Distributed Computing with Shared Memory

Introduction

MPRI, P1, 2019
Administrivia

- Module: 2-18-2
- Petr Kuznetsov, Carole Deporte, Hugues Fauconnier
- Language: franglais
- Lectures: Mondays (16.09-04.11), 8:45-12:00 (1014, Bat. Sophie Germain)
- Web page: wiki
- Homework assignment (to submit by October 14)
- Credit = 0.25*HW+0.75*written exam (18.11)
 - Bonus for participation/discussion of exercises
 - Bonus (up to 3 points) for bugs found in slides/lecture notes
- Stages: theory and practice of distributed computing: contact petr.kuznetsov@telecom-paristech.fr
Literature

- Lecture notes: Algorithms for concurrent systems. R. Guerraoui, P. Kuznetsov, link on the wiki
The field of concurrent computing has gained in importance after major chip manufacturers switched their focus from increasing the speed of individual processors to increasing the number of processors on a chip. The computer industry has thus been calling for a software revolution: the concurrency revolution. A major challenge underlying this paradigm shift is creating a library of abstractions that developers can use for general purpose concurrent programming. We study in this book how to define and build such abstractions in a rigorous manner. We focus on those that are considered the most difficult to get right and have the highest impact on the overall performance of a program: synchronization abstractions, also called shared objects or concurrent data structures. The book is intended for software developers and students. It begins as a set of lecture notes for courses given at EPFL and Télécom Paris.

Rachid Guerraoui is Professor of Distributed Computing at Ecole Polytechnique Fédérale de Lausanne. He got a PhD from University of Orey in 1992 and has been affiliated with HP Labs, MIT and Collège de France.

Petr Kuznetsov is Professor of Computer Science at Télécom ParisTech, Université Paris-Saclay, France. He received his PhD from Ecole Polytechnique Fédérale de Lausanne (EPFL) in 2005. Before joining Télécom ParisTech, he worked at Max Planck Institute for Software Systems and Deutsche Telekom Innovation Labs/Technical University of Berlin.

ALGORITHMS FOR CONCURRENT SYSTEMS

© P. Kuznetsov

Librairie Eyerolles, 55-57-61, Blvd Saint-Germain, 75005 Paris
Section «Informatique-Algorithmique»
This course is about distributed computing: independent sequential processes that communicate
Concurrency is everywhere!

- Multi-core processors
- Sensor networks
- Internet
- Basically everything related computing

© P. Kuznetsov
Communication models

- **Shared memory**
 - Processes apply (read–write) operations on shared variables
 - Failures and asynchrony

- **Message passing**
 - Processes send and receive messages
 - Communication graphs
 - Message delays
Single-processor performance does not improve
But we can add more cores
Run concurrent code on multiple processors

Can we expect a proportional speedup? (ratio between sequential time and parallel time for executing a job)
Amdahl’s Law

- p – fraction of the work that can be done in parallel (no synchronization)
- n - the number of processors
- Time one processor needs to complete the job = 1

$$S = \frac{1}{1 - p + \frac{p}{n}}$$
Challenges

- What is a correct implementation?
 - Safety and liveness
- What is the cost of synchronization?
 - Time and space lower bounds
- Failures/asynchrony
 - Fault-tolerant concurrency?
- How to distinguish possible from impossible?
 - Impossibility results
Distributed ≠ Parallel

- The main challenge is synchronization

- “you know you have a distributed system when the crash of a computer you’ve never heard of stops you from getting any work done” (Lamport)
History

- Dining philosophers, mutual exclusion (Dijkstra) ~60’s
- Distributed computing, logical clocks (Lamport), distributed transactions (Gray) ~70’s
- Consensus (Lynch) ~80’s
- Distributed programming models, since ~90’s
- Multicores now
Course outline:

I. Synchronization, blocking and non-blocking
 - Introduction, theory and practice of distributed systems
 - Correctness: Safety and Liveness
 - Synchronization techniques; mutual exclusion

II. Read-write synchronization
 - Safe, regular, and atomic registers
 - Atomic and immediate snapshot

II. Consensus
 - Consensus hierarchy
 - Distributed tasks: k-set agreement, renaming
 - Simulation of Borowsky and Gafni, with applications.
Synchronization, blocking and non-blocking

MPRI, period 1,
Why synchronize?

- Concurrent access to a shared resource may lead to an inconsistent state
 - E.g., concurrent file editing
 - Non-deterministic result (race condition): the resulting state depends on the scheduling of processes

- Concurrent accesses need to be synchronized
 - E.g., decide who is allowed to update a given part of the file at a given time

- Code leading to a race condition is called critical section
 - Must be executed sequentially

- Synchronization problems: mutual exclusion, readers-writers, producer-consumer, …
Dining philosophers (Dijkstra, 1965)

- To **make progress** (to eat) each **process** (philosopher) needs two **resources** (forks)
- **Mutual exclusion**: no fork can be shared
- **Progress conditions**:
 - ✓ Some philosopher does not starve (**deadlock-freedom**)
 - ✓ No philosopher starves (**starvation-freedom**)
Mutual exclusion

- No two processes are in their critical sections (CS) at the same time

+ Deadlock-freedom: at least one process eventually enters its CS

+ Starvation-freedom: every process eventually enters its CS
 ✓ Assuming no process blocks in CS or Entry section

- Originally: implemented by reading and writing
 ✓ Peterson’s lock, Lamport’s bakery algorithm

- Currently: in hardware (mutex, semaphores)
Peterson’s lock: 2 processes

```c
bool flag[0] = false;
bool flag[1] = false;
int turn;

P0:
flag[0] = true;
turn = 1;
while (flag[1] and turn==1)
{
    // busy wait
}
// critical section
...
// end of critical section
flag[0] = false;

P1:
flag[1] = true;
turn = 0;
while (flag[0] and turn==0)
{
    // busy wait
}
// critical section
...
// end of critical section
flag[1] = false;
```

© P. Kuznetsov
Peterson’s lock: N ≥ 2 processes

// initialization
level[0..N-1] = {-1}; // current level of processes 0...N-1
waiting[0..N-2] = {-1}; // the waiting process in each level
// 0...N-2

// code for process i that wishes to enter CS
for (m = 0; m < N-1; ++m) {
 level[i] = m;
 waiting[m] = i;
 while(waiting[m] == i && (exists k ≠ i: level[k] ≥ m)) {
 // busy wait
 }
}

// critical section
level[i] = -1; // exit section
Bakery [Lamport’74, simplified]

// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; // assume no bound

// code for process i that wishes to enter CS

flag[i] = true; // enter the “doorway”
label[i] = 1 + max(label[1], ..., label[N]); // pick a ticket
// leave the “doorway”
while (for some k ≠ i: flag[k] and (label[k],k)<<(label[i],i));
// wait until all processes “ahead” are served
...
// critical section
...
flag[i] = false; // exit section

Processes are served in the “ticket order”: first-come-first-serve
Bakery [Lamport’74,original]

// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS
flag[i] = true; //enter the doorway
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
flag[i] = false; //exit the doorway
for j=1 to N do {
 while (flag[j]); //wait until j is not in the doorway
 while (label[j] ≠ 0 and (label[j],j)<<(label[i],i));
 // wait until j is not “ahead”
}
...
// critical section
...
label[i] = 0; // exit section

Ticket withdrawal is “protected” with flags: a very useful trick:
works with “safe” (non-atomic) shared variables
// initialization
color: \{black,white\};
flag: array [1..N] of bool = \{false\};
label[1..N]: array of type \{0,…,N\} = \{0\} //bounded ticket numbers
mycolor[1..N]: array of type \{black,white\}

// code for process \(i\) that wishes to enter CS
flag[i] = true; //enter the “doorway”
mycolor[i] = color;
label[i] = 1 + max({label[j]| j=1,…,N: mycolor[i]=mycolor[j]});
flag[i] = false; //exit the “doorway”
for \(j=1\) to \(N\) do
 while (flag[j]);
 if mycolor[j]=mycolor[i] then
 while (label[j]≠0 and (label[j],j)<<(label[i],i) and mycolor[j]=mycolor[i]);
 else
 while (label[j]≠0 and mycolor[i]=color and mycolor[j] ≠ mycolor[i]);
 // wait until all processes “ahead” of my color are served
...
 // critical section
...
if mycolor[i]=black then color = white else color = black;
label[i] = 0; // exit section

Colored tickets => bounded variables!
Readers-writers problem

- Writer updates a file
- Reader keeps itself up-to-date
- Reads and writes are non-atomic!

Why synchronization? Inconsistent values might be read

Writer
T=0: write("sell the cat")
T=2: write("wash the dog")

Reader
T=1: read("sell ...")
T=3: read("... the dog")

Sell the dog?
Producer-consumer (bounded buffer) problem

- Producers **put** items in the buffer (of bounded size)
- Consumers **get** items from the buffer
- Every item is consumed, no item is consumed twice

(Client-server, multi-threaded web servers, pipes, ...)

Why synchronization? Items can get lost or consumed twice:

```
Producer
/* produce item */
while (counter==MAX);
buffer[in] = item;
in = (in+1) % MAX;
counter++;

Consumer
/* to consume item */
while (counter==0);
item=buffer[out];
out=(out+1) % MAX;
counter--;
/* consume item */
```
Synchronization tools

- Busy-waiting (TAS)
- Semaphores (locks), monitors
- Nonblocking synchronization
- Transactional memory
Busy-wait: Test and Set

- TAS(X) **tests** if $X = 1$, **sets** X to 1 if not, and returns the old value of X
 - Instruction available on almost all processors

$$\text{TAS}(X):$$

$$\begin{align*}
\text{atomic} & \quad \begin{cases}
\text{if } X == 1 \text{ return } 1; \\
X = 1; \\
\text{return } 0;
\end{cases}
\end{align*}$$
Busy-wait: Test and Set

Problems:

- busy waiting
- no record of request order (for multiple producers and consumers)
Semaphores [Dijkstra 1968]: specification

- A semaphore S is an integer variable accessed (apart from initialization) with two atomic operations $P(S)$ and $V(S)$
 - Stands for “passeren” (to pass) and “vrijgeven” (to release) in Dutch

- The value of S indicates the number of resource elements available (if positive), or the number of processes waiting to acquire a resource element (if negative)

Init$(S,v)\{$ $S := v; \}$

$P(S)\{$
 while $S\leq 0$; /* wait until a resource is available */
 $S--; /* pass to a resource */$
$}\}$

$V(S)\{$
 $S++; /* release a resource */$
$}\}$
Semaphores: implementation

S is associated with a composite object:

- S.counter: the **value** of the semaphore
- S.wq: the **waiting queue**, memorizing the processes having requested a resource

```c
Init(S,R_nb) {
    S.counter=R_nb;
    S.wq=empty;
}

P(S) {
    S.counter--;
    if S.counter<0{
        put the process in S.wq and wait until READY;)
    }
}

V(S) {
    S.counter++
    if S.counter>=0{
        mark 1st process in S.wq as READY;)
    }
}
Lock

- A semaphore initialized to 1, is called a **lock** (or **mutex**)
- When a process is in a critical section, no other process can come in

shared semaphore S := 1

<table>
<thead>
<tr>
<th>Producer</th>
<th>Consumer</th>
</tr>
</thead>
<tbody>
<tr>
<td>while (counter==MAX);</td>
<td>while (counter==0);</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>buffer[in] = item;</td>
<td>item = buffer[out];</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>P(S);</td>
<td>P(S);</td>
</tr>
<tr>
<td>counter++;</td>
<td>counter--;</td>
</tr>
<tr>
<td>V(S)</td>
<td>V(S);</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Problem: still waiting until the buffer is ready
Semaphores for producer-consumer

- 2 semaphores used:
  - **empty**: indicates empty slots in the buffer (to be used by the producer)
  - **full**: indicates full slots in the buffer (to be read by the consumer)

```plaintext
shared semaphores empty := MAX, full := 0;
```

<table>
<thead>
<tr>
<th></th>
<th>Producer</th>
<th>Consumer</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(empty)</td>
<td></td>
<td>P(full);</td>
</tr>
<tr>
<td>buffer[in] = item;</td>
<td></td>
<td>item = buffer[out];</td>
</tr>
<tr>
<td>in = (in+1) % MAX;</td>
<td></td>
<td>out=(out+1) % MAX;</td>
</tr>
<tr>
<td>V(full)</td>
<td></td>
<td>V(empty);</td>
</tr>
</tbody>
</table>
```
Potential problems with semaphores/locks

- **Blocking**: progress of a process is conditional (depends on other processes)
- **Deadlock**: no progress ever made

\[X_1 := 1; \quad X_2 := 1 \]

<table>
<thead>
<tr>
<th>Process 1</th>
<th>Process 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>P(X1)</td>
<td>P(X2)</td>
</tr>
<tr>
<td>P(X2)</td>
<td>P(X1)</td>
</tr>
<tr>
<td>critical section</td>
<td>critical section</td>
</tr>
<tr>
<td>V(X2)</td>
<td>V(X1)</td>
</tr>
<tr>
<td>V(X1)</td>
<td>V(X2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Starvation**: requests blocked in the waiting queue forever
Other problems of blocking synchronization

- Priority inversion
 - High-priority threads blocked
- No robustness
 - Page faults, cache misses etc.
- Not composable

Can we think of anything else?
Non-blocking algorithms

A process makes progress, **regardless** of the other processes

shared buffer[MAX]:=empty; head:=0; tail:=0;

<table>
<thead>
<tr>
<th>Producer put(item)</th>
<th>Consumer get()</th>
</tr>
</thead>
<tbody>
<tr>
<td>if (tail−head == MAX){ \n return(full); \n} \nbuffer[tail%MAX]=item; \ntail++; \nreturn(ok);</td>
<td>if (tail−head == 0){ \n return(empty); \n} \nitem=buffer[head%MAX]; \nhead++; \nreturn(item);</td>
</tr>
</tbody>
</table>

Problems:
- works for 2 processes but hard to say why it works 😊
- multiple producers/consumers? Other synchronization pbs?
 (stay in class to learn more)
Transactional memory

- Mark sequences of instructions as an **atomic transaction**, e.g., the resulting producer code:

  ```
  atomic {
    if (tail-head == MAX){
      return full;
    }
    items[tail%MAX]=item;
    tail++;
  }
  return ok;
  ```

- A transaction can be either **committed** or **aborted**
 - Committed transactions are **serializable**
 - Let the transactional memory (TM) care about the conflicts
 - Easy to program, but performance may be problematic
Summary

- Concurrency is indispensable in programming:
 - Every system is now concurrent
 - Every parallel program needs to synchronize
 - Synchronization cost is high ("Amdahl’s Law")

- Tools:
 - Synchronization primitives (e.g., monitors, TAS, CAS, LL/SC)
 - Synchronization libraries (e.g., java.util.concurrent)
 - Transactional memory, also in hardware (Intel Haswell, IBM Blue Gene,…)

- Coming later:
 - Read-write transformations and snapshot memory
 - Nonblocking synchronization
Quiz 1

- What if we reverse the order of the first two lines the 2-process Peterson’s algorithm

 P0:
 turn = 1;
 flag[0] = true;

 P1:
 turn = 0;
 flag[1] = true;

 Would it work?

- Prove that Peterson’s N-process algorithm ensures:
 ✓ mutual exclusion: no two processes are in the critical section at a time
 ✓ starvation freedom: every process in the trying section eventually reaches the critical section (assuming no process fails in the trying, critical, or exit sections)

- Extra: show that the bounded (black-white) Bakery algorithm is correct
Correctness of algorithms: safety and liveness
Basic abstractions

- *Process* abstraction – an entity performing independent computation

- Communication
 - Message-passing: *channel* abstraction
 - Shared memory: *objects*
How to treat a (computing) system formally

- Define models (tractability, realism)
- Devise abstractions for the system design (convenience, efficiency)
- Devise algorithms and determine complexity bounds
Processes

- Automaton P_i $(i=1,\ldots,N)$:
 - States
 - Inputs
 - Outputs
 - Sequential specification

Algorithm = \{P_1,\ldots,P_N\}
 - Deterministic algorithms
 - Randomized algorithms
Shared memory

- Processes communicate by applying operations on and receiving responses from *shared objects*
- A shared object instantiates a state machine
 - States
 - Operations/Responses
 - Sequential specification
- Examples: read-write registers, TAS,CAS,LL/SC,…
Implementing an object

Using *base* objects, create an illusion that an object `O` is available
Correctness

What does it mean for an implementation to be correct?

- **Safety** ≈ nothing bad ever happens
 - Can be violated in a finite execution, e.g., by producing a wrong output or sending an incorrect message
 - What the implementation is allowed to output

- **Liveness** ≈ something good eventually happens
 - Can only be violated in an *infinite* execution, e.g., by never producing an expected output
 - Under which condition the implementation outputs
In our context

Processes access an (implemented) abstraction (e.g., bounded buffer, a queue, a mutual exclusion) by invoking operations

- An operation is implemented using a sequence of accesses to base objects
 - E.g.: a bounded-buffer using reads, writes, TAS, etc.
- A process that never fails (stops taking steps) in the middle of its operation is called correct
 - We typically assume that a correct process invokes infinitely many operations, so a process is correct if it takes infinitely many steps
Runs

A system run is a sequence of events
✓ E.g., actions that processes may take

Σ – event alphabet
✓ E.g., all possible actions
Σ* – the set of finite runs
Σω – the set all finite and infinite runs

A property P is a subset of Σω
An implementation satisfies P if every its run is in P
Safety properties

P is a safety property if:

- P is prefix-closed: if σ is in P, then each prefix of σ is in P

- P is limit-closed: for each infinite sequence of traces σ₀, σ₁, σ₂, ..., such that each σᵢ is a prefix of σᵢ₊₁ and each σᵢ is in P, the limit trace σ is in P

(Enough to prove safety for all finite traces of an algorithm)
Liveness properties

P is a liveness property if every finite σ (in Σ^*) has an extension in P

(Enough to prove liveness for all infinite runs)

A liveness property is dense: intersects with extensions of every finite trace
Safety? Liveness?

- Processes propose \textit{values} and decide on \textit{values} (distributed \textit{tasks}):

\[
\Sigma = \bigcup_{i,v} \{ \text{propose}_i(v), \text{decide}_i(v) \} \cup \{ \text{base-object accesses} \}
\]

- Every decided value was previously proposed
- No two processes decide differently
- Every \textbf{correct} (taking infinitely many steps) process eventually decides
- No two \textbf{correct} processes decide differently

© P. Kuznetsov
Quiz 2: safety

1. Let S be a safety property. Show that if all finite runs of an implementation I are safe (belong to S) then all runs of I in are safe.

2. Show that every unsafe run σ has an unsafe finite prefix σ': every extension of σ' is unsafe.

3. Show that every property is a mixture of a safety property and a liveness property.
How to distinguish safety and liveness: rules of thumb

Let P be a property (set of runs)

- If every run that violates P is infinite
 \[\checkmark\text{P is liveness}\]
- If every run that violates P has a finite prefix that violates P
 \[\checkmark\text{P is safety}\]
- Otherwise, P is a mixture of safety and liveness
Example: linearizability

Implementing a concurrent queue

What *is* a concurrent FIFO queue?

✓ FIFO means strict temporal order
✓ Concurrent means ambiguous temporal order
When we use a lock...

```c
shared
    items[];
    tail, head := 0

deq()

    lock.lock();
    if (tail = head)
        x := empty;
    else
        x := items[head];
        head++;
    lock.unlock();
    return x;
```
Intuitively...

deq()

lock.lock();
if (tail == head)
 x := empty;
else
 x := items[head];
 head++;
lock.unlock();
return x;

All modifications of queue are done in mutual exclusion
We describe
the concurrent via the sequential

Behavior is “Sequential”
Linearizability (atomicity): A Safety Property

- Each complete operation should
 - “take effect”
 - Instantaneously
 - Between invocation and response events

- The history of a concurrent execution is correct if its “sequential equivalent” is correct

- Need to define histories first
Histories

A history is a sequence of invocation and responses
E.g., p1-enq(0), p2-deq(), p1-ok, p2-0,…

A history is **sequential** if every invocation is immediately followed by a corresponding response
E.g., p1-enq(0), p1-ok, p2-deq(), p2-0,…

(A sequential history has no concurrent operations)
History:

p1-enq(0); p1-ok; p3-deq(); p1-enq(1); p3-0; p3-deq(); p1-ok; p2-deq(); p2-0
History:
p1-enq(0); p1-ok; p3-deq(); p3-0; p1-enq(1); p1-ok; p2-deq(); p2-1; p3-deq();
Legal histories

A sequential history is *legal* if it satisfies the sequential specification of the shared object

- *(FIFO) queues:*
 Every `deq` returns *the first not yet dequeued value*

- **Read-write registers:**
 Every read returns *the last written value* (well-defined for sequential histories)
Complete operations and completions

Let H be a history.

An operation op is complete in H if H contains both the invocation and the response of op.

A completion of H is a history H' that includes all complete operations of H and a subset of incomplete operations of H followed with matching responses.
Complete operations and completions

p1

enq(0) ok enq(1) ok

deq() 1

p2

enq(3) ok deq()

deq() 1

p3

p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok; p3-deq(); p1-ok; p2-deq(); p2-1;
Complete operations and completions

p1 - enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok; p3-deq(); p1-ok; p2-deq(); p2-1; p3-100
Complete operations and completions

p1

enq(0) ok enq(1) ok

p2

deq() 1

p3

enq(3) ok

p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok; p1-ok; p2-deq(); p2-1;
Equivalence

Histories H and H' are *equivalent* if for all p_i

$$H \upharpoonright p_i = H' \upharpoonright p_i$$

E.g.:

$H = p_1\text{-enq}(0); p_1\text{-ok}; p_3\text{-deq}(); p_3\text{-3}$

$H' = p_1\text{-enq}(0); p_3\text{-deq}(); p_1\text{-ok}; p_3\text{-3}$
Linearizability (atomicity)

A history H is *linearizable* if there exists a *sequential legal* history S such that:

- S is equivalent to some completion of H
- S preserves the precedence relation of H: $\text{op1 precedes op2 in } H \Rightarrow \text{op1 precedes op2 in } S$

What if: define a completion of H as *any complete extension of H*?
Linearization points

An implementation is *linearizable* if every history it produces is linearizable.

Informally, the complete operations (and some incomplete operations) in a history are seen as *taking effect instantaneously* at some time between their invocations and responses.

Operations ordered by their *linearization points* constitute a legal (sequential) history.
Linearizable?

```
activate
<table>
<thead>
<tr>
<th>p1</th>
<th>enq(0)</th>
<th>ok</th>
<th>enq(1)</th>
<th>ok</th>
<th>enq(2)</th>
<th>ok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
activate
| p2 |        |     |        |     |        |     |
|    |        |     |        |     |        |     |
|    |        |     |        |     |        |     |
|    |        |     |        |     |        |     |
activate
| p3 |        |     |        |     |        |     |
|    |        |     |        |     |        |     |
|    |        |     |        |     |        |     |
|    |        |     |        |     |        |     |
```
Linearizable?

p1: write(0) ok
write(1) ok

p2: read() 1

p3: read() 0
write(3) ok
Linearizable?

write(0) ok
write(1) ok
write(3) ok
read() 0
read() 1
Linearizable?

```
p1
write(0) ok
write(1) ok

p2
read() 1
read() 0
write(3) ok

p3
```

© P. Kuznetsov
Linearizable?

```plaintext
write(0)  ok  write(1)  ok

p1

read()  1

write(0)  ok  write(1)  ok

p2

Incorrect value!

read()  0  write(3)  ok

p3
```
Linearizable?

```
p1
  write(0)  ok
  write(1)  ok

p2
  read()  1

p3
  read()  1
  write(3)
```
Linearizable?

- `write(0) ok`
- `write(1) ok`
- `read() 1`
- `write(3)`
Linearizable?

write(0) ok

write(1) ok

read() 0

read() 1

p1

p2

p3
Sequential consistency

A history H is *sequentially consistent* if there exists a sequential legal history S such that:

- S is equivalent to some completion of H
- S preserves the *per-process order* of H:

 π_i executes op1 before op2 in $H \Rightarrow \pi_i$ executes op1 before op2 in S

Why (strong) linearizability and not (weak) sequential consistency?
Linearizability is compositional!

- Any history on two linearizable objects A and B is a history of a linearizable composition \((A,B)\)

- A composition of two registers A and B is a two-field register \((A,B)\)
Sequential consistency is not!

- A composition of sequential consistent objects is not always sequentially consistent!

```
p1: write(A,1) ok
     write(B,1) ok

p2: read(B) 1
     read(A) 0
```
Linearizability is **nonblocking**

Every incomplete operation in a finite history can be *independently* completed.

What safety property is **blocking**?

© P. Kuznetsov
Linearizability as safety

- Prefix-closed: every prefix of a linearizable history is linearizable
- Limit-closed: the limit of a sequence of linearizable histories is linearizable

(see Chapter 2 of the lecture notes)

An implementation is linearizable if and only if all its finite histories are linearizable
Why not using one lock?

- Simple – automatic transformation of the sequential code
- Correct – linearizability for free
- In the best case, starvation-free: if the lock is “fair” and every process cooperates, every process makes progress
- Not robust to failures/asynchrony
 - Cache misses, page faults, swap outs
- Fine-grained locking?
 - Complicated/prone to deadlocks
Liveness properties

- **Deadlock-free:**
 - ✓ If every process cooperates (takes enough steps), some process makes progress

- **Starvation-free:**
 - ✓ If every process cooperates, every process makes progress

- **Lock-free** (sometimes called *non-blocking*):
 - ✓ Some active process makes progress

- **Wait-free:**
 - ✓ Every active process makes progress

- **Obstruction-free:**
 - ✓ Every process makes progress if it executes in isolation
Periodic table of liveness properties
[© 2013 Herlihy&Shavit]

<table>
<thead>
<tr>
<th></th>
<th>independent non-blocking</th>
<th>dependent non-blocking</th>
<th>dependent blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>every process makes progress</td>
<td>wait-freedom</td>
<td>obstruction-freedom</td>
<td>starvation-freedom</td>
</tr>
<tr>
<td>some process makes progress</td>
<td>lock-freedom</td>
<td>?</td>
<td>deadlock-freedom</td>
</tr>
</tbody>
</table>

What are the relations (weaker/stronger) between these progress properties?
Liveness properties: relations

Property A is stronger than property B if every run satisfying A also satisfies B (A is a subset of B).
A is strictly stronger than B if, additionally, some run in B does not satisfy A, i.e., A is a proper subset of B.

For example:

- WF is stronger than SF
 Every run that satisfies WF also satisfies SF: every correct process makes progress (regardless whether processes cooperate or not).
 WF is actually strictly stronger than SF. Why?

- SF and OF are incomparable (none of them is stronger than the other)
 There is a run that satisfies SF but not OF: the run in which p1 is the only correct process but does not make progress.
 There is a run that satisfies OF but not SF: the run in which every process is correct but no process makes progress
Quiz 3: linearizability/progress

- Show that linearizability is **compositional**:
 - A history H on $A \times B$ is linearizable if and only if H_A and H_B are linearizable

- Show how the elements of the “periodic table of progress” are related to each other:
 - Property P is **weaker** than property P' if P' is a subset of P