Implementing an atomic bit

MPRI, P1, 2019
The space of registers

- Nb of writers and readers: from 1W1R to NWNR
- Size of the value set: from binary to multi-valued
- Safety properties: safe, regular, atomic

All registers are (computationally) equivalent!
Transformations

From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From 1W1R regular to 1W1R atomic (unbounded)
V. From 1W1R atomic to 1WNR atomic (unbounded)

✓ Can be turned into bounded using a bounded (in n) number of signaling registers
This class

- The problem: implement a binary 1W1R atomic register (atomic bit) from binary 1W1R safe ones (safe bits)
 - From a few safe bits only
 - No unbounded multi-valued registers
 - No ever-growing timestamps
An optimal solution

- No sequence numbers?
- Bounded number of safe bits, $O(1)$?
- Bounded number of base actions, $O(1)$?

Can we do it if the reader does not write?
Safe bit to regular bit? Easy

- the writer is allowed only to *change* the value

Can we get an atomic bit this way?
Impossible if the reader does not write for bounded # of regular bits!

Proof sketch (by contradiction):

- Suppose only the writer executes writes on the base (regular) bits (the reader only reads the base objects).
- Every write operation $W(1)$ is a sequence of writes actions $w_1, \ldots w_k$ on base regular bits
 - Corresponds to the sequence of shared-memory states s_0, s_1, \ldots, s_k (defined for sequential runs)
Proof (contd): digests

- There are only finitely many states!
 (bounded # of base registers)

- Each sequence s_0,s_1,\ldots,s_k of states (though possibly unbounded) defines a bounded digest d_0,d_1,\ldots,d_m
 - $d_0=s_0$, $d_m=s_k$ (same global state transition)
 - $d_i=d_j \Rightarrow i=j$ (all digest elements are distinct)
 - for all (d_i,d_{i+1}), exists (s_j,s_{j+1}) such that $s_j=d_i$ and $s_{j+1}=d_{i+1}$

 7,4,8,4,2,8,3 => 7,4,8,3

- Each write operation “looks” like its digest

- There are only finitely many digests!
Proof (contd.): counter-example

- Consider a run with infinitely many alternating writes: \(W_1(1), W(0), W_2(1), \ldots \) (no reads)
 - Writes \(W_1, W_2, \ldots \) give an infinite sequence of digests \(D_1, D_2, \ldots \)
 - At least one digest \(D=d_0, d_1, \ldots, d_m \) appears infinitely often in \(D_1, D_2, \ldots \)
 - Why?
- We can amend our run with a sequence of reads \(R_0, R_1, \ldots, R_m \) (in that order), each \(R_i \) “sees” state \(d_{m-i} \)
 - How?
Quiz 1

- Explain why there can be only finitely many digests
- Explain why in the construction of the proof there is at least one digests that appears infinitely often
- Show how to construct the sequence of reads operations \(R_0, R_1, \ldots, R_m \) (in that order) overlapping with \(W_1(1), W(0), W_2(1), \ldots \), where each \(R_i \) “sees” state \(d_{m-i} \)
Proof (contd.): the “switch”

- R_0 “sees” d_m and, thus, returns 1
 ✓Could have happened right after $W(1)$
- R_m “sees” d_0 and, thus, returns 0
 ✓Could have happened right before $W(1)$

⇒ There exists i such that R_i returns 1 and R_{i+1} returns 0 (by induction on $i=0,\ldots,m$)
Proof (contd.): contradiction

- The (sequential) execution of R_i and R_{i+1} is indistinguishable (to the reader) from a concurrent one

\[
\text{write}(1) \quad \text{write to a base bit} \quad \text{ok}
\]

$$p_1 \quad \cdots \quad d_{m-i-1} \quad \cdots \quad d_{m-i} \quad \cdots$$

$$R_i \quad 1 \quad R_{i+1} \quad 0$$

$$p_2 \quad d_{m-i} \quad d_{m-i} \quad d_{m-i-1}$$

New-old inversion!
The reader must write

- And the writer must read
- But how the writer would tell what it read?
 - The writer needs at least two bits!
 - Why?
- Suppose the writer writes to one bit only
 - there are exactly two digests 0,1 and 1,0
 - suppose infinitely many W(1) operations export digests 0,1
 - new-old inversion:

\[\begin{align*}
\text{write}(1) & \quad \text{change the base bit} \\
\text{from 0 to 1} & \quad \text{ok}
\end{align*}\]

\[\begin{align*}
p_1 & \quad \text{read()} \\
1 & \quad \text{read()} \\
p_2 & \quad 0
\end{align*}\]
Optimal construction?

- Two bits for the writer
 - ✓ REG: for storing the current value
 - ✓ WR: for signaling to the reader
- One bit for the reader
 - ✓ RR: for signaling to the writer

Necessary, but is it also sufficient?
Evolutionary approach: Iteration 1

The reader should be able to distinguish the two cases:

- A new value was written: $WR \neq RR$:
- The value is unchanged: $WR = RR$:

Writer:
- change REG
- if $WR = RR$ then change WR

Reader:
- if $WR \neq RR$ then change RR
- val := REG
- return val

Does not work: the read value does not depend on RR
Iteration 2

Return the “old” value if nothing changed
(local variable val initialized to the initial value of REG)

Writer:

change REG
if WR=RR then change WR

Reader:

if WR=RR then return val
change RR
val:= REG
return val
Counter-example 2?

r_1 reads the new value and r_2 reads the old one? Is this the case?
Counter-example 2, corrected

Does not work: a read finds $\text{WR} \neq \text{RR}$, a subsequent read finds $\text{WR} \neq \text{RR}$ and reads an old value in \text{REG} (new-old inversion)

\[
\begin{align*}
 w_1 = & \text{write}(1) & w_2 = & \text{write}(0) \\
 \text{change WR} & & \text{change REG} & \\
 r_1 & \text{return 1} & r_2 & \text{return 0} & r_3 & \text{return 1} \\
 \text{RR} \neq \text{WR} & \text{read 1} & \text{RR} \neq \text{WR} & \text{read 0} & \text{read 1} \\
 \text{change RR} & \text{RR=WR} & \text{change RR} & \text{RR} \neq \text{WR} & \\
\end{align*}
\]
Iteration 3

Only change RR if needed
(read REG before, because otherwise we do not fix the counter-example)

Writer:

change REG

if WR=RR then change WR

Reader:

if WR=RR then return val

val:= REG

if WR≠RR change RR

return val

Construct a counter-example?
Iteration 4

Read WR twice, if WR changed while the read is executed, return a conservative (old) value

Writer:

change REG

if WR=RR then change WR

Reader:

if WR=RR then return val

aux := REG

if WR≠RR change RR

val:= REG

if WR=RR then return val

return aux
Counter-example 4

Still a problem: the value stored in val can be too conservative

Solution: evaluate val again
Final solution [Tromp, 1989]

Writer protocol

change REG
if WR=RR then
change WR

Reader protocol

(1) if WR=RR then return val
(2) aux := REG
(3) if WR≠RR then change RR
(4) val := REG
(5) if WR=RR then return val
(6) val := REG
(7) return aux
Proof sketch: reading functions

A reading function \(\pi \): for each complete read operation \(r \) (returning \(v \)), \(\pi(r) \) is a write operation \(w(v) \)

Show that for every run of the algorithm, there exists an atomic reading function \(\pi \):

(A0) No read \(r \) precedes \(\pi(r) \)
 No read returns a value not yet written

(A1) \(w \) precedes \(r \) \(\Rightarrow \) \(w = \pi(r) \) or \(w \) precedes \(\pi(r) \)
 No read obtains an overwritten value

(A2) \(r_1 \) precedes \(r_2 \) \(\Rightarrow \) \(\pi(r_2) \) does not precede \(\pi(r_1) \)
 No new/old inversion

A run is linearizable iff an atomic reading function exists (Chapter 4.2.4 of the lecture notes)
Proof: constructing π

- Let r return a value v
- Let ρ_r be the read of REG that got the value of r
 - If r returns in line 7, ρ_r is the read action in line 2 of r
 - If r returns in line 5, ρ_r is is the read action in line 4
 - If r returns in line 1, ρ_r is is the read in line 4 or 6 of some previous r' (depending on how r' returns)
- Let ϕ_r be the last write action on REG that precedes or is concurrent to ρ_r and writes the value returned by r (and ρ_r)
- Define $\pi(r)$ as the write operation that contains ϕ_r
Proof: show that π is atomic

- A0 is easy: by construction of π, $\pi(r)$ precedes or is concurrent to r

- A1? A2?

Hint: assume the contrary and come to absurdum

- A complete proof in lecture notes (Chapter 7)
Quiz 2

- Find a mistake in the “counter-example" of Slide 17
- Find a counter-example to the algorithm in Slide 19