MITRO207 2018 Exercise session

Problem 1

Let \mathcal{A} and \mathcal{B} be simplicial complexes and $\varphi : V(\mathcal{A}) \to V(\mathcal{B})$ be a simplicial map. Show that if \mathcal{A} is connected, then the image of \mathcal{A} under φ , denoted $\varphi(\mathcal{A})$ and defined as the set of vertices $\{\varphi(v)|v \in V(\mathcal{A})\}$ is connected in \mathcal{B} : every two vertices in $\varphi(\mathcal{A})$ are connected by a path in \mathcal{B} .

Show that it is not always the case that if $\varphi(\mathcal{A})$ is connected, then \mathcal{A} is connected.

Problem 2

Figure 1 depicts \mathcal{I} , the input complex of the 1/5-agreement task, \mathcal{P} , the protocol complex of 1 layer of the read-write layered model, and \mathcal{O} , the output complex of the 1/5-agreement task.

Recall that Δ , the carrier map of the task, maps each of the endpoints of \mathcal{I} to the corresponding endpoints of \mathcal{O} and each of the edges of \mathcal{I} to \mathcal{O} .

Prove that there does not exist a simplicial map δ from \mathcal{P} to \mathcal{O} carried by Δ .

Figure 1: Complexes of the 1-layer read-write protocol and the 1/5-agreement task.

Problem 3

Consider the model in which n+1 processes p_0, \ldots, p_n communicate via layered *participating-set* objects. The object stores a set of *values* (initially \emptyset), and exports one *atomic* operation join(V) that adds the set of values V to the object state and returns the state.

In the corresponding layered full-information protocol, we have a series of participating-set objects M_1, M_2, \ldots . Each process p_i starts with invoking $M_1.join(i)$, and then proceeds to the next layer, each time invoking M_i with the value returned by M_{i-1} .

- 1. Draw the protocol complexes of one layer of this model for n = 1 (two processes) and n = 2 (three processes).
- 2. In the colorless task of *set agreement*, every process proposes a value in a set V(|V| = n + 1) and outputs one of the proposed values, so that at most n different values are output.

Formally, the input complex \mathcal{I} is Δ^n (the standard *n*-dimensional simplex), the output complex \mathcal{O} is $\mathbf{skel}^{n-1}\Delta^n$ (the set of all faces of Δ^n of dimensions n-1 or less), and the task carrier map is

 $\operatorname{skel}^{n-1}$ (mapping each simplex $\sigma \in \mathcal{I}$ to $\operatorname{skel}^{n-1}\sigma$). In particular, for the *n*-dimensional simplex σ , $\Delta(\sigma)$ is the set of all proper faces of σ .

Show that set agreement can be solved by the 1-layered participating-set protocol (by presenting the corresponding simplicial decision map).

Hint: if a process sees n or less different values after accessing M_1 , it can output any of these values. The only interesting case is when a process sees n + 1 different values.

3. Show that for all $n \ge 2$ (three or more processes) and $L \ge 1$, the task of consensus *cannot* be solved by the *L*-layered participating-set protocol

Hint: The complex of an *L*-layered protocol is the union of one-layer protocol complexes resulting from the simplices of the (L-1)-layered protocol complex.

Check if the protocol complex remains connected, regardless of the number of layers .