_i.write(v)
Snapshot for free?

(p1)

update_1(1) ok

(update_1(2) ok

(snapshot()

[1,1,2]

(p2)

update_2(1) ok

(read_1()1 read_2()1 read_3()2

(p3)

update_3(1) ok

(update_3(2) ok

© 2018 P. Kuznetsov
Snapshot for free?

$[1,1,1]$ $[2,1,1]$ $[2,1,2]$

$\text{update}_1(1)$ ok
$\text{update}_1(2)$ ok
$\text{snapshot}()$
$\text{read}_1()1$ $\text{read}_2()1$ $\text{read}_3()2$

$\text{update}_2(1)$ ok
$\text{update}_3(1)$ ok
$\text{update}_3(2)$ ok
- What about 2 processes?

- What about **lock-free** snapshots?
 - At least one correct process makes **progress** (completes infinitely many operations)
Lock-free snapshot

Code for process \(p_i \) (all written values, including the initial one, are unique, e.g., equipped with a sequence number)

Initially:

\[
\text{shared 1W1R atomic register } R_i := 0
\]

upon snapshot()

\[
[x_1, \ldots, x_N] := \text{scan}(R_1, \ldots, R_N)
\]

repeat

\[
[y_1, \ldots, y_N] := [x_1, \ldots, x_N]
\]

\[
[x_1, \ldots, x_N] := \text{scan}(R_1, \ldots, R_N)
\]

until \([y_1, \ldots, y_N] = [x_1, \ldots, x_N]\)

return \([x_1, \ldots, x_N]\)

upon update\(_i\)(v)

\[
R_i.\text{write}(v)
\]

© 2018 P. Kuznetsov
Assign a linearization point to each operation

- $\text{update}_i(v)$
 - $\text{R}_i.\text{write}(v)$ if present
 - Otherwise remove the op

- $\text{snapshot}_i()$
 - if complete – any point between identical scans
 - Otherwise remove the op

Build a sequential history S in the order of linearization points
Correctness: linearizability

S is legal: every snapshot$_i$(()) returns the last written value for every p$_j$

Suppose not: snapshot$_i$(()) returns [x$_1$,..,x$_N$] and some x$_j$ is not the argument of the last update$_j$(v) in S preceding snapshot$_i$(())

Let C$_1$ and C$_2$ be two scans that returned [x$_1$,..,x$_N$]

Returns the argument of the last update$_j$(.)!

No update$_j$(.) linearized here!
Correctness: lock-freedom

An update\(_i()\) operation is wait-free (returns in a finite number of steps)

Suppose process \(p_i\) executing snapshot\(_i()\) eventually runs in isolation (no process takes steps concurrently)

- All scans received by \(p_i\) are distinct
- At least one process performs an update between
- There are only finitely many processes => at least one process executes infinitely many updates

What if base registers are regular?
General case: helping?

What if an update interferes with a snapshot?
- Make the update do the work!

upon snapshot()
\[
[x_1, \ldots, x_N] := \text{scan}(R_1, \ldots, R_N)
\]
\[
[y_1, \ldots, y_N] := \text{scan}(R_1, \ldots, R_N)
\]
if \([y_1, \ldots, y_N] = [x_1, \ldots, x_N]\) then
return \([x_1, \ldots, x_N]\)
else
let \(j\) be such that \(x_j \neq y_j\) and \(x_j = (u, U)\)
return \(U\)

upon update\(_i\)(v)
\[
S := \text{snapshot}() \\
R_i.\text{write}(v, S)
\]
If two scans differ - some update succeeded!
Would this work?

© 2018 P. Kuznetsov
Not that easy!

update_1(1) \text{ ok}

\begin{itemize}
\item p_1
 \begin{itemize}
 \item snapshot() \ [0,0,0]
 \item write_1(1, [0,0,0])
 \end{itemize}
\end{itemize}

\begin{itemize}
\item p_2
 \begin{itemize}
 \item snapshot_2() \ [0,0,0]
 \item [0,0,1]
 \item scan()
 \item [1,0,1]
 \item scan()
 \end{itemize}
\end{itemize}

update_3(1) \text{ ok}

\begin{itemize}
\item p_3
 \begin{itemize}
 \item write_3(1, [0,0,0])
 \end{itemize}
\end{itemize}

© 2018 P. Kuznetsov
General case: wait-free atomic snapshot

upon snapshot()

\[[x_1, ..., x_N] := \text{scan}(R_1, ..., R_N) \]
while true do

\[[y_1, ..., y_N] := [x_1, ..., x_N] \]
\[[x_1, ..., x_N] := \text{scan}(R_1, ..., R_N) \]
if \[[y_1, ..., y_N] = [x_1, ..., x_N] \] then

return \[[x_1, ..., x_N] \]
else if moved \[j \] and \[x_j \neq y_j \] then

let \[x_j = (u, U) \]
return \(U \)
for each \(j \): \(\text{moved}_j := \text{moved}_j \lor x_j \neq y_j \)

upon update_i(v)

\(S := \text{snapshot()} \)
\(R_i.write(v, S) \)

If a process moved twice: its last snapshot is valid!
Correctness: wait-freedom

Claim 1 Every operation (update or snapshot) returns in $O(N^2)$ steps (bounded wait-freedom)

snapshot: does not return after a scan if a concurrent process moved and no process moved twice

- At most $N-1$ concurrent processes, thus (pigeonhole), after N scans:
 - Either at least two consecutive identical scans
 - Or some process moved twice!

update: snapshot() + one more step
Correctness: linearization points

\textbf{update}_i(v): linearize at the R_i.write(v,S) complete \textbf{snapshot()}

- If two identical scans: between the scans
- Otherwise, if returned U of p_j: at the linearization point of p_j’s snapshot
The linearization is:

- Legal: every snapshot operation returns the most recent value for each process
- Consistent with the real-time order: each linearization point is within the operation’s interval
- Equivalent to the run (locally indistinguishable)

(Full proof in the lecture notes, Chapter 6)
One-shot atomic snapshot (AS)

Each process p_i:
- update$_i(v_i)$
- $S_i := \text{snapshot()}$

$S_i = S_i[1], \ldots, S_i[N]$ (one position per process)

Vectors S_i satisfy:
- **Self-inclusion**: for all i: v_i is in S_i
- **Containment**: for all i and j: S_i is subset of S_j or S_j is subset of S_i
"Unbalanced" snapshots

p_1 sees p_2 but misses its snapshot

p_1 sees p_2 but misses its snapshot
Enumerating possible runs: two processes

Each process p_i ($i=1,2$):

- update$_i(v_i)$
- $S_i := \text{snapshot()}$

Three cases to consider:

(a) p_1 reads before p_2 writes
(b) p_2 reads before p_1 writes
(c) p_1 and p_2 go “lock-step”: first both write, then both read
Quiz 1: atomic snapshots

1. Prove that one-shot atomic snapshot satisfies self-inclusion and containment:
 ✓ **Self-inclusion**: for all i: v_i is in S_i
 ✓ **Containment**: for all i and j: S_i is subset of S_j or S_j is subset of S_i

2. Show that the atomic snapshot is subject to the **ABA problem** (affecting correctness) in case the written values are not unique
One-shot atomic snapshot (AS)

Each process p_i:
- $\text{update}_i(v_i)$
- $S_i := \text{snapshot()}$

$S_i = S_i[1],...,S_i[N]$ (one position per process)

Vectors S_i satisfy:
- **Self-inclusion**: for all i: v_i is in S_i
- **Containment**: for all i and j: S_i is subset of S_j or S_j is subset of S_i
Topological representation: one-shot AS

Balanced run:
- two steps of p_2,
- then p_1,
- then p_3
Topological representation: one-shot AS

- p_1 sees $\{p_1, p_2\}$
- p_2 sees $\{p_1, p_2\}$
- p_3 sees $\{p_2, p_3\}$
- p_3 sees $\{p_1, p_2, p_3\}$

Note: The run is "unbalanced"
One-shot *immediate* snapshot (IS)

One operation:
WriteRead(\(v\))

Each process \(p_i\):
\(S_i := \text{WriteRead}_i(v_i)\)

Vectors \(S_1, \ldots, S_N\) satisfy:

- **Self-inclusion**: for all \(i\): \(v_i\) is in \(S_i\)
- **Containment**: for all \(i\) and \(j\): \(S_i\) is subset of \(S_j\) or \(S_j\) is subset of \(S_i\)
- **Immediacy**: for all \(i\) and \(j\): if \(v_i\) is in \(S_j\), then is \(S_i\) is a subset of \(S_j\)

© 2015 P. Kuznetsov
Topological representation: one-shot IS

A subdivision!

p_1 sees $\{p_1, p_2\}$

p_2 sees $\{p_1, p_2\}$

p_2 sees $\{p_2, p_3\}$

p_3 sees $\{p_2, p_3\}$
IS is equivalent to AS (one-shot)

- IS is a restriction of one-shot AS \(\Rightarrow\) IS is stronger than one-shot AS
 - Every run of IS is a run of one-shot AS

- Show that a few (one-shot) AS objects can be used to implement IS
 - One-shot ReadWrite() can be implemented using a series of update and snapshot operations
IS from AS

shared variables:
\(A_1, \ldots, A_N \) – atomic snapshot objects, initially \([T, \ldots, T]\)

Upon \(\text{WriteRead}_i(v_i) \)
\[
\begin{align*}
r & := N+1 \\
\text{while true do} & \\
\quad r & := r-1 \quad \text{// drop to the lower level} \\
\quad A_r.\text{update}_i(v_i) & \\
\quad S & := A_r.\text{snapshot}() \\
\quad \text{if } |S| = r & \quad \text{// } |S| \text{ is the number of non-T values in } S \\
\quad \text{return } S &
\end{align*}
\]
Drop levels: two processes, $N>3$

\[
\begin{array}{c}
N \\
\hline
\cdot & \cdot \\
N-1 \\
\hline
\cdot & \cdot \\
\vdots
\end{array}
\]

See $< N$
See $< N-1$
See 1 or 2
See 1

© 2015 P. Kuznetsov
Correctness

The outcome of the algorithm satisfies Self-Inclusion, Snapshot, and Immediacy

- By induction on N: for all N>1, if the algorithm is correct for N-1, then it is correct for N
- Base case N=1: trivial
Correctness, contd.

- Suppose the algorithm is correct for N-1 processes
- N processes come to level N
 - At most N-1 go to level N-1 or lower
 - (At least one process returns in level N)
 - Why?
- Self-inclusion, Containment and Immediacy hold for all processes that return in levels N-1 or lower
- The processes returning at level N return all N values
 - The properties hold for all N processes! Why?
Iterated Immediate Snapshot (IIS)

Shared variables:

\[\text{IS}_1, \text{IS}_2, \text{IS}_3, \ldots \] // a series of one-shot IS

Each process \(p_i \) with input \(v_i \):

\[
\begin{align*}
& r := 0 \\
& \text{while true do} \\
& \quad r := r + 1 \\
& \quad v_i := \text{IS}_r.\text{WriteRead}_i(v_i)
\end{align*}
\]
Iterated standard chromatic subdivision (ISDS)
ISDS: one round of IIS

\[p_1 \quad p_2 \quad p_3 \]
ISDS: two rounds of IIS
IIS is equivalent to (multi-shot) AS

- AS can be used to implement IIS (wait-free)
 - Multiple instances of the construction above (one per iteration)

- IIS can be used to implement multi-shot AS in the lock-free manner:
 - At least one correct process performs infinitely many read or write operations
 - Good enough for protocols solving distributed tasks!
From IIS to AS

We simulate an execution of full-information protocol (FIP) in the AS model, i.e., each process p_i runs:

\[
\text{state} := \text{input value of } p_i \\
\text{repeat} \\
\quad \text{update}_i(\text{state}) \\
\quad \text{state} := \text{snapshot()} \\
\text{until undecided}(\text{state})
\]

(the input value and the decision procedure depend on the problem being solved)

If a problem is solvable in AS, it is solvable with FIP

For simplicity, assume that the k-th written value $= k$ (“without loss of generality” – every written value is unique)
From IIS to AS: non-blocking simulation

Shared: IS\textsubscript{1}, IS\textsubscript{2},… // an infinite sequence of one-shot IS memories

Local: at each process, c[1,…,N]=[(0,T),…,(0,T)]

Code for process p\textsubscript{i}:

r:=0; c[i].clock:=1; // p\textsubscript{i}’s initial value

repeat forever

r:=r+1

view := IS\textsubscript{r}.WriteRead(c) // get the view in IS\textsubscript{r}

r := top(view) // get the top clock values

if |c|=r then // the current snapshot completed

if undecided(ctop) then

\text{c}[i].val:=ctop;

\text{c}[i].clock:=\text{c}[i].clock+1 // update the clock

else

\text{return } \text{decision(ctop)} // return the decision
From IIS to AS

Each process p_i maintains a **vector clock** $c[1,\ldots,N]$

- Each $c[j]$ has two components:
 - $c[j].\text{clock}$: the number of updates of p_j “witnessed” by p_i (c.clock - the corresponding vector)
 - $c[j].\text{val}$: the most recent value of p_j’s vector clock “witnessed” by p_i (c.val – the corresponding vector)

- To perform an update: increment $c[i].\text{clock}$ and set $c[i].\text{val}$ to be the “most recent” vector clock

- To take a snapshot: go through iterated memories until $lcl=\sum_j c[j].\text{clock}$ is “large enough”,
 - i.e. $lcl= r$ (the current round number)
 - As we’ll see, $lcl\geq r$: every process p_i begins with $c[i]=1$
We say that \(c \geq c' \) iff for all \(j \), \(c[j].\text{clock} \geq c'[j].\text{clock} \) (c observes a more recent state than c)

✓ Not always the case with c and c’ of different processes

\(|c| = \sum_j c[j].\text{clock} \) (sum of clock values of the last seen values)

For \(c = c[1], \ldots c[N] \) (vector of vectors \(c[j] \)), \(\text{top}(c) \) is the vector of most recent seen values:

\[
\begin{align*}
 c[1] &= [1 \ 3 \ 2] \\
 c[2] &= [4 \ 2 \ 1] \\
 c[3] &= [2 \ 1 \ 5] \\
 \text{top}(c) &= [4 \ 3 \ 5]
\end{align*}
\]
From IIS to AS: correctness

Let c_r denote the vector evaluated by an undecided process p_i in round r (after computing the top function)

Lemma 1 $|c_r| \geq r$

Proof sketch

$c_{r+1} \geq c_r$ (by the definition of top)

Initially $|c_1| \geq 1$ (each process writes $c[1].\text{clock}=1$ in IS$_1$)

Inductively, suppose $|c_r| \geq r$, for some round r:

- If $|c_r|=r$, then c', such that $|c'|=r+1$, is written in IS$_{r+1}$
- If $|c_r|>r$, then c', such that $c' \geq c_r$ (and thus $|c'| \geq |c_r|$) is written in in IS$_{r+1}$

In both cases, $c_{r+1} \geq r+1$
From IIS to AS: correctness

Lemma 2 Let c_r and c_r' be the clock vectors evaluated by processes p_i and p_j, resp., in round r. Then $|c_r| \leq |c_r'|$ implies $c_r \leq c_r'$

Proof sketch

Let S_i and S_j be the outcomes of IS_r received by p_i and p_j.

$c_r = \text{top}(S_i)$ and $c_r' = \text{top}(S_j)$

Either S_i is a subset of S_j or S_j is a subset of S_i (the Containment property of IS)

Suppose S_i is a subset of S_j, then each clock value seen by p_i is also seen by p_j

$\Rightarrow |c_r| \leq |c_r'|$ and $c_r \leq c_r'$

Why?

© 2015 P. Kuznetsov
From IIS to AS: correctness

Corollary 1 (to Lemma 2) All processes that complete a snapshot operation in round r, get the same clock vector c, $|c| = r$

Corollary 2 (to Lemmas 1 and 2) If a process completes a snapshot operation in round r with clock vector c, then for each clock vector c' evaluated in round $r' \geq r$, we have $c \leq c'$
From IIS to AS: linearization

Lemma 3 Every execution’s history is linearizable (with respect to the AS spec.)

Proof sketch

Linearization

- Order snapshots based on the rounds in which they complete
- Put each update(c) just before the first snapshot that contains c (if no such snapshot – remove)

By Corollaries 1 and 2, snapshots and updates put in this order respect the specification of AS – *legality*

The linearization points take place “within the interval” of k-th update and k-th snapshot of \(p_i \) - between the k-th and the (k+1)-th updates of \(c[i].val \) – *precedence*
From IIS to AS: liveness

Lemma 4 Some correct undecided process completes infinitely many snapshot operations (or every process decides).

Proof sketch

By Lemma 1, a correct process p_i does not complete its snapshot in round r only if $|c_r| > r$

Suppose p_i never completes its snapshot

$\Rightarrow c_r$ keeps grows without bound and

\Rightarrow some process p_j keeps updating its $c[j]$

\Rightarrow some process p_j completes infinitely many snapshots

(Chapter 9 in lecture notes)
IIS = AS for wait-free task solutions

- Suppose we simulate a wait-free protocol for solving a task:
 - Every process starts with an input
 - Every process taking sufficiently many steps (of the full-information protocol) eventually decides (and thus stops writing new values, but keeps writing the last one)
 - Outputs match inputs (we’ll see later how it is defined)

- If a task can be solved in AS, then it can be solved in IIS
 - We consider IIS from this point on
Quiz 2

1. Would the (one-shot) IS algorithm be correct if we replace $A_r.update_i(v_i)$ with $U_r[i].write(v_i)$ and $A_r.snapshot()$ with $\text{scan}(U_r[1], \ldots, U_r[N])$?
2. Would it be possible to use only one array of N registers?
3. Complete the proofs of Lemma 2 and Corollaries 1 and 2